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 Due to end effects phenomena that cause a decrease of air-gap flux and 

thrust force, obtaining a precise velocity for a linear induction motor (LIM) 

has become a significant challenge. This study suggests implementing a 

novel controller based on a self-recurrent wavelet neural network (SRWNN) 

and model predictive controller (MPC) to regulate the velocity and thrust 

force of LIM. The MPC was used to train the SRWNN in this study. The 

ultimate goal of employing such a control approach in neural network 

training is to reduce the degree of uncertainty caused by changes in motor 

parameters and load disturbance. The indirect field-oriented control (IFOC) 

approach was used to investigate velocity and flux control under varied 

loading circumstances. Furthermore, to supply the required LIM stator 

voltage, a SVPWM dependent voltage source inverter was used in this work. 

To ensure reliable performance, the suggested system combines the benefits 

of neural networks with the MPC method, resulting in a versatile controller 

with a basic construction that is easy to accomplish. The MATLAB package 

is utilized to simulates and outputs LIM responses. The results confirm that 

the proposed method, which efficiently controls the velocity and thrust force 

of the LIM, can cope with changes in load force disruption and motor 

parameters. 
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1. INTRODUCTION 

Owing to the benefits that linear induction motor possesses like, low cost, high 

acceleration/deceleration, low energy consumption, low vibration, there is no requirement for a mechanism to 

convert rotational motion to translational motion, low noise, easy maintenance, and so on, linear induction 

motor (LIM) has been extensively utilized in several industrial process and transportation implementations 

[1], [2]. The LIM's driving principles are identical to the rotary induction motor (RIM) principles, 

nevertheless the control features of LIM are much more complex as compared to the RIM, furthermore the 

parameters of the motor vary in time owing to the alteration in operating conditions, including temperature, 

rail’s configurations, and speed of the mover [3], [4]. The key difference between the LIM and the RIM is 

associated to the end effects that impact the operation and the parameters of the motor under normal state. 

Therefore, it must be considering in the control and modelling of the LIMs [5]. The drawbacks listed above 

increase the difficulty of developing a high-grade controller for LIMs. Diverse control groups have currently 

been used to control the LIM's velocity. Field-orientation control or vector control is the most reliable approach for 

regulating the speed of the AC motor to achieve superior performance. A complex current is manufactured from two 

quadrature components in the vector control scheme, one of which is responsible for the motor flux level, and the 
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other controls the output of force in the motor [6]. In this work, space vector pulse width modulation fed the 3-phase 

inverter has been used to provide output voltage with good performance and fewer harmonics [7]. 

Model predictive control is a constrained optimum control method that calculates the optimum 

control inputs by minimizing a specified objective function over a prediction horizon [8]. As a result, 

plethora of exploratory research demonstrated that model predictive controller (MPC) can be significantly 

effective in such processes than the PID controller counterparts [9], [10]. Deep neural networks have 

revolutionized several fields in recent years. They are increasingly utilized in practical applications and 

important decision processes, such as innovative knowledge discovery approaches, autonomous driving, or 

medical image analysis, because to their capacity to naturally learn from structured data and demonstrate 

better performance [11]. The wavelet neural network (WNN) is one of the most important feedforward neural 

networks, and it has been the subject of much debate in recent years. The recurrent wavelet neural networks 

is a more advanced wavelet neural networks model [12], [13]. 

In this paper, self-recurrent wavelet neural network is employed to control the velocity and thrust 

force of the linear induction motor. For training the proposed self-recurrent wavelet neural network 

(SRWNN), the MPC control technique has been used. The reason of using such a control scheme to train the 

SRWNN is to minimize the impact of load disruptions and to take into account significant modeling 

uncertainty. The training data has been obtained by modeling the MPC controller for different operating 

conditions. This data, then, has been adopted in the proposed power system in the face of adjustments in 

plant parameters and load disruption. This is, consequently, assisted to achieve the required degree of robust 

output. Using the learning capability of neural networks, the suggested controller is then rebuilt. Under the 

load disruption and parameters variation, the proposed control technique has been investigated. A 

comparison has been made between the response of the SRWNN, MPC, and the PID controllers. Simulation 

outcomes clearly revealed that the postulated scheme can effectively be implemented to control LIM speed 

with superior outcomes than the counterpart controllers in the literature. 

