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 This paper presents artificial intelligence approach of artificial neural network 
(ANN) and random forest (RF) that used to perform short-term photovoltaic 
(PV) output current forecasting (STPCF) for the next 24-hours. The input data 
for ANN and RF is consists of multiple time lags of hourly solar irradiance, 
temperature, hour, power and current to determine the movement pattern of 
data that have been denoised by using wavelet decomposition. The Levenberg-
Marquardt optimization technique is used as a back-propagation algorithm for 
ANN and the bagging based bootstrapping technique is used in the RF to 
improve the results of forecasting. The information of PV output current is 
obtained from Green Energy Research (GERC) University Technology Mara 
Shah Alam, Malaysia and is used as the case study in estimation of PV output 
current for the next 24-hours. The results have shown that both proposed 
techniques are able to perform forecasting of future hourly PV output current 
with less error.
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1. INTRODUCTION  

The past few years have shown a remarkable growth in the use of solar energy for residential, 
commercial, and industrial sectors. The growing capacity for global solar PV sector already reached 178GW 
in 2014, and estimated to reach 540GW in 2019 [1, 2]. In recent years, solar PV system has been developed 
drastically and the reason behind it is because of the nature usage of PV that is maintenance free, long lasting 
used, and environmentally friendly [3-8]. However, PV system is operating in a non-stationary random process 
caused by the variability of solar irradiance and other environmental factors that may affect the output current.  

In general, artificial neural network (ANN), support vector machine (SVM), and fuzzy logic have 
been used as forecasting methods due to several advantages [9, 10]. These methods have been used for solar 
irradiance forecasting due to its increasing demand in producing accurate output. Other than any basic AI 
technique, there is also a combination of several AI techniques that can produce accurate forecasting result in 
the future of solar irradiance. A time series with ANN, fuzzy logic with ANN and wavelet based ANN are 
examples of famous combination for ANN.  

In particular, ANN is an alternative model that capable of handling uncertainty matters of solar 
irradiance [11, 12]. The main advantages of using ANN can be seen in its stability to solve complex modelling 
especially a non-linear model [9]. Random forest (RF) is another advance AI used for forecasting. RF uses 
ensemble machine learning that consists of many decision tree models for classification and regression [13]. 
The construction of tree does not depend on the previous tree since the trees are created independently by using 
bootstrap aggregation technique as well as the bagging [14, 15]. RF has the advantage in terms of  non-
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overfitting  the output results, the run time process is fast and efficient when handling a large dataset thus gives 
it superior predictive performance.      

This paper presents the ANN and RF methods that used to perform short-term PV output current 
forecasting for the next 24-hours. There is not much research that has been done regarding to the PV output 
current forecasting using RF. The input data used for this method is current, irradiance, hours and temperature 
will pass through the filtration process using the wavelet decomposition to eliminate the noises in each data. 
Then, the multiple time lags is used due to its capabilities to identify the pattern and behavior of filtered data 
while improving it for accurate estimation in the next 24 hours of PV output current forecasting [16-20]. The 
case study uses PV output current, temperature, irradiance and hours in 2015 with the total of 7460 hourly data 
obtained from the Green Energy Research Center (GERC), University Technology Mara Shah Alam, Malaysia. 
The robustness of both models in forecasting are compared by referring to the mean square error (MSE), mean 
absolute percentage error (MAPE) and regression between the forecasted and actual (targeted) values. 
 
 
2. RESEARCH METHOD 

This segment will explain the concept of feature extraction or data preparation for the ANN and RF 
models used in the PV output current forecasting [21-25]. The structure used for this process is shown in Figure 
1 wherein the STPCF process begins from the original data selection. In this case, the hourly PV output current, 
temperature, irradiance and hours are selected as the input data. After data selection, the data preparation for 
the input and target data is performed by using the wavelet decomposition and multiple time lags technique. 
Subsequently, the forecasting models for ANN and RF are designed. Finally, the training and testing procedure 
is performed to obtain the forecasting outcome from ANN and RF. 

 
 

 
 

Figure 1. Block diagram of PV output current forecasting modeling 
 
 

2.1.  Input data of chronological parameter 
The information of data used in forecasting is acquired from the Green Energy Research Centre 

(GERC) of UiTM Shah Alam, Malaysia. The data is obtained in the form of MATLAB software. The data is 
obtained consisting with five parameters in 2015. In the GERC laboratory, this information is collected by data 
logger for every 5 minutes. This data will be analyzed and the hour, irradiance, temperature, power and current 
with maximum parameter value will be used in forecasting as shown in Table 1. 

