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 The Polysolenoid Linear Motor (PLM) have been playing a crucial role in 

many industrial aspects because it provides a straight motion directly without 

mediate mechanical actuators. Some control methods for PLM based on 

Rotational Motor are applied to obtain several good performances, but 

position and velocity constraints which are important in real systems are 

ignored. In this paper, we analysis control problem of tracking position in 

PLM under state-independent disturbances via min-max model predictive 

control. The proposed controller brings tracking position error converge to 

zero and satisfies state including position and velocity and input constraints. 

The simulation results validity a good efficiency of the proposed controller. 
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1. INTRODUCTION 

Linear Motor transmission systems are widely applied to provide directed straight motions in which, 

mechanical actuators are eliminated, resulting in better performance of motion systems. Generally, 

polysolenoid linear motor (PLM) has a durable structure [1], operations according to electromagnetic 

phenomenon with principles as shown in [2]-[6] and various applications such as CNC Lathe [7], sliding 

door [8]. Without the need of any gear box for motion transformation, the PLM system becomes sensitive 

due to external impacts such as frictional force, end – effect, changed load and non-sine of flux. These effects 

encounter both in the longitudinal and in the transversal direction, which along with saturation in supplied 

voltage make obtaining good control performance from the linear drive a difficult task. 

There are several researches taking into account the position control of PLM in presence of external 

disturbances. The authors in [9] presented a control design method to regulate velocity based on PI – 

selftunning combining with appropriate estimation technique at slow velocity zone, but if load is changed, PI 

– selftunning controller will be not efficient. In order to overcome changed load, model reference control 

method based on Lyapunov stability theory was employed in [10]. Additionally, the compensation 

approaches were proposed in researches [11],[12] in which, the frictional force were estimated by Lugrie and 

Stribeck friction model respectively. In [13], the advantage of that the sliding mode control applied in Linear 

Motor is that real position value tracks set point. However, the disadvantages of this method are finding 

sliding surface and chattering. In the view of nonlinear systems, the study in [14],[15] apply linearization 

method to PLM system but this method is restricted by uncertain parameter and disturbances. The authors in 

[16] built a new mathematic model and use optimal control approach to result in linear quadratic regulation 
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(LQR). It is clear that the previous researches do not mention position, velocity and currents constraints as 

well as impact of external disturbance which is important properties of the control systems. 

The contribution of this study is to develop a position control system for PLM in which, the the 

proposed control structure is based on separating a dynamic model into two subsystem including position-

velocity and current. The output of position-velocity controller is reference of current control-ler. The 

position controller is designed based on a min-max model predictive control theory in [17] to ensure that 

position and velocity error being in their constraints and converging to a small ball neighborhood of origin 

under state-independent disturbance. The current controller is designed based on a PI-controller with cross-

current compensation method. 

 

 

2. DYNAMIC MODEL 

 

 
 

Figure 1. Composition of Polysolenoid motor [1] 

 

 

Let us consider a dynamic model of PLM in [14],[15],[18] 
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where , , ,sd sqi i v x are current, velocity and position respectively, sR is resistance, ,sd sqL L is inductor p is pole 

pair  is pole step ,sd sqU U is voltage p is flux m is massive cF is unmeasured external force. 

In the dynamic model (1) is same as that of permanent magnet rotation synchronization motor. 

When it comes to PLM, ,sd sqL L have the approximate similar values and reference current 0sdri  in the 

current controller; therefore, term  sd sq sd sqL L i i  can be ignored in the third equation in (1), leading to that 

current sqi relates position-velocity by linear equations. 

 

 

3. PROPOSED METHOD 

In this paper, let us separate dynamic model (1) into current subsystem and position-velocity 

subsystem. The previous chapter shows position subsystem can be considered as a linear system and applied 

algorithm in [17]. In current subsystem, the proposed method is cross-current compensation method between 

,sd sqi i to change dynamic model to a linear state space model to apply a controller based on PI – controller. 

 

 

3.1. Control of current – subsystem 
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Applying decoupling control: 
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Current systems is transformed to:   
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Using current controller (PI controller): 
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where 
; .e r e r

sd sd sd sq sq sqi i i i i i   

 
We obtain current closed loop: 
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By turning coefficients 11 12 21 22, , ,k k k k , the controller (4) guarantee global exponential stability of closed     

loop (5).  

Remark 1: The current reference 0r

sdi  and coefficients 11 12,k k  21 22,k k  is choosen such that closed 

loop (5) become undamped second order system and its transient time is small than horizon prediction in 

position subsystems. 