In the recent years, controlling the speed of LIM was studied by a plethora of research papers, as can 

be seen in Table 1, including the use of enumerative nonlinear MPC [14]. Regardless of its advantages, the 

use of MPC in combination with a pulse width modulation inverter causes in a high switching frequency at 

the inverter switches. Furthermore, real-time execution is impossible due to the computing pressure of on-

line optimization and linearization. The DTFC approach was analyzed with taking into account the end-effect 

[15]. DTFC is an improved control technique that uses many PI controllers, but it requires a variable 

switching frequency and high sampling rate due to hysteresis-based control loops. Bessaih et al. [16] 

proposed speed control design with end effects compensation using rotor time constant estimation is 

investigated to estimate end effects variation and to obtain a flux and speed tracking objective under load 

disruption. This scheme, however, is particularly susceptible to changes in the parameters of motor, which 

differ with saturation of the magnetizing inductance and temperature. Sliding mode control (SMC) was first 

introduced as a speed control algorithm for LIMs [17]. 

 

 

Table 1. Literature review of approaches used to control LIM 
Reference Approaches Drive Advantages Disadvantages 

[14] MPC DTC Easy to implement, robust in the face of 

load disruption and parameter uncertainty 
High switching frequency at the inverter 

switches 
[15] Several PI 

controllers 
DTFC Fast dynamic response, very simple, there 

is no need for a rotor position detector for 

direct thrust control, and the thrust ripple is 

low 

Hysteresis-based control loops result in a 

high sampling rate and variable switching 

frequency 

[16] PI+MRAC IFOC Good performances Sensitive to the variation of the motor 

parameters which fluctuates with temperature 
and saturation of the magnetizing inductance 

[17] SMC DTC Fast and good speed tracking Complex design 
[18] SMC+Fuzzy IFOC Effective tracking Very complicated implementations 

Proposed SRWNN+MPC IFOC Simple scheme, effective control  

 

 

An extended sliding mode load thrust observer (ESO) was then proposed to compensate the sliding 

mode controller for load thrust disturbances. Moreover, the sliding mode control integrated with ESO is 

structured to regulate the LIM's speed, flux, and thrust by direct thrust control (DTC) and space-vector 

modulation (SVM). The sliding mode control's output is utilized as the reference thrust for the direct thrust 

control, which is dependent upon space-vector modulation (DTC-SVM). Chiang et al. [18] proposed an 

optimized adaptive tracking control for a LIM drive considering the unknown end effects, uncertainties 

including the friction force and payload. The dynamic model of a field-oriented linear induction motor drive 

with the end effect of primary is first examined. To deal with the lumped uncertainties of the LIM drive, a 
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sliding mode controller with a practical fuzzy compensator is designed based on the backstepping control 

design. Furthermore, an adaptive method based on the sense of the Lyapunov stability theorem is derived to 

online change the fuzzy compensation gains to solve the difficulty of the unknown bound of the lumped 

uncertainties in the overall system. 
 

 

2. LINEAR INDUCTION MOTOR MATHEMATICAL MODEL 

Based on the d-q axis electrical circuits the mathematical model of LIM can be built. The LIM's  

q-axis electrical circuit is the same as the q-axis electrical circuit of a RIM, which means that the parameters 

are unaffected by the end effects. Nevertheless, the d-axis entry secondary currents influence the flux of the 

air gap by reducing 𝜆𝑑𝑟 . Consequently, where the end effects are considered, the d-axis electrical circuit of 

the RIM cannot be employed in the LIM study. Figure 1 (a) and Figure 1 (b) demonstrates the d-q axis 

circuits of LIM when end effects are taking into account [19], [20]. 
 