 
 

Table 1. Information for each parameter 
Parameter Maximum Value Unit 

Hour 24 Hour 
Irradiance 1320 W/m² 

Temperature  47.9 °C 
Power 26847.61 Watt 
Current 9.98 Ampere 

 
 

The data preparation for ANN and RF models is shown in Figure 2 and its procedure is elaborated as 
follows. 

 

 
Figure 2. Block diagram for data preparation 
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- Collect the raw data consisting with 7460 hourly information of hour, irradiance, temperature, power and 
current. 

- Perform the filtering process of input data by using the wavelet decomposition to reduce any noise inside it. 
- Normalize all of the filtered data by dividing with its maximum value in order to reduce data redundancy 

within the range of 0 and 1. 
- Perform the multiple time lags to improve the data to determine the movement pattern of every input data 

required by the ANN and RF techniques. 
- Use the multiple time lags to estimate the future variable and the lagged (past period) variable that will 

evolved in the future [9, 9, 9, 9, 9]. The input data improved by the multiple time lagsable to determine the 
movement pattern of data in the neural network based on (1). The total number of time interval lagging is 
K=24 hours. 

 
Lagk = Zt – Zt-k                                  (1) 
 

where, 
t : time interval. 
k : time interval lags 1, 2, 3…K. 
K : total number of time interval lagging. 

 
In (1), the total number of time interval lagging used is K=24 where the value of K is stated to be 

equivalent to the time interval in the forecasted variable. The value of K is fixed to 24 for forecasting the next 
24 hours of PV output current. The input data is in the form of k-by-t matrix where each column will be used 
to forecast PV output current for the next 24-hours. The first column of training data, Lagk is used to forecast 
the target data of X48. The input data arrangement for training and target data is shown in Figure 3. 

 
 

 
 

Figure 3. The input data arrangement for training data and target data for ANN and RF in Lag 24 
 
  

Two sets of data which is training data and target data is created after all data have been converted 
into multiple time lags. The arrangement of training data for each line is a combination of hour, temperature, 
irradiance and current. The last part of current data will be used as target data. The training and target data 
formed will be used for forecasting using ANN and RF methods. The chronological arrangement of input data 
is shown in Table 2. 
 
 

Table 2. Chronological arrangement of input data 
Input data 

Parameter for each line after Lag 24 
1 to 23 hour 
24 to 46 temperature 
47 to 69 irradiance 
70 to 92 current 

 
Target Data 
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Current  

2.2.  Artificial neural network (ANN) 
The Artificial Neural Network (ANN) is an alternative method that has been efficiently carried out in 

this paper as it is also suited to tackle solar energy uncertainty issues. The ANN is using the Levenberg-
Marquardt technique to forecast the PV output current for the next 24 hours [4]. 

In this case study, the ANN model for forecasting the PV output current is consisting of one input 
layer, two hidden layers, and one output layer. The output layer of ANN is consisting of one neuron which will 
provides the predicted PV output current for the next 24 hours. The Levenberg-Marquardt technique is used in 
the ANN model as back propagation algorithm for optimization of the data during the training process. This 
technique is commonly used in forecasting the training set of ANN due to its algorithm that compromise 
between the accuracy and stability of prediction to achieve the steepest method for measuring minimal errors. 
The ANN model for forecasting PV output current is shown in Figure 4 and the ANN procedure is  
explained below. 
- Divide input data into three sets of training, testing and validating for the multiple time lags of K=24 hours. 
- In the training process, the synapses minimize the error between the actual output and the targeted output by 

regulating the learning rate and momentum. 
- Select the number of hidden layers is based on the fact of one hidden layer is sufficient to estimate any 

function. Therefore, two hidden layers is used in this ANN models that will provide more precise results with 
minimum RMS error in forecasting the next 24 hours of PV output current. 

- Repeat the error minimization process until the optimization process in forecasting is converged yielding to 
the smallest error in its output. Then, the training procedure is terminated once the minimum error becomes 
plateau for several iterations of optimization process involved in the ANN.  

- Identify the strength of ANN in producing the correct STPCF results that can be proven by conducting the 
testing then validation processes by using different set of input data.  

