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 Glass insulators, due to its diverse characteristics, were used widely around 
the world for high voltage transmission lines. Surfaces of the insulators are 
exposed to high electrical, mechanical, and thermal stresses over the period 
of service. Accumulation of contamination distort stresses distribution along 
the insulators that may lead to flashover under severe condition. In this 
paper, Obenaus pollution model has been adopted to propose a dynamic 
mathematical modelling to determine flashover critical voltage with regard to 
parameters such as pollution conductivity, arc length, and width of layer of 
contamination on the surface of glass insulator. In addition, laboratory 
experimental works have been carried out according to IEC60305 to validate 
the results from numerical approach, which indicate a good agreement. 
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1. INTRODUCTION 

High voltage electrical grid and outdoor power system equipments are constantly subjected to 
diverse types of climate, for example, snow and contaminants, that may lead to flashovers. Flashovers on 
insulators surface under polluted conditions are widely acknowledged. It is a highly complicated situation 
because of the interaction between important parameters such as electrical stress, climate and environemtal 
aspects as well as the insulator profile/structure [1, 2]. Under the same pollution situations, the real challenge 
is to propose insulators design with the greatest reliability and performance. Developing accurate models to 
predict the flashover at the polluted layer on the insulators and understanding the extend of the discharge has 
been the concern of numerous studies [3-5].  

Numerical approach and modelling of pollution flashover can be a good solution to minimize 
experimental tests on the real insulators and experimental investigation on site. Several research studies have 
produced comparative numerical models addressing the flashover phenomenon [3, 5]. In order to understand 
accurately propagation and growth of pollution flashover, dynamic aspects related to the electrical and 
environmental criterias shall be considered. Flashover models indicate the greatest probability of flashover 
occurance on polluted insulators [6]. The model can be use to predict flashover voltage and also to determine 
several major parameters, such as discharge time, velocity, and leakage current (LC).  

In this research work, an alternative mathematical models is proposed to accurately predict flashover 
voltage at critical sites. In addition, the development of electric flashovers on pollution insulator surfaces as a 
function with increase the polluted region on the insulator surface w, discharge distance (x) and conductivity 
of pollution layer, σ were also considered. Experimental results on pin-cup insulators under polluted 
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conditions were compared to the results obtained using the proposed mathematical model for flashover 
prediction have shown a good aggrement. 

 
 

2. POLLUTION INSULATOR FLASHOVER PHENOMENON 
Various pollutants, such as dust, salt, and ice, cover the high voltage outdoor insulators, depending 

on wind direction, temperature, and humidity. Wet pollution is known to be the more serious type associated 
with a significant probability of flashover on insulator surfaces. Pollution flashover occur in stages as follow: 

-  the formation of pollution on the insulator surface decreases the leakage distance. 
-  presence of a wet layer caused by several factors, such humidity and rain on the pollution layer, 

causes the increase in surface conductivity.  
-  a formation of the dry band caused by the lc warming influences and increases the voltage, finally 

resulting in a flashover. 
Based on laboratory tests and field experience, it was noted that flashover in insulators covered with 

a heavy pollution layer was not an immediate phenomenon, but results from a process involving pollution 
and discharges, comprised three stages, as illustrated in Figure 1 [2]. 

The First stage - Pollution accretion on insulators is non-uniform, as several regions on the 
insulators are not polluted. Such non-pollution zones are referred to as dry bands. This is due to the heating 
effect of the leakage current, partial arc activity, and increase in air temperature. It is generally agreed that 
the water film on the surface of the pollution layer is responsible for the breakdown or flashover that occurs. 
The increased voltage usually crosses the dry band because of conductive water on the pollution layer. The 
corona discharge starts mainly when there is a high electric field across the dry bands, and luminous 
branched filaments from the arc than appear, which develops from the root (stem), as shown in Figure 1(a). 

The Second stage - The corona leads to the creation of partial arcs in the dry band regions causing a 
significant increase in LC. These luminous branched filaments develop to become a channel. The other 
properties of accumulated pollution over the insulator will modify over time due to the temperature and 
current leakage, as shown in Figure 1(b). 

The Third stage - At this stage, the arc develops differently. One of two things occur, either the arcs 
die out or the arcs are propagated along the pollution layer on an insulator surface to become white arcs that 
occur according to a certain length from a white arc (around sixty percent of the length of the insulator). This 
depends on the conductivity and length of the contaminated region and finally, the flashover is complete 
along the insulator, as shown in Figure 1(c). 

 
 

 
 

Figure 1. Process of flashover on polluted insulator 
  
 

3. CONCEPT OF THE MODEL 
One of the first models of flashover on polluted insulator surfaces was introduced by Obenaus [7]. 