 

  
(a) (b) 

 

Figure 1. Demonstrates (a) LIM's d-axis electrical circuit (b) LIM's q-axis electrical circuit 
 

 

Based upon the d-q axis electrical circuit the voltage equations of primary and secondary are 

described in differential equations in the synchronous reference frame given by [19]: 

 

Vds = Rsids + Rrf(Q)(ids + idr) + pλds − ωeλqs (1) 

 

Vqs = Rsiqs + pλqs + ωeλds (2) 

 

Vdr = Rridr + Rrf(Q)(ids + idr) + pλdr − ωslλqr (3) 

 

Vqr = Rriqr + pλqr + ωslλdr                                        (4) 

 

𝑓(𝑄) is indicated as: 

 

𝑓(𝑄) =
1−𝑒−𝑄

𝑄
 (5) 

 

where, 

 

𝑄 =
𝐷∗𝑅𝑟

𝐿𝑟 𝑣
  (6) 

 

the primary and secondary flux linkages can be described as: 

 

𝜆𝑑𝑠 = 𝐿𝑙𝑠𝑖𝑑𝑠 + 𝐿𝑚(1 − 𝑓(𝑄))(𝑖𝑑𝑠 + 𝑖𝑑𝑟) (7) 

 

𝜆𝑞𝑠 = 𝐿𝑙𝑠𝑖𝑞𝑠 + 𝐿𝑚(𝑖𝑞𝑠 + 𝑖𝑞𝑟) (8) 
 

𝜆𝑑𝑟 = 𝐿𝑙𝑟𝑖𝑑𝑟 + 𝐿𝑚(1 − 𝑓(𝑄))(𝑖𝑑𝑠 + 𝑖𝑑𝑟) (9) 

 

𝜆𝑞𝑟 = 𝐿𝑙𝑟𝑖𝑞𝑟 + 𝐿𝑚(𝑖𝑞𝑠 + 𝑖𝑞𝑟) (10) 
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thrust force: 
 

𝐹𝑒 =
3𝜋𝑃

2𝜏𝑝 2
(𝜆𝑑𝑠𝑖𝑞𝑠 − 𝜆𝑞𝑠𝑖𝑑𝑠) = 𝑀. 𝑣′ + 𝐵. 𝑣 + 𝐹𝐿 (11) 

 

where, 

𝑉𝑑𝑠, 𝑉𝑞𝑠  primary voltages in d-q axis (𝑉) 

𝑉𝑑𝑟 , 𝑉𝑞𝑟  secondary voltages in d-q axis(𝑉) 

𝑖𝑑𝑠 , 𝑖𝑞𝑠 primary currents in d-q axis(𝐴) 

𝑖𝑑𝑟 , 𝑖𝑞𝑟 secondary currents in d-q axis(𝐴) 

𝜆𝑑𝑠, 𝜆𝑞𝑠 primary flux linkage in d-q axis 

𝜆𝑑𝑟 , 𝜆𝑞𝑟 secondary flux linkage in d-q axis 

𝑅𝑠, 𝑅𝑟 primary and secondary resistances (Ω) 

𝐿𝑙𝑠 , 𝐿𝑙𝑟  leakage inductances of primary and secondary (𝐻) 

𝐿𝑠, 𝐿𝑟  self-inductances of primary and secondary (𝐻) 

𝐿𝑚 mutual inductance (𝐻) 

𝑃  poles number 

𝜏 pole pitch (𝑚) 

𝐷 primary length (𝑚) 

𝑄 factor associate with the primary length  

𝑉  velocity (𝑚/𝑠𝑒𝑐) 

𝜔𝑒  angler speed of the primary (𝑟𝑎𝑑/sec ) 

𝜔𝑟 angler speed of the secondary (𝑟𝑎𝑑/sec ) 

𝜔𝑠𝑙  slip speed (𝑟𝑎𝑑/sec) 

B viscous friction (𝑘𝑔/𝑠𝑒𝑐) 
 

 

3. INDIRECT FIELD-ORIENTED CONTROL OF LIM 

The fundamental postulation of the field-oriented control (or called vector control) of LIM is to 

control the thrust force and flux independently as in DC devices. The secondary flux linkage axis is forced to 

align with the d-axis in the ideal IFOC, thus [21], [22]: 
 

𝜆𝑞𝑟 =
𝑑𝜆𝑞𝑟

𝑑𝑡
= 0 (12) 

 

𝜆𝑑𝑟 = 𝜆𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (13) 
 

using the IFOC approach and taking into account that the electrical time constant is greatly less than the 

mechanical time constant. The thrust force equation demonstrated in (11) can be sensibly signified through 

the equation shown below: 
 