 
 

 

 
Figure 4. Block diagram for ANN model 

 
 

2.3.  Random forest (RF) 
Random Forest is a model comprising with two significant components of tree bagging and random 

decision trees [6]. The TreeBagger defined as B is containing with the number of trees (NTrees) with the X and 
Y as the ensemble function that been used for creating a decision tree. The decision tree uses the input function 
X to predict the target response Y. The procedure of Random Forest is explained below. 
- Perform bootstrap samples, N randomly drawn from the training data of RF model, to create a regression 

trees for each sample. The bootstrap sample is having the same size as the original training data. 
- Perform the bagging technique that divides the bootstrap sample into two sets of data which is two-third is 

for the In-Bag while the remaining data is for the Out-Of-Bag (OOB). 
- Use the InBag to create a forest wherein the tree growth technique will produce the best leaves. . The OOB 

data is used to run the unbiased prediction error as trees are added into the forest during tree growth phase 
using the InBag data. The primary role of OOB data in tree growth technique is to compare its estimation 
with the predicted values obtained from the InBag to find the best leaves with minimal error rate from  
every tree. 

- Halt the growth of the tree once the final node of best leaf in every tree is obtained. Upon finishing the final 
nodes, the prediction value from the final node of best leaf is collected from every tree and the average 
prediction is calculated from the final node leaf of all trees. Figure 5 shows the structure of RF. 
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Figure 5. Structure of RF algorithm 
 
 
3. RESULTS AND ANALYSIS 

This section discussed on the STPCF results determined by using the ANN and RF models. The data 
of hourly solar irradiance, temperature, hour, and current obtained from Green Energy Research (GERC) 
University Technology Mara Shah Alam, Malaysia is used for the case study of STPCF. The input data 
undergoes the wavelet decomposition to eliminate the noise inside the data and then the multiple time lags of 
K=24-hours is applied to the filtered data. The data size used in ANN and RF procedure is 17520 columns. 
The data is divided into three sets wherein the data size for training is 5785 columns, testing data is 720 columns 
and validation data is 720 columns. 

 
3.1.  Artificial neural network (ANN) 

The input data of ANN is the combination of multiple time lags of hour, temperature, irradiance and 
current. Training and testing procedures of ANN are performed where the input data having the multiple time 
lags of K = 24 hours. In the ANN model, the number of neurons for the first hidden layer is 20 and second 
hidden layer is 10. While, learning rate and momentum is 0.3 respectively. The numbers for first hidden layer, 
second hidden layer, learning rate and momentum are selected by performing sensitivity analysis where the 
selected values of learning rate and is referring to the minimum RMSE value of output. 

 
 

Table 3. Results of ANN considering all the best parameters 
ANN Output for K=24 

Training sets 5785 
Testing sets 720 

Number of neuron in 1st hidden layer 20 
Number of neuron in 2nd hidden layer 10 

Number of output 1 
Learning rate 0.3 
Momentum 0.3 

Training function Levenberg- Marquardt 
Training RMSE 0.5270 
Testing RMSE 0.5301 

Regression 0.99342 
Minimum MAPE 0.2832 
Maximum MAPE 13.2377 

Mean MAPE 4.4217 
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Figures 6(a) and 6(b) represent the result of forecasted PV output current versus actual targeted values, 
and the regression of output results obtained during the testing procedure of ANN, respectively. In Figure 6(a), 
the actual targeted output is in blue colour and the forecasted PV output current is in red colour. The forecasted 
pattern of hourly PV output current is almost the same with the pattern of actual targeted values at certain 
hours. However, there is inconsistency with several large error in the variation between the forecasted and 
targeted PV output current for the next 24 hours.  
 
 

  
(a) (b)

  
Figure 6. STPCF for the next 24-hours using ANN for the (a) forecasted PV output current versus actual 

targeted values, (b) regression of forecasted versus actual PV output current 
 
 
3.2.  Random forest (RF) 

The multiple time lags of hour, temperature, irradiance and current are used as the input data of RF. 
The training, testing and validating processes of RF are conducted using the input data with multiple time lags 
of K=24 hours. The RF is conduct at three different cases of 1, 5 and 10 number of trees (Ntrees) and every 
tree consisting of 5 leaves. The selection for the number of trees is based on the fact that single tree is sufficient 
to estimate any function. Therefore, two trees will provide more precision in determining the minimum error. 
The mean square error (MSE) is obtained from the training procedure. However, in the testing procedure, the 
MSE is automatically compared its output with the targeted data at each leaf in every tree. These comparisons 
are performed until the finest trees expansion is achieved  giving the minimum average of RMS error for the 
final node leaf of all trees. The number of trees chosen for the sensitivity analysis  to determine the best 
prediction of PV output current with minimum RMSE values RF is shown in Table 4. 

