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 Field oriented control (FOC) is widely used for high performance induction 
motor (IM) electrical drive systems. Typically, FOC uses linear controls and 
space vector modulation (SVM) to control the fundamental components of 
the stator voltages. This work shows that based on a fast and precise inner 
current loop response one may flexibly employ different advanced control 
methods, to achieve high performance outer loops (speed and flux control). 
In this paper, novel approaches based on dead-beat scheme for the current 
loop combining with exact linearization, backstepping controls, and fatness-
based methods for the outer loop are proposed. By comparing with classical 
PI control, the proposed method shows the outstanding features of system 
response such as fast, accurate and decoupling properties. The performance 
evaluation is given by experimental results. 
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1. INTRODUCTION 

Nowadays, asynchronous electrical drives based on field-oriented control (FOC) have been widely 
used in industrial applications [1]. Based on this method, we can find induction motors have similar 
characteristics to separate excitation DC motors in term of generating magnetic field and torque [1-4]. In the 
FOC structure, when the stator voltage control satisfies the requirement of “fast – accuracy – decoupling” 
properties in current response, the induction motor can be considered as fed by a current source inverter with 
controllable current, which leads to order reduction of the model of induction motor drive from  
4th to 2th order [1].  

The article presents different methods to design the inner loop (stator current loop) and outer loop 
(flux and speed loops). Firstly, deadbeat control with finite response is employed for the current loops [5-7]. 
Secondly, exact linearization is utilized to transform the non-linear dynamics of current model into linear 
input-output relationship, thus it is able to apply common linear controls to the current model [8, 9]. In 
addition, to demonstrate current performances, a classical PI current controller is also designed [10-13] for 
benchmarking purpose. The closed-loop current response based on deadbeat, exact linearization control is 
evaluated to identify the most suitable control for the current loops. The success in designing a control for the 
current loops can lead to the assumption of ideal current loop response that results in the system order 
reduction. Subsequently, the design control of the electrical drive system outer loops based on reducing order 
model can be performed in various methods. The classical PI controller can only be effective around the 
operating point. When operating in a wide range the system performance can be degraded [10-13]. 
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Nowadays, the non-linear control with abrupt developments in hardware are increasingly considered in 
practical applications.  

Due to flat property of the IM with rotor speed and flux are selected as the outputs, the flatness-
based principle is used for speed and flux control. By simply reducing the order of the governing equations, 
the designed speed and flux reference trajectories can be choosing based on the amplitude constraint of 
current [14-18]. Noting that the IM model is of strict feedback form, backstepping control method [19-21] 
which makes sure that the error between set values and real values satisfy Lyapunov’s stability is also 
deployed for speed and flux loops. Evaluation of dynamic response between different speed and flux control 
structures based on ripple torque performance [22-25].  

The advanced structures for FOC of the induction motor with ideal current loop are verified 
according experimental results. These results are obtained from the assessment of current loop response, 
speed, flux and the performance of electrical drive between FOC structures such as harmonic distortion, 
ripple torque, and max ripple torque. The remainder of this paper is organized as follows. The mathematical 
model of the drive system with ideally control performance of the stator system will be presented in section 
2. Subsequently, the design method of stator current control and outer loop by nonlinear method is discussed 
in section 3 and 4. The efficiency of the proposed method is verified by simulation as well as implementation 
are shown in section 5 and section 6, respectively. The final section will summarize the research and gives 
some directions for future works 
 
 
2. MATHEMATICAL MODEL OF THREE PHASE INDUCTION MOTOR 

In synchronous coordinate, the three-phase induction motor can be described by the following 
dynamical [1].  
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In which, ;sd sqi i  are dq  components of the stator current; mi is electromagnetic currents; , sw w  are 

mechanical and synchronous speed, respectively; ' ',rd rqy y are dq components of the rotor flux;s  is total 

leakage factor; rT is rotor time constant; sdu , squ are dq  components of the stator voltage; sL is stator 

inductance, Lm  : torque load; Wm : torque motor. It can be seen that the original state  (1) is bilinear and is 

of 4th order. When considering the current controller response is perfect, the induction motor model can be 
reduced as: 
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The state (2) is of 2nd order, stator current isd is used to control the motor flux and isq is dedicated to speed 
control 
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3. STATOR CURRENT CONTROL DESIGN 
3.1.  Deadbeat control 

The ideal dynamic behavior can be achieved by deadbeat response which means that the actual 
value will track the reference value after one sampling period, or, if the one-step delay of the control output is 
taken into account, after two sampling periods. This leads to the fact that closed loop transfer function must 
also have the form of a polynomial of Nth degree, with the sum of polynomial coefficients equal to [1,5,6]. 
According to [1], the problem of designing controller transfer function is now replaced by finding a 
polynomial of matrix controller. Where the polynomial L(z-1) has to fulfill: 
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With: li coefficients of the polynomial L(z-1); B numerator of process transfer functions GS. 