𝐹𝑒 = 𝑘𝑓 . 𝑖𝑞𝑠 (14) 
 

where, 
 

 𝑘𝑓 =
3𝜋

2𝜏𝑝
𝑃

𝐿𝑚(1−𝑓(𝑄))

𝐿𝑟−𝐿𝑚𝑓(𝑄)
 𝜆𝑑𝑟 (15) 

 

furthermore, by utilizing equation (3), the slip velocity is given by: 

 

𝑉𝑠𝑙 =
𝜏𝑝.𝐿𝑚(1−𝑓(𝑄)).𝑖𝑞𝑠

∗

𝜋(
𝐿𝑟
𝑅𝑟

−
𝐿𝑚𝑓(𝑄)

𝑅𝑟
)𝜆𝑑𝑟

 (16) 

 

while the equation below defined the electrical velocity as: 

 

 𝑉𝑒 = 𝑉𝑠𝑙 + 𝑉𝑟 (17) 

 

the control method by decoupling employing double current controllers (one for the 𝑖𝑑𝑠 and the other for 𝑖𝑞𝑠), 

that used to give the required voltages to the space vector pulse width modulation inverter is specified as: 
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𝑉𝑑𝑠
∗ = (𝑘𝑝 𝑒(𝑡) + 𝑘𝑖  ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
) (𝑖𝑑𝑠

∗ − 𝑖𝑑𝑠) −
𝜋

𝜏𝑝
𝑉𝑒𝐿𝜎(𝑄)𝑖𝑞𝑠

∗  (18) 

 

𝑉𝑞𝑠
∗ = (𝑘𝑝 𝑒(𝑡) + 𝑘𝑖  ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
) (𝑖𝑞𝑠

∗ − 𝑖𝑞𝑠) +
𝜋

𝑡𝑝
𝑉𝑒𝐿𝜎(𝑄)𝑖𝑑𝑠

∗ +
𝑃.𝐿𝑚𝜋

𝐿𝑟𝜏𝑝
 𝑉𝑟𝜆𝑑𝑟  (19) 

 

where 𝐿𝜎(𝑄) denotes the leakage inductance represented by: 
 

𝐿𝜎(𝑄) = 𝐿𝑆 − 𝐿𝑚𝑓(𝑄) −
(𝐿𝑚(1−𝑓(𝑄)))

2

𝐿𝑟−𝐿𝑚𝑓(𝑄)
 (20) 

 

 

4. VOLTAGE SOURCE INVERTER BASED ON SVPWM  

A 3-phase voltage source inverter (VSI) is employed to give the necessary frequency and voltage to 

the 3-phase LIM according to the control technique. The SVPWM mechanism is applied to control the 3-

phase VSI via providing the essential switching signal. The SVPWM method is derived from the PWM 

method for a 3-phase inverter via the representation of the space vector in 𝛼-𝛽 plane. The 𝛼-𝛽 components 

are found by Clark's transformation. The major principle of space vector PWM relies on the different 

switching sequences of the 3-phase VSI. The switches combination can be represented as binary codes that 

correspond to the power transistor of the 3- phase inverter [23]. Table 2 indicates the possible eight-state 

switch of the inverter. Six non-zero (active) voltage vectors and two zero (inactive) voltage vectors are 

probable as a result of switching states as seen in Figure 2, six active voltage vectors( 𝑉1-𝑉6) form the axes of 

a hexagonal with a 60𝜊 apart between either two neighboring active vectors [24], [25]. 
 

