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 This paper presents bridgeless single ended primary inductor (SEPIC) 
converter operated in continuous conduction mode (CCM). The converter 
used in the study offers a lesser conduction loss compared to the other 
bridgeless SEPIC converter. In order to regulate the required output current 
and output voltage with high efficiency while achieving high power factor 
correction (PFC) at the input side, average current mode control (ACMC) is 
applied. The model is simulated using MATLAB/Simulink and it is found 
that the converter and the proposed control strategy provide a promising 
result. The preliminary results obtained from the experimental test-rig shows 
a good agreement as in simulation. The theoretical analysis of the proposed 
controller is verified on an output 100V to 300W prototype. 

Keywords: 

Average current mode control 
(ACMC) 
Bridgeless SEPIC 
Continuous conduction mode 
(CCM) 
Power Factor Correction (PFC) 

Copyright © 2019 Institute of Advanced Engineering and Science. 
All rights reserved. 

Corresponding Author: 

Nor Akmal Rai,  
Faculty of Engineering, 
Universiti Teknologi Malaysia, 
81310 Skudai, JohorMalaysia. 
Email: nakmal48@live.utm.my 

 
 
1. INTRODUCTION 

A nonlinear load such as a battery, electronic device, and generator produce high harmonic 
distortion to ac input supply. This leads to losses in the supply and low power factor in the electrical system. 
PFC improves the power factor of electronic circuit. PFC ensure both input voltage and current are in phase, 
which leads to high power factor and reduces harmonic in supply. Normally, a conventional PFC can be 
accomplished by using a full bridge diode rectifier and dc-dc converter. Even though bridge rectifier has the 
ability to produce dc output but its drawback which produce an absolute sinusoidal voltage with high ripple 
and current that are highly nonsinusoidal [1]. A dc voltage produced by the rectifier is quite large and need to 
be regulated to a required value. Intended to this reason, a dc to dc converter are used to regulate an actual dc 
voltage with actual current waveform shape and low output ripple [2]. Moreover, this technique enhanced to 
PFC with low harmonic distortion [3]. 

There are various of dc-dc converter topologies used in PFC circuit. SEPIC converter is popular due 
to its advantages over another dc to dc converter. This converter produces an output voltage that is less or 
more than the input voltage, but with no polarity reversal [1, 4]. However, SEPIC converter is a 4th order 
converter since it has 4 storage elements in converter make it seldom uses due to difficulty in design the 
controller [5]. Nevertheless, this converter offers a surplus advantage compared to 2nd order converter where 
a lower input current ripple is possible to achieve [5, 6].  

Literature studies state that a normal bridge SEPIC converter rectifier produces high conduction loss 
at input bridge diode hence reduces overall efficiency of the converter. This is due to a bridge rectifier 
consists of 4 diodes that produce high conduction loss during operation. It is possible to eliminate this high 
conduction loss with bridgeless converter. The efficiency of these converters is improved by removing the 
input bridge diode of the conventional bridge SEPIC converter. In the bridgeless converter number of 
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elements conduct during each cycle are reduce as compare to the bridge rectifier. This significantly reduces 
losses in the circuit as reported in [7-14]. The Bridgeless SEPIC converter offer reduction of cost, light, 
increases efficiency at the same time maintaining near unity power factor performance. It is possible for the 
converter to operate in CCM and discontinuous conduction mode (DCM) depends on its application. 

In CCM, the inductor current is always positive while for DCM inductor current is characterized by 
current returning to zero during every period. DCM causes large voltage stress, consequently gives impact on 
electromagnetic interference (EMI) into line [5]. Furthermore, at high power application, current stress and 
voltage stress in DCM become too large which affecting the efficiency of the converter [5, 15]. Hence, DCM 
normally used for low power application usually less than 200 W while CCM popularly used for medium and 
high power application [16-18]. This is due to CCM has lower conducted noise, lower conduction losses in 
the semiconductors and inductor, and lower inductor core loss [8, 18]. Additionally, it has low output voltage 
ripple. However, the design of CCM controller is more complex as compared to DCM. DCM has properties 
of self PFC since its capability to give higher power factor by the nature of their topologies [19, 20]. Hence, 
DCM has simple control and can achieve PFC by using simple control system. CCM required complex 
control system and required closed loop control to achieve PFC. 