 

3.2. Control of Position-Velocity subsystem 

The dynamic of position subsystem is significantly slower than current subsystems. In the control 

design of position, we assumed that the desired current equals to actual current. From (1) and remark 1, we 

have model of position system 
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The equation (6) can be rewrite in state space model of tracking errors by setting 
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where 
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To obtain a discrete state space model, let us apply the forward Euler method to equation (7)  
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Control Objective: 
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where                     
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To achieve control objective (10), we use min-max model predictive control proposed in (1)-(6). In 

position controller, we consider a dual-mode control law: an “inner” and an “outer” controller. The inner 

controller is active when the state is in the robust control invariant set , and its role is to keep the state in 

this set under external disturbance . The outer controller operates when the state is outside the invariant set 

and steers the system state to the invariant set .  

The inner controller we use is linear feedback k ku Kz which is obtained by different way in 

compare with [17]. This property of the inner controller is important in the construction of the control robust 

invariant set. For the outer controller, we use min–max MPC, which form the focus of this paper and 

consider a fixed horizon formulation. 

Algorithm 1: 

Data:  

If  , set k ku Kz . Otherwise, find the solution of (12) and set  to the first control in the optimal 

sequence calculated. 

 

 

 
 

Figure 2. Control Structure 
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3.2.1. Design of inner controller 

In research [6], the robust control invariant set  is selected as simple based on propoerty 

, s is a positive integer number and  with . In this selection, set 

 is not evaluated to be arbitrarily small to ensuare the performances of system. Moreover in some cases, 

we can not found such that hold for any s. In this subchapter,  and matrix  is found 

based on Lyapunov’s direct method and LMIs technique 
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Substituting k ku Kz  into equation (12) we have 
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With asumption that the disturbance is bounded: maxd d , we take the following matrix inequalities 
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The robust control invariant set can be choosen as 
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Letting maxU  is saturation input bounded, the matrix state feedback control K  can be obtianed by solving 

matrix inequalites 
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Setting , the inequalites (18) is converted to LMIs problem 
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Remark 2: The optimization problem via LMIs (19) with constraints (20-24) can be solved by 

interior point with YALMIP toolbox. In that, is ball bounding origin and it is minimized when is 

selected as maximum.   

 

3.2.2. Design of outer controller 

In this section, we consider quadratic cost function as 
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Min – max optimization 
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By setting: 
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We have: 

 

1 
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(28)i

k i d k i i   z A z B u D d                                                                                                                  

 

Substituting (27) into (28) and rewriting in quadratic form (35) 
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Putting the constraints in (26) into linear inequality form by bounded interval representing for robust control 

invariant set 
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We rewrite the constraints in (26) in linear forms. State constraints              
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Terminal state constraints                          
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Input limitations: 
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Combining three constraints (30)-(32), we solve Min – Max optimization (26) by using QP method. 

Remark 3: To make optimization problem (26) become simpler we assumption that 

has limited known bounded values. For instant, the convergent of to robust control 

invariant set is guaranteed by theorem 1 in [17]. 

 

 

4. RESULTS AND ANALYSIS 

In this section, we simulate the position tracking of whole system under state, input constraint and 

external disturbance in Table 1. We use the same current controller and two different prediction horizons of 

position controller to compare quality of each controller. 
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Table 1.  The parameter of Polysolenoid Linear Motor P01-23X80/80X140 and controller 
Parameter Value 

Pole pair 1 

Pole step 20 (mm) 

Rotor mass 0.17 (kg) 

Phase coil Resistance 10.3 () 

d-axis inductance 1.4 (mH) 

q-axis inductance 1.4 (mH) 
Flux 0.035 (Wb) 

K (inner control)  

  

 

 

As can be seen in Figure 3-4, at initial time both position and velocity error stay outside of state 

constraints region and after smaller than 0.2s, they converges to small ball centered at origin. The currents is 

satisfies input constraint under time varying external forces. 

 

 

 
 

Figure 3.  The time evolution of position error 

 
 

Figure 4. The time evolution of velocity error 

 

 

 
 

Figure 5. The time evolution of current in dq 

coordinates 

 
 

Figure 6. The time evolution of supplied voltage dq-

coordinates 

 

 

 
 

Figure 7.  The time evolution of external disturbance force 
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5. CONCLUSION 

This research proposed min-max model predictive control for polysolenoid linear motor. Our 

method not only addressed the position tracking problem of the linear motor in the presence of external 

disturbance and input saturations but also stabilized closed-loop system in comparison with classical model 

predictive control. The good performance of control method, working properly even at high speed was 

demonstrated by numerical simulation. Furthermore, the min-max controller can be implemented easily to 

hardware by using quadratic programming method. 
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