 

Table 2. Demonstrates line to line voltages, phase voltages, and switching vectors 
Switching vectors Phase voltage The line voltage Voltage 

vector 𝑎 𝑏 𝑐 𝑉𝑎 𝑉𝑏 𝑉𝑐 𝑉𝑎𝑏 𝑉𝑏𝑐 𝑉𝑐𝑎 
          

0 0 0 0 0 0 0 0 0 V0 

1 0 0 
2𝑉𝑑𝑐

3
 −

𝑉𝑑𝑐

3
 −

𝑉𝑑𝑐

3
 𝑉𝑑𝑐 0 −𝑉𝑑𝑐 V1 

1 1 0 
𝑉𝑑𝑐

3
 

𝑉𝑑𝑐

3
 −

2𝑉𝑑𝑐

3
 0 𝑉𝑑𝑐 −𝑉𝑑𝑐 V2 

0 1 0 −
𝑉𝑑𝑐

3
 

2𝑉𝑑𝑐

3
 −

𝑉𝑑𝑐

3
 

- 
−𝑉𝑑𝑐 

𝑉𝑑𝑐 0 V3 

0 1 1 −
2𝑉𝑑𝑐

3
 

𝑉𝑑𝑐

3
 

𝑉𝑑𝑐

3
 −𝑉𝑑𝑐 0 𝑉𝑑𝑐 V4 

0 0 1 −
𝑉𝑑𝑐

3
 

𝑉𝑑𝑐

3
 

2𝑉𝑑𝑐

3
 0 −𝑉𝑑𝑐 𝑉𝑑𝑐 V5 

1 0 1 
𝑉𝑑𝑐

3
 −

2𝑉𝑑𝑐

3
 

𝑉𝑑𝑐

3
 𝑉𝑑𝑐 −𝑉𝑑𝑐 0 𝑉6 

1 1 1 0 0 0 0 0 0 𝑉7 
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Figure 2. Shows switching and voltage vectors 
 

 

5. MODEL PREDICTIVE CONTROL 

Since it is a conventional nonlinear control method in process industries such as petrochemical 

industries, model predictive control is becoming an emerging control approach in the domains of power 
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electronics and electric drives [26]. The MPC framework depends upon the explicit usage of the system's 

response forecast model to obtain control behavior via minimalizing the objective function. Minimization of 

the difference between the expected and reference response, as well as control effort exposed to prescribed 

constraints, are among the optimization objectives. The efficacy of the MPC has been verified to be equal to 

optimum control. At every control interval, the first input in the optimal series is delivered into the plant, and 

the entire computation is repeated at later control times. The objective of capturing new measurements at 

each stage of the process is to correct for model inaccuracies and unmeasured disruptions, which all result in 

the system's output being different from what the model predicted [27]-[29]. 

A basic model predictive control configuration is demonstrated in Figure 3. The internal model is 

utilized to forecast the future outcomes of the plant depends upon the inputs and outputs' past and present 

values and the suggested optimum future control actions. There are two key components of the prediction, 

the free response, which is the predicted output behavior based on the assumption that there are no future 

control actions, and the extra part named the forced response owing to a precalculated set of future actuating 

values. The entire forecast can be determined for linear systems by summing up forced and free responses, 

the target value that the output must be achieved is called the reference trajectory signal. The optimizer 

calculates the best range of possible control actions by reducing the cost function J, and the optimization is 

subjected to constraints on  manipulated and controlled  variables [30]. 

The ultimate goal is to reduce future output error to zero with minimal input effort. In general, the 

cost function to be minimalized, such as in generalized predictive control, is a weighted sum of predicted 

square errors and future square control values [30]. 

 

𝐽(𝑁1, 𝑁2, 𝑁𝑢) = ∑ 𝛽(𝑗)[𝑦∧(𝑘 + 𝑗|𝑘) − 𝑤(𝑘 + 𝑗)]2 + ∑ 𝜆(𝑗)[𝑢(𝑘 + 𝑗 − 1)]2𝑁𝑢
𝑗=1

𝑁2
𝑗=𝑁1

 (21) 

 

Where 𝑁1 and 𝑁2 signifies the lower and upper prediction horizon,  𝜆(𝑗)𝑎𝑛𝑑 𝛽(𝑗) represents the weighting 

factors, and 𝑁𝑢 specifies the control horizon. Depending on the relationship below, the control horizon 

enables for a reduction in the calculated future control number. 

 

Δ𝑢(𝑘 + 𝑗) = 0 𝑓𝑜𝑟 𝑗 ≥ 𝑁𝑢 (22) 

 

𝑤(𝑘 + 𝑗) signifies the reference trajectory over the future control N. Constraints on the outputs, inputs and 

the control signal changing may be applied to the cost function. 