Current mode control typically work for converter operate in CCM. Among all current control 
mode, ACMC offers several advantages such as the ability to sense and control average inductor current 
while offering immunity to noise [21]. In PFC application, another significant feature of ACMC near the zero 
crossing of the line voltage, the converter operates with the maximum duty cycle. As a result, the dead angle 
period which encounter in peak current mode control is greatly reduced [22, 23]. Most of PFC applications 
has been widely adopte AMMC as a control technique for CCM converters [24, 25]. 

Bridgeless SEPIC converter in [7-12] focus at low power application operated in DCM using 
voltage control. This controller design is simple since all zero and pole are located at left hand plane make a 
tuning process easier. However, this controller provides high current and voltage stress for medium power 
application which cause some power loss to converter.  

In this paper, CCM with ACMC applied to bridgeless SEPIC converter proposed in [9, 10] are 
studied. This paper is organized as follows. The bridgeless SEPIC converter detail circuit operation with 
average current controller are discussed in Section 2. The proposed circuit parameter, simulation result and 
preliminary result of hardware prototype are presents in Section 3. Finally, the conclusion is present in  
Section 4. 
 
 
2. RESEARCH METHOD  
2.1. Circuit operation 

Bridgeless SEPIC converter as proposed in [9, 10] as in Figure 1, are simulated in CCM with an 
average current mode controller. The circuit consist of three inductors, three capacitors, two diode and two 
MOSFET apart from a resistor as its load. 

 
 

 
 

Figure 1. Bridgeless SEPIC circuit 
 
 

This circuit has the same operation in both cycles, where each switch will only turn on in positive or 
negative half cycle. During the positive half cycle, only nine elements conduct which is L1, L2, S1, Ds2, C1, 
L3, D1, C3 and R as shown in Figure2. In negative half cycle L1, L2, S2, Ds1, C2, L3, D2, C3 and R are 
conduct as shown in Figure 3. This bridgeless SEPIC converter reduced number of component conduction 
during half cycle. At each half cycle of bridgeless SEPIC converters, it operates as basic dc-dc  
SEPIC converter. 
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(a) (b) 
 
Figure 2. Operation of the bridgeless SEPIC converter in: (a) positive half cycle (b) negative half cycle 

 
 
Bridgeless SEPIC operate in CCM and it consists of two mode operation per cycle. For positive half 

cycle it is operated in mode 1 and mode 2 as shown in Figure 3. The waveform of voltage and current 
operation for bridgeless SEPIC converter are shown in Figure 4. 

 
 

 
(a) (b) 

 
Figure 3. Positive half cycle operation in (a) mode 1 (b) mode 2 

 
 
In mode 1, S1 and Ds2 are operate, current will flow through S1 and Ds2. L1 and L2 charge and are 

increase linearly to its peak depends on its duty cycle. In mode 2, S1 will turn off and D1 turn on, which 
allow current through it. Current across L1 decrease linearly due to discharging process through the C1, C3 
and load. Since the circuit operation is symmetrical, the modes of operation for the negative half cycle are not 
shown here. Symmetrical feature of the converter in CCM is discussed in detail in [9, 10]. 

 
 

 
 

Figure 4. Waveform of current and voltages  
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In mode 1, S1 and Ds2 are operate, current will flow through S1 and Ds2. L1 and L2 charge and are 
increase linearly to its peak depends on its duty cycle 

 
The voltage across inductor, L1  
 

𝐿ଵ
ௗ௜௅భ

ௗ௧
ൌ 𝑉𝑖𝑛        (1) 

 
The voltage across inductor, L2  
 

𝐿2 ௗ௜௅మ

ௗ௧
ൌ 𝑉஼ଵ        (2) 

 
The current across series capacitor, C1  
 

𝐶ଵ
ௗ௜௏಴భ

ௗ௧
ൌ െ𝑖௅ଶ        (3) 

 
The current across output capacitor, C3  
 

𝐶ଷ
ௗ௏಴య

ௗ௧
ൌ െ ௏೚

ோ
        (4) 

 
In mode 2, S1 will turn off and D1 turn on, which allow current through it. Current across L1 

decrease linearly due to discharging process through the C1, C3 and load. Since the circuit operation is 
symmetrical, the modes of operation for the negative half cycle are similar as in positive cycle but in opposite 
direction. 