Thus far, the most analytic models proposed by researchers since then have depended on the known design, 
in which a contaminated insulator was modelled by an electrical equivalent circuit consisting of an electrical 
resistance with an arc in series. 

Where the dry band resistor was in series with the wet region resistor of an insulator, a contaminated 
surface was assumed. In this model, the arc channel was equivalented as a cylinder with a radius r and length 
l. It was also transferred to an RLC electrical circle, as shown in Figure 2. 

The salient features of this model are briefly represented here. Figure 3 illustrates a flowchart of the 
mechanism model comprising the geometry of the insulator, characteristics of the contaminated layer, 
applied voltage, and some values of the initial reading used as the input data. The flashover discharge time 
was divided into steps dt (below the time constant for an arc) from t equals zero. From this, an estimated 
voltage of the arc was made, which must be high enough to obtain an arc that exceeds the first length for an 
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arc. When the prevalent criterion is met based on Hesketh’s dPa/dx > 0, where Pa is the arc power supply 
from the source of the power), the arc will start to develop. It is agreed that the propagation of the arc will be 
at that voltage. The internal variables (radius, velocity, etc.), as well as the remaining pollution layer’s 
resistance, are then determined[8]. The determination of electrical parameters demands the immediate 
unbridged contaminated layer resistance, which is determined from the insulator geometry; thus, illustrating 
the effect of the flashover process. The voltage Us(t), in the AC voltage form, was calculated at each time 
based on the same hypothesis as for the static modelling, which determined the voltage for the flashover, i.e. 
at the maximum value of voltage Us during a very short time, a flashover will occur. At each time dt, the 
critical situation for continued growth of the flashover were tested and, if it was favorable, the flashover 
would continue forward to the final leap step. 

 
 

 
 

Figure 2. Modelling propagating flashover on a contaminated surface and Electrical equivalent  
RLC circuit 

 
 

Otherwise, the arc will die-out, and a discharge would not occur. Then, a new step is repeated by 
increasing the applied voltage. The computing is re-run again by initializing the input parameters. When the 
arc length is equal to more than half the insulator length Lf, the discharge would occur. Under alternating 
voltage, this occurs at the top value of the last quarter of the period cycle T/4 and consequently, velocity is 
modified to obtain all discharges at the same time. Thus, if the critical value is more than the surface 
conductivity, it is considered that the arc length is similar and any variation in the current is a result of the 
variation in the conductivity at the wet layer surface, as well as the resistance of the arc [9]. Then, using the 
determined value of FOV, the data in the last phase would be determined by repeating the simulation. At 
each ∆t, the length of the arc and its resistance was initialized. If the criterion is not matched, the flashover 
would not occur. In this case, a new step increased the voltage Us. The computation was re-run by setting the 
input data as shown in flow chart in Figure 3. 

 
 

4. THE TESTS AND PROCEDURE 
Before the start of the descriptive experiment, the essential parameters that influenced the flashover 

voltage (FOV) were explained as follows: 
The geometry of the insulator (i.e. diameter and length of arcing). The shorter the arcing distance, 

the smaller the flashover voltage; also, with a shorter diameter, the flashover voltage is at a maximum [10]; 
- A wet layer conductivity and pre-pollution; 
- Properties of applied voltage (form and polarity); 
- Environmental, temperature, atmosphere, stress and moisture; 
- Type and nature of contaminants deposited (hard or soft rime, and water), with a lower density of pollution 

leading to higher flashover voltage; 
- A uniform and non-uniform contamination layer surface 
- Presence of dry bands: pollution deposits with lesser dry bands have lower flashover voltage [11]; 

Wet-pollution, which is the most dangerous type of pollution that creates flashovers, was used in the 
experiments carried out in this study. To achieve pollution, cold powder and salty water were used. To ensure 
prepared water for each experiment, the conductivity of water was measured by mixing sodium chloride 
NaCl (salt) and water [10]. 

The thickness of the pollution layer on the insulator was then determined. Wet-pollution was 
deposited on the insulator with a normal temperature of 25 °C. Figure 4 shows the experimental insulator 
used that consisted of an IEC standard 146 mm by 255 mm cap and pin glass insulator discs, one clean and 
one polluted. 
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Figure 3. The model flow chart 
 
 

 
 

 
Figure 4. Glass insulator and pollution 
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Experiments have validated on 4 IEC standard insulator units, the dimensions of insulator used is 
illustrated in Table 1. 
 