 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥 (23) 

 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘) ≤ ∆𝑢𝑚𝑎𝑥 (24) 

 

𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥 (25) 

 

When the given constraints in (23)-(25) are met, solution of (21) gives the optimum control signal sequences 

over the horizon. 

 

 

+

+

-

+
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Figure 3. Illustrates MPC's fundamental structure 
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6. ADAPTIVE FORECASTING MODEL BY SRWNN 

To achieve a better approximate performance of the artificial neural networks (ANNs),  a wavelet 

neural network (WNNs) was formed via a mixture of the neural networks with the wavelets. WNNs are feed-

forward neural networks that use wavelets instead of sigmoid activation as the activation function.  One or 

more inputs may be used in WNNs, with one hidden layer and one or more outputs. The hidden layers of 

WNNs consist of many neurons with wavelet activation functions rather than sigmoid functions. To achieve 

adaptive WNN, the parameters of the WNNs (weights, translation, and dilation factors) are optimized using 

any learning algorithm. It can divide the wavelet neural networks into feedforward (non-recurrent) and 

recurrent groups [31]. 

In this work, the SRWNN is used to control the thrust force and velocity of the linear induction 

motor. The structure of SRWNN is shown in Figure 4. It consists of four  layers. The first layer accepts 

multiple M-signaled input signals from the outside and sends them directly to the hidden layer's (second 

layer). A wavelon is a node in the hidden layer (shown by a dashed box) that is made up of neurons that are 

proportionate to the number of input elements, meaning that every neuron in each wavelon corresponds to 

one element in the input vector. Each neuron in the wavelon is described by a mother wavelet function and 

self-feedback loop. In this study, the first derivative of a Gaussian function was employed as an activation 

function, which was denoted as [32]: 

 

∅(𝑥) = −𝑥 𝑒𝑥𝑝(
−𝑥2

2
) (26) 

 

from its mother wavelet, the output of any neuron ∅𝑖𝑗(𝑘)present in either wavelon is obtained as follows: 

 

∅𝑗 (𝑧𝑖𝑗(𝑘)) =  ∅(
𝑢𝑖𝑗(𝑘)−𝑡𝑖𝑗(𝑘)

𝜆𝑖𝑗(𝑘)
) (27) 

 

with 

 

𝑧𝑖𝑗(𝑘) =
𝑢𝑖𝑗(𝑘)−𝑡𝑖𝑗(𝑘)

𝜆𝑖𝑗(𝑘)
 (28) 

 

The first subscript 𝑖 denotes the position of the wavelon, while the second subscript 𝑗 denotes the 

location of the neuron inside that wavelon. It's worth noticing that the subscript for the location of the input 

signal 𝑢𝑗(𝑘) is the same as the subscript for the position of the neuron. The values of the translation and 

dilation variables are represented by the expressions 𝑡𝑖𝑗(𝑘) and 𝜆𝑖𝑗(𝑘), respectively. In addition, every 

neuron’s input signal is composed of the signal from the input layer plus the delayed weighted output of its 

unit, i.e. 

 

𝑢𝑗(𝑘) = 𝑥𝑗(𝑘) + 𝑤𝑖𝑗
𝐷(𝑘)𝜙𝑖𝑗(𝑘 − 1) (29) 

 

The 𝑤𝑖𝑗
𝐷(𝑘) symbol is used here to represents the weighted self-feedback loop (as illustrated in 

Figure 4 by a blue arrow in the second layer). In a multidimensional SRWNN (M > 1), the total output of 

each wavelon is equal to the product of the outputs of each of its neurons. This product operation is 

performed at the third layer and for each hidden wavelon, it is calculated as follows: 

 

𝜓𝑖(𝑘) = ∏ {− [
𝑢𝑗(𝑘)−𝑡𝑖𝑗(𝑘)

𝜆𝑖𝑗(𝑘)
]}  × {𝑒𝑥𝑝 [−

1

2
(

𝑢𝑗(𝑘)−𝑡𝑖𝑗(𝑘)

𝜆𝑖𝑗(𝑘)
)

2

]}𝑀
𝑗=1  (30) 

 