 
The voltage across inductor, L1  
 

𝐿ଵ
ௗ௜௅భ

ௗ௧
ൌ 𝑉௜௡ െ 𝑉஼ଵ െ 𝑉௢       (5) 

 
The voltage across inductor, L2  
 

𝐿ଶ
ௗ௜௅మ

ௗ௧
ൌ െ𝑉஼ଷ        (6) 

 
The current across series capacitor, C1  
 

𝐶ଵ
ௗ௏಴భ

ௗ௧
ൌ 𝑖௅ଵ        (7) 

 
The current across output capacitor, C3  
 

𝐶ଷ
ௗ௏಴య

ௗ௧
ൌ 𝑖௅ଵ ൅ 𝑖௅ଶ െ ௏೚

ோ
       (8) 

 
2.2. Mathematical model  

In order to design the controller, it is mandatory to obtain the transfer function based on 
mathematical model to simplified controller tuning. Based on mode of operation of bridgeless SEPIC 
converter in CCM, the state space averaging modelling technique [25-27], are applied based on KCL and 
KVL of circuit during turn ON and turn OFF state as in equation (1-8). 

 
Steady state dc model: 
 
0 ൌ 𝐴𝑋 ൅ 𝐵𝑈        (9) 
 
𝑌 ൌ 𝐶𝑋  
 
AC small signal model: 
 
𝑥ු ൌ 𝐴𝑥෤ ൅ 𝐵𝑢෤ ൅ 𝐵ௗ𝑑ሚ       (10) 
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𝑦ො ൌ 𝐶𝑥෤  
 

𝑥෤ - Vector of state variable  
𝑦ො - Vector of output systemሺI௅ଵ, 𝑉௢) 

A -State vector (𝚤𝐿ଵ෪ , 𝚤𝐿ଶ෪ , 𝐶ଵ෪, 𝑉ை෪)  
B - Input matrix 
C - Matrix which connect output to the state variable 
𝑢෤  - Input variable (𝑉௜௡ሻ  

𝐵ௗ.𝑑ሚ- Duty ratio variation for CCM [27] 
The average matrices for steady state and liner small signal state space equation of bridgeless SEPIC 

converter based on (9) and (10) obtain as bellow: 
 

ௗ
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⎥
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ௗ
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       (12) 

 
Where:  

A= 
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𝟎 𝟎 𝟎 𝟏
ቃ 

 
 
(11) and (12) consists of the ac perturbation. By using Laplace transformation in (11) and (12), yield 

a form of transfer function of bridgeless SEPIC converter. 
 

𝑌ሺ𝑠ሻ ൌ ൤
𝐼௅ଵሺ𝑠ሻ
𝑉௢ሺ𝑠ሻ ൨ ൌ 𝐶ሺ𝑠𝐼ସ െ 𝐴ሻିଵ𝐵ௗ. 𝐷ሺ𝑠ሻ ൅ 𝐶ሺ𝑠𝐼ସ െ 𝐴ሻିଵ. 𝐵𝑉௜௡  (13) 

 
Where 𝑰𝟒 is a unity matrix, based on expansion and solving of equation 13, the transfer function of inner loop 
and outer loop are:- 
 

𝐺௜ௗ ൌ
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      (14) 
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With: 
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2.3. Control method 
Average current mode control is employed to control the bridgeless SEPIC converter operated in 

CCM. In [9, 10] the converter is operated in DCM using voltage control and suitable to be used at lower 
power application. The proposed controller for the converter mainly focus on medium power application is 
illustrated in Figure 5. Average current mode controller consists of two loops (cascade). Inner loop is for 
current controller while outer loop is for voltage controller.  

 
 

 

 
Figure 5. Average current mode control for bridgeless SEPIC using PID controller 

 
 

In outer loop, the reference and actual output voltage of converter are compared, and the error is fed 
to generate the inductor current reference for inner loop. Outer loop also regulate voltage and to maintain it 
preferred set point. Meanwhile for inner loop the main purposed is to ensure the wave shaping inductor 
current with lead to improve input power factor. In inner loop, the actual inductor current is compared with 
the reference current produced by outer voltage. Any changes in inductor current, the current loop 
compensator will alter the duty ratio to ensure the output voltage remains as its desired value [28]. Output 
from inner loop is compared with saw tooth carrier to generated fixed frequency pulse width modulation 
(PWM) signal.  