 

Table 1. Geometrics of insulators used 

Shed 
diameter 

mm 

Shed 
spacing 

mm 

Leakage 
distance 
mm/unit 

Arcing 
Distance 

for 4 units 
mm 

255 146 320 584 

 
 

A test setup comprising of a high voltage single transformer of 220 kV, capacitive divider for 
measure apply voltage, control panel, and data collect systems is shown in Figure 5. The transformer 
empowers the insulators with voltage. Parameters measuring system, which provides the factors effect on the 
Leakage Current such as the time changes, peak value, and mean value, includes an advanced oscilloscope 
and a 10 kΩ resistor divider for measuring LC under pollution and clean insulator. Leakage current 
measurements were carried out by applying voltage of (20 / (3)0.5) = 11 kV RMS approxmatlly. 

 
 

 
(a) 

 

  
(b) 

 
Figure 5. (a) HVAC circuit testing on outdoor insulator (b) Experimental test setup and arrangement and data 

acquisition system 
 
 
5. RESULTS AND ANALYSIS  
5.1.  Influence of insulator diameter 

This study is suitable for very heavy pollution cases on insulators, which are usually affected by 
dust or snow [12], [13]. The width (d) was commensurate to the insulator diameter. However, it is practically 
impossible to obtain such insulators. The contamination layers often accumulate on the windward regions of 
the insulators. Therefore, the simulation had used an experimental model as shown in Figure 6[11]. 
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Figure 6. Simulation of the insulator diameter 
 
 

The contamination layer was estimated as a half cylinder with a width (d) over the insulator given 
as: 

 

𝑑 ൌ గሺ஽ାଶ௪ሻ

ଶ
 (1) 

 
where D is the diameter of the insulator and w is the contamination layer thickness. 

While the equivalent diameter of insulator 𝐷ᇱ is given by: 
 

𝐷ᇱ ൌ ଶௗ

గ
െ 2𝑤  (2) 

 
the insulator diameter influence was computed with different widths of the pollution layer covering the 
insulator surface. A pollution layer thickness (w) of 1.5 mm and widths (d) of 4 cm, 9.4 cm, 14cm, and 28cm 
respectively was selected for testing. 

The results shown in figure 8 indicate that any increase in the width of the pollution layer (d) on the 
insulator would see adecrease in critical voltage (Vc). In addition, there was a good agreement between 
simulation and experiment results, as shown in Figure 7. 

 
 

 
 

Figure 7. Critical voltage Vc as a function with Width of pollution layer for σ = 80 μS/cm and w = 1.5 cm. 
 
 

5.2.  Length of arc effect  
Critical voltage Vc is proportional to the length of arc L and number of insulator units increasing 

and decreasing. Figure 8 shows the critical voltage as a function with arc length for different leakage distance 
of insulator. Comparisons of the experimental results using one to four IEC60305 standard glass insulator 
units uniformly covered with wet contamination layer with critical flashover voltage simulated by the model 
are shown in Figure 8. The thickness of the pollution deposited on the insulator was about 1 mm for all the 
tests. 
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Figure 8. Critical voltage Vc as a function with arc length for σ = 80 μS/cm and w = 1.5 cm. 
 
 

5.3.  Conductivity of wet-pollution layer effect 
Based on field investigations and laboratory experiments, it was found that wet-contamination layer 

conductivity has a considerable influence on the flashover voltage of insulators. Critical voltage was found to 
decrease as the contamination layer conductivity increased. The model outputs were also compared to 
laboratory results, acquired from a string of 4 units of IEC60305 standard glass insulators, where various 
water conductivities were tested as show in Figure 9. These results show that there is a good degree of 
agreement between the critical voltage calculated from the computation and the laboratory test results. The 
FOV had reduced with increasing conductivity of the pollution layer with minor errors. 

 
 

 
 

Figure 9. Critical voltage (Vc) as a function of pollution layer conductivity for w = 1.5 cm. 
 
 

Based on the results, it was observed that there was good convention between the calculated results 
for the flashover voltage and those found experimentally. Arcing events are so difficult that many facilitating 
assumptions must be produced to obtain numerical modelling in an easier way. 
 
 
6. CONCLUSION 

In this study, a dynamic model was applied to investigate the effects of some parameters on the 
flashover voltage of polluted insulators. The suggested numerical model affected the sequential spread of the 
arc. The model inputs were the geometry of the insulator, pollution layer properties (a), applied voltage and 
some essential values. The outcome of the mathematical model was validated against the experimental model 
using pollution covered IEC60305 standard glass insulators, taking to account different lengths of the arc and 
diameters as well as different wet pollution layer conductivity. The experimental results closely resembled 
the results from the model and could forecast the flashover voltage (FOV) under AC voltage with agreeable 
accuracy. 
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