Figure 4 shows a weighted relationship between the input signals and the output neuron(s), 𝑎𝑗(𝑘) is 

utilized to describe these weights. And these input signals weights summation ∑ 𝑥𝑗(𝑘)𝑎𝑗(𝑘)𝑀
𝑗=1 , is termed as 

a direct term. By employing this direct term, the SRWNN gains the advantages of a direct linear feed-through 

network, such as increased extrapolation outside of examples of learning data sets and network parameter 

initialization based on available plant information. The SRWNN becomes a WNN when the self-feedback 

loop's weights and all (𝑎𝑗(𝑘)) weights are set to zero. Finally, the fourth layer is referred to as the output 

layer. Its induced field is equal to the weighted sum of the third layer's outputs plus the weighted sum of the 

input values of the first layer. SRWNN's output is the result of this complete process. Hence, 

 

𝑌𝑆𝑅𝑊𝑁𝑁(𝑘) = ∑ 𝑤𝑖
0(𝑘)𝜓𝑖(𝑘) + ∑ 𝑥𝑗(𝑘)𝑎𝑗(𝑘),𝑀

𝑗=1
𝑅
𝑖=1  (31) 
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where the fourth- and third-layers’ connection weights are denoted by 𝑤𝑖
0(𝑘). The adjustable parameters of 

SRWNN are as follows: 

 

𝑃𝐼 = {𝑎𝑗(𝑘), 𝑤𝑗
0(𝑘), 𝑤𝑖𝑗

𝐷(𝑘), 𝑡𝑖𝑗(𝑘), 𝜆𝑖𝑗(𝑘)} (32) 

 

finally, we will alter the various parameters of SRWNN using a dynamic backpropagation approach based on 

the gradient descent technique. 

 

 











M

Layer 2

Layer 1
Layer 3

Layer 4

 
 

Figure 4. Shows the SRWNN structure 

 

 

7. SYSTEM CONFIGURATION 

Figure 5 displays the block diagram of a LIM drive based upon an indirect field orientation. It is 

composed of LIM, coordinate translators, VSI, current controller, and IFOC mechanism. For the calculation 

and supply of the speed signal necessary for closed-loop control, a linear speed sensor was used. To get the 

force current component 𝑖𝑞𝑠
∗ , the calculated speed is compared to the reference speed and its difference is fed 

to the SRWNN controller, while 𝑖𝑑𝑠
∗  is set at the rated quantity. The 𝑖𝑞𝑠

∗  and 𝑖𝑑𝑠
∗  are utilized to get the slip 

according to equation (16). This latter is combined with the measured speed and integrated the sum to 

achieve the field angle 𝜃𝑒. The reference value of quadrature current of the primary (𝑖𝑞𝑠
∗ ) for the current 

controller that is then compared with the feedback current (𝑖𝑞𝑠) from the motor to get the essential voltage 𝑉𝑞  

for the SVPWM inverter for regulatory the thrust force. While we can control the flux via the current 

controller to control the d‐axis current (𝑖𝑑𝑠), by comparing it to the reference current (𝑖𝑑𝑠
∗ ), to get the required 

voltage 𝑉𝑑. Using the IFOC method the transfer function of LIM can be drive from (11) as: 

 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑚 =
𝑉

𝐹𝑒−𝐹𝐿
=

1

𝑀𝑠+𝐵
 (33) 

 

the simplified linearized LIM model defined by (33) is utilized in the MPC controller structure which is used 

for the off-line training of the proposed SRWNN controller for fast implantation, as seen in Figure 6. 
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Figure 5. Represents proposed block diagram of IFOC for LIM 
 

 

V

SRWNN
Controller

MPC
Controller

IFOC LIM
drive

 
 

Figure 6. Illustrates the proposed scheme of MPC based SRWNN controller 
 
 

8. SIMULATION RESULTS 

To emphasis the feasibility of the suggested scheme, an extensive simulation study has been carried 

out  in this study. To this end, the MATLAB/SIMULINK toolbox kit has been used in this work. In this work, 

an extensive parametric analysis of MPC has been investigated to set the optimum values of the controller as 

shown in Figures 7 and 8. 