 bj coefficients of the polynomial B(z-1), numerator of GS(z-1) 
 L(1), B(1) sum of polynomial coefficients of L(z-1), B(z-1) 
According to to [1,5,6] the stator current control with deadbeat behavior as shown as: 
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Where: 11 12;F F  transition matrix; T : sampling time ; sT is stator time constant. 
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It can be deduced that the control laws do not cause future errors (stationary control errors), the 

polynomials L1(z-1) and L2(z-1) must not contain the coefficient l0. Additionally, to eliminate the stationary 
control errors the transfer function wG  of the closed loop must be equal I under stationary conditions  

( 1z = ). Therefore, it can be seen that: 
 

( ) ( )1 21 1 1L L= =   (5) 

 
With the conditions (5) we cannot clearly define the coefficients of polynomials L1(z-1) and L2(z-1) 

when only the total coefficient polynomials is by 1. Therefore, it is necessary to have sub-conditions to be 
able to determine those coefficients, which is the condition of voltage constraint. Selection of L1(z-1) and 
L2(z-1) as second-degree polynomial as follows 
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The controller (6) can be written in form of discrete equations: 
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The controller (7) can be written in the following form: 
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Where l1 and l2 can be chosen as follows: 
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The control structure of the inner loop using the dead-beat is shown in Figure 1: 
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Figure 1. Control structure of the current vector controller with deadbeat 
 
 
3.2.  Exact linearization control method 

Using the state feedback or the coordinate transformation the exact linearized IM model can be 
represented. The transformed state model will now become the starting point for the controller design. 
Besides the exact linearization achieved in discrete state space, the input-output decoupling relations are 
totally guaranteed. Based on this result, it seems to be possible to replace the two dimensional current 
controller by a coordinate transformation and two separate current controllers for both d and q axes [1,8,9]. 
According to [1,8,9] the state-feedback control law can be written as:  

 
-1 -1 -1- ( ) ( ) ( ) ( ) - ( )  u L x g x L x w a x L x w   (10) 

 
The (10) can be written in detailed form: 
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The state-feedback control law or the coordinate transformation law can be written in detailed form: 
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The control structure of the inner loop using the method of exact linearization is shown in Figure 2 
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Figure 2. Control structure of the current vector controller with method of exact linearization 
 
 
4. NONLINEAR CONTROL DESIGN FOR OUTER LOOPS 

Since the deadbeat controller which forces the stator current to its desired value in finite steps has 
already successfully been developed for the stator current loop in previous sections, the remaining objective 
of this research is to design controller for torque and flux loops. 
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4.1. Flatness-based control design 
The asynchronous electrical drive structure using flatness-based control for the outer loop (speed and 

flux loop) with ideal performance of stator current is shown in Figure 4. Based on [1,17], the flat output is the 
flux and speed ,d d

r     ,thus we obtain the flatness-based controller for the flux and speed as follows: 

 Flux and speed reference trajectory designing 
In order to guarantee differentiable property, the relationship between * & d

rd rd   and * &  can be 

given as follows: 
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With: * *,rd  : reference flux and speed; ,d
rd   flux and speed reference trajectory 

 Feedforward control designing 

In the flat system, the input value is * *,  T sd squ i i    , the input value * *;sd sqi i  are computed based on the 

flat output and the constructed trajectories: 
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With  Lm : estimate torque load 
 Feedback control designing 

In fact, the model state of IM is not absolutely accurate, and the disturbances that have negative 
effects on the quality of the flatness-based controller. For this reason, in order to ensure that the output match 
the desired value, additional closed loop control is required using PI controller. Therefore, the PI controller 
for the speed and flux loop can be expressed as (17) and (18): 
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Figure 3. FOC control structure with the deadbeat controller for the IM’ stator current loop and 
the flatness-based controller for the outer loop 

 
 

4.2. Backstepping control design 
Backstepping approach is based on feedback controller designing that satisfies Lyapunov’s stability 

by constructing CLFs (control Lyapunov functions) from subsystems [19-21]. The asynchronous electrical 
drive structure using backstepping control method for the outer loop with ideally control performance of 
stator current is shown in Figure 4. 

 Flux control loop designing 
According to [19] using the backstepping control method, the flux controller is expressed as follows: 
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With : 1c  : constant; *
1 rd rdz     : errors of rotor flux; * ;rd rd  : reference and actual flux 

With the ideal control performance of stator current *
sd sdi i  , one can obtain: 
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Where
*
sdi  is the actual control signal of the flux controller. 