 
 

Table 4. Results of RF considering all the best parameters 
RF Output for K=24 

Training sets 5785 
Testing sets 720 

Validation sets 720 
Training function Bootstrapping 
Output Function Regression 
Number of trees 1 5 10 

Number of leaves 5 5 5 
Training RMSE 0.8725 0.8753 0.8756 
Testing RMSE 0.0476 0.0089 0.0078 

Regression 0.99967 0.99993 0.99994 
Minimum MAPE 0.0061 0.0016 0.0111 
Maximum MAPE 2.0735 0.6109 0.7953 

Mean MAPE 0.2731 0.2286 0.2000 
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Figures 7(a) and 7(b) represent the comparative results and regression of forecasted PV output current 
versus actual targeted values obtained from the testing procedure of ANN, respectively. It can be observed that 
the forecasted hourly PV output current provide a very similar variation with minimum error as compared to 
the actual targeted values pattern. 

 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 7. STPCF for the next 24-hours using RF for the (a) forecasted PV output current versus actual 
targeted values, (b) regression of forecasted versus actual PV output current 

 
 

3.3.  MAPE comparison between the performance of ANN and RF 
Tables 3 and 4 have shown the results of ANN and RF, respectively. The output result is obtained by 

considering to multiple time lags K = 24 hours during testing procedure for both techniques. The testing 
procedure for both techniques with multiple time lags is further investigated by comparing the MAPE results 
of PV output current. 

By referring to the MAPE results of ANN and RF in Table 5, it can be observed that the ANN model 
produces a higher MAPE value of 5.0836%, in contrast with the MAPE of 0.0579% determined by the RF in 
day two. It is perspicuous in Table 5 that the RF provides most accurate prediction with the minimum average 
MAPE results in forecasting the PV output current as compared to the ANN. It is obvious that bagging 
technique improves the training and testing processes of RF in obtaining the best results with minimum error 
in forecasting. This implies that the ANN is far more complicated than the RF in terms of interpreting and 
understanding the weight, easy to over-fit the model and   unpredicted in its performance. 
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Table 5. MAPE of forecasted PV output current for the next 24-hours obtained from the ANN and RF 

 
Day 

ANN RF 
K = 24 

MAPE (%) MAPE (%) 
1 5.9144 0.1184 
2 5.0836 0.0579 
3 3.0745 0.3008 
4 2.9441 0.1622 
5 2.4173 0.1184 
6 6.0031 0.1219 
7 3.3752 0.7556 
8 4.7268 0.1420 
9 2.5261 0.0864 
10 6.9916 0.2823 
11 8.9894 0.7953 
12 2.2936 0.0190 
13 6.2087 0.0574 
14 1.7835 0.2749 
15 4.5219 0.3175 
16 1.0799 0.0118 
17 6.7759 0.2154 
18 13.2377 0.1462 
19 11.4929 0.0111 
20 0.3173 0.0243 
21 0.9236 0.2045 
22 0.2832 0.0320 
23 3.3776 0.0203 
24 4.4665 0.4610 
25 4.4561 0.0198 
26 5.9024 0.1180 
27 5.0569 0.3915 
28 3.0791 0.3008 
29 2.9465 0.2508 
30 2.4028 0.1835 

Average 
MAPE 

4.4217 0.2000 

 
 
4. CONCLUSION 

The application of artificial neural network (ANN) and random forest (RF) with wavelet denoising 
and multiple time lags K=24 in performing short term photovoltaic current forecasting (STPCF) has been 
discussed elaborately in this paper. The results shown proved that the models proposed for the case study have 
the benefit of providing accurate result of STPCF. However, the RF method shown the important of choosing 
the accurate number of tree and leaf to be used as it will affect the performance of RF. The result shown that 
the RF method able to forecast the PV output current for the next 24 hours and provide more accurate results 
of STPCF with minimum error compared to ANN.  
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