Firstly, the control horizon and weight on output is fixed as 40, and 100, respectively. This is 

because they have a lower impact on the response of the controller, therefore these parameters are considered 

constant.  Then, the prediction horizon is varied from 5 to 100, and sample time is varied from 0.00005 to 

0.01 sec. Consequently, the impact of these variations on the settling time and rising time are plotted as can 

be illustrated in Figures 7 and 8. Therefore, in this study, the MPC parameters which has been used in our 

proposed scheme are chosen, based on our extensive investigation, as shown in Table 3. Table 4 demonstrate 

the LIM parameters used in this work. 
 

 

  
  

Figure 7. Demonstrate the influence of prediction 

horizon and sampling time variations on the 

settling time 

Figure 8. Demonstrate the influence of prediction 

horizon and sampling time variations on the rising 

time 
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Table 3. Optimum MPC parameters based on our parametric analysis 
Prediction 

horizon 
Control 
horizon 

Weights on manipulated 
variables 

Weights on manipulated 
variable rates 

Weights on the 
output signals 

Sampling 
interval 

65 40 0 0.019 100 0.00005 

 

 

The force generated and the motor's velocity are both constrained as: 

Max. thrust force = 1500 𝑁 

Min. thrust force = 210 𝑁 

Max. speed of the mover= 4 𝑚/𝑠𝑒𝑐  

Min. speed of the mover = 0 𝑚/𝑠𝑒𝑐 

The SRWNN controller parameters are: 

The speed input error ( 𝑒𝑉= Desired Speed- Measured Speed) 

Output is 𝑖𝑞𝑠
∗  

Mean square error (MSE) of SRWNN= 1.6301e-5 

 

 

Table 4. Parameters used in the linear induction motor model 
Parameters values 

P 4 

𝜏𝑝 (m) 0.0465 

𝑅𝑠(Ω)  13.2 

𝑅𝑟(Ω)  11.78 

𝐿𝑠(𝐻)  0.42 

𝐿𝑟(𝐻)  0.42 

𝐿𝑚(𝐻)  0.4 

M(kg) 4.775 
B(kg/m) 53 

 

 

Through performing several experiments along with several separate operation scenarios, the 

effectiveness of the current controller for regulating the LIM velocity was attained. This involves the velocity 

response in the case of no-load and a rapid variation in the load at the reference velocity. The response of the 

velocity at no load and a sudden load of 200N at 0.5 sec with reference velocity 4(m/sec) is demonstrated in 

Figure 9. The developed thrust force during no-load and load (200 N at 0.5 sec) is demonstrated in Figure 10. 

Another change of load force by amount of 300 N is applied on the motor at 0.5 sec, the velocity and thrust 

force of LIM at this load is displayed in Figure 11 and Figure 12, respectively. Figure 13 and Figure 14 

displayed the step changed in load for velocity and force respectively (100 N at 0.2 sec and 200 N at o.5 sec). 

Figure 15 demonstrated the velocity response at variation of parameters (increase 𝑅𝑟 by 25% and M by 50% 

in the model of the motor only) with load condition of 200 N. Finally, comparation between the responses of 

velocity using traditional PID, MPC, and SRWNN is demonstrated in Figure 16. 

 

 

  
 

Figure 9. Velocity response under load disruption (200N) 
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Figure 10. The developed LIM thrust force under 

load disruption (200 N) 

 

Figure 11. Velocity response under load disruption 

(300N) 

 

 

  

 

Figure 12. The developed LIM thrust force under 

load disruption (300N) 

 

Figure 13. Velocity response under step change of load 

 
 

 

 

 

Figure 14. Thrust force under step change of load 

 

Figure 15. Velocity response under change of load 

and parameters variation 
 

 

 
 

Figure 16. Comparison between the responses of the speed of LIM by MPC, PID, and SRWNN at load 200 N 
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9. CONCLUSION 

The SRWNN has been used to control the thrust force and velocity of linear induction motor in this 

study. The velocity control issue is initially developed as an optimization control problem using the MPC 

approach, after that, samples produced from the application of the MPC controller to the indirect field-

oriented LIM drive under load changes and varied operating circumstances are used to train the proposed 

SRWNN controller. Via load force disruption and mismatched parameters, the suggested controller has been 

investigated. The simulation results showed that the proposed controller was viable under various loading 

states. 
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