 Speed control loop designing 
Similarly, the speed controller is as follows: 
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With : 2c  : constant; *
2z     : errors of speed; *;  : reference and actual speed 

With the ideal control performance of stator current *
sq sqi i , that leads to: 
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 Design of set point trajectory for flux and speed  
In addition to the goal of making the set point reference enough differentiable like output, the 

constraints of output could be taken into account during trajectory design as well. The flux and speed 
reference trajectory designing by (13) and (14).  
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Figure 4. FOC control structure with the deadbeat controller for the IM’ stator current loop and 
the backstepping controller for the outer loop 

 
 

5. EXPERIMENTAL RESULTS 
In order to evaluate the effectiveness of stator current control and speed control methods, the 

induction motor is operated with IM’s parameters as shown in Table 1: 
 
 

Table 1. Experimental with IM’s parameters 
IM parameters Symbol Value 

Power Pdm 2.2 kW 
Rated speed Ndm 2880 rpm 

Rated voltage Udm 400V 
Pole pair Zp 1 

Power factor cosφ 0.9 
Inertia torque J 0.002Kg.m2 

 
 

This section gives out the evaluation of experimental results that includes stator current response, 
speed, flux response and performance of electrical drive.  

The evaluation of the magnetization of the squirrel cage induction motor will be done by taking the 
finite sampling step as simulation which are shown in Figure 5 and Table 2. 

 
 

Table 2. Performance comparison of the stator current loop 
FOC control structures Exact 

linearization 
Deadbeat 

 
Currents isd isq isd isq 

Settling time (s) 0.0025 0.0025 0.001 0.001 
Overshoot (%) 15 25 10 20 
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Figure 5. Dynamical responses of the stator currents loop 

 
 

 
This are results in the Figure 5 and Table 2, we can the the current controller with the exact 

linearization method has the large overshoot and ripple current isq. Besides, the currents isd, isq of deadbeat 
controller satisfies “fast – accuracy – decoupling” properties compared to the exact linearization that leads 
fast speed response and low ripple.  

When the torque is required (reference torque is match with actual torque), followed by the paper 
presented for dynamical response evaluation of FOC control structures at speed of 0.1 rad/s and 100 rad/s are 
expressed through Figure 6, Figure 7 and Table 3: 

 
 

Table 3. System response comparison 
FOC control structures Deadbeat-Flatness Deadbeat- Backstepping 

 at the speed of 0.1 rad/s  
Flux settling time (s) 0.4 0.35 

Speed settling time (s) 0.05 0.05 
 at the speed of 100 rad/s  

Flux settling time (s) 0.3 0.25 
Speed settling time (s) 0.25 0.15 
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Figure 6. isd current and speed responses at the speed of 0.1 rad/s 
 
 

 
 

Figure 7. isd current and speed responses at the speed of 100 rad/s 
 
 

Based on the above results, we can the flux settle within 0.25s, the long over speed time with wide 
speed range, overshoot about 10% to 25%. It is worth noting that the outer loop control using backtepping 
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method has short settling time compared to the other responses. In depth evaluation of proposed control are 
expressed through Figure 8, Figure 9 and Table 3. 

 
 

 
 

Figure 8. Torque responses at the speed of 0.1 rad/s 
 
 

Table 3. Experimental test results of the FOC control structures 
FOC control structures Deadbeat-Flatness Deadbeat-Backstepping 

at the speed of 0.1 rad/s 

Maximum ripple torque-no load ( mT % ) 50 30 

Ripple torque –loaded (RTF%) 7.0 6.9 
at the speed of 100 rad/s 

Maximum ripple torque - no load ( mT % ) 8 5 

Ripple torque –loaded (RTF%) 9.3 9.25 
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Figure 9: Torque responses at the speed of 100 rad/s 
 
 

Based on the above results, we can the maximum ripple torque-no load mT % from 30% to 50%, the 

ripple torque –loaded (RTF%) within 7% at the speed of 0.1 rad/s. The maximum ripple torque-loaded mT % 

from 5% to 8%, the ripple torque –loaded (RTF%) within 9% at the speed of 100 rad/s. It can be observed 
from numerical and experimental results that backstepping control method provides better performances than 
those of the other two controls. 

 
 

6. CONCLUSION 
In the paper, we introduced the stator current loop controller based on deadbeat and backstepping 

control-methods for the outer loop deliver with some advances in term of kinetic response and qualified 
electrical drive. The accuracy of the proposed methods is demonstrated by experiment. The results show that 
the deadbeat controller has already successfully been developed for the stator current loop, satisfying the 
requirement of “fast – accuracy – decoupling”. The research results also suggest some ways to design the 
outer loop control for complicated drive systems where the motor is coupled with varying load via flexible 
coupling. 
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