Since the converter operates in CCM, multiplication and dividing signal (MDB) are used to obtain 
the reference current input. It is an easy way to obtain high power factor by using this method since the 
reference current waveform is proportional to the input voltage waveform based on multiplier technique [24, 
29]. MDB consist of multiplier and dividing of voltage input rectified,│Vin│, PI voltage error and average 
component of input rectified voltage, Vdc.  

The controller is design using SISO tool in MATLAB/Simulink to obtain desired PI controller for 
inner and outer loop. By using transfer function as in section 2.2, the inner loop bandwidth is designed to be 
one decade lower from switching frequency to ensure high stability of control signal. Since that converter 
switching frequency is 25 kHz, then the inner loop is design to be 2.5 kHz. Outer loop bandwidth is set to be 
20 Hz. The controller is design to have a low voltage ripple and fast dynamic response. 
 
 
3. RESULTS AND ANALYSIS  
3.1. Design parameter 

The proposed circuit is design based on the parameter as in table 1. All parameter are designs based 
on [30, 31] to achieve CCM operation of the bridgeless SEPIC converter. Simulation work using 
MATLAB/Simulink on the proposed converter is being done based on the controller and design parameter. 
 
 

Table 1: Design Parameter of the Circuit 
Parameters Values 

Line Frequency, 𝑓௟  50 Hz 
Switching Frequency, 𝑓௦ 25 kHz 

Input Voltage, 𝑉௜௡ 120 Vrms 
Input inductor, 𝐿ଵ, 𝐿ଶ 25.5 mH 

Intermediate inductor, 𝐿ଷ & 𝐿ସ 12.3 mH 
Intermediate Capacitor, 𝐶ଵ&𝐶ଶ 2 uF 

Output Capacitor, 𝐶ଷ 480 0uF 
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Output Resistor, R 34 Ω 
Output Voltage, 𝑉௢ 100V dc 
Power Output,𝑃௢ 300 W 

 
 
3.2. Simulation result  

Figure 6 shows the input current and input voltage of proposed converter. Both input current and 
input voltage are in phase and power factor of the converter is 0.98. This signify that the proposed converter 
work perfectly as PFC. Figure 7, the input current operates in CCM. It successfully achieves theory of CCM 
by using the proposed average current mode control. The output voltage shown in Figure 8 achieve the target 
with 5% voltage ripple. The current output of proposed converter is shown in Figure 9 with 5% current 
ripple. The average output power of the bridgeless SEPIC converter successfully achieves 300 W as 
anticipate. 
 
 

 
Figure 6. Input voltage and input current 

 
Figure 7. Input current (iL1) 

 
 

 
Figure 8. Output voltage 

 
Figure 9. Output current 

 
 
3.3. Preliminary hardware result 

Based on simulation, the prototype of bridgeless SEPIC converter have been implement to verify the 
operation of converter in CCM. DS1104 digital signal processing and control engineering (dSPACE) 
controller board and basys3 field programmable gate array (FPGA) are used as controller interface to 
perform ACMC. dSPACE Controldesk control and sense the input voltage, input current and output voltage 
as proposed. However, dSPACE restricted on lower sampling time with make the accuracy and precision of 
prototype defer from simulation. By combining dSPACE and FPGA 35us sampling time are achieved. The 
preliminary result for input current, input voltage, output current and output voltage are shown in Figure 10.  
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Figure 10. Input voltage, Input current, Output voltage and Output current 
 
 

The experiment result shows that, the input current and input voltage are in phase and its shape are 
nearly sinusoidal as simulation result. The output current and voltage ripple is about 5% same as simulation 
but slightly have some loss in the hardware test. More detail analysis of the waveform and efficiency 
performance of the bridgeless SEPIC converter will be discussed in future work. 

 
 
4. CONCLUSION  

In this paper, an average current mode controller for asingle phase PFC bridgeless SEPIC converter 
operated in CCM is proposed and verifed through simulation studies in MATLAB/Simulink. It is shown that 
the controller is successfully achieved unity power factor for a medium power application (300 W). A 
prototype of converter is built to verify the performance of theoretical design. Based on the preliminary 
result, the input current and voltage show a good agreement with 0.92 power factor while at the output side, a 
smooth dc current and dc voltage with approximately 5% ripple are obtained. 
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