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 This paper presents a novel shunt active power filter (SAPF). The power 

converter that is used in this SAPF is constructed from a four-leg asymmetric 

multi-level cascaded H-bridge (CHB) inverter that is fed from a photovoltaic 

source. A three-dimensional space vector modulation (3D-SVPWM) 

technique is adopted in this work. The multi-level inverter can generate 27-

level output with harmonic content is almost zero. In addition to the 

capability to inject reactive power and mitigating the harmonics, the 

proposed SAPF has also, the ability to inject real power as it is fed from a PV 

source. Moreover, it has a fault-tolerant capability that makes the SAPF 

maintaining its operation under a loss of one leg of the multi-level inverter 

due to an open-circuit fault without any degradation in the performance. The 

proposed SAPF is designed and simulated in MATLAB SIMULINK using a 

single nonlinear load and the results have shown a significant reduction in 

total harmonics distortion (THD) of the source current under the normal 

operating condition and post a failure in one phase of the SAPF. Also, similar 

results are obtained when IEEE 15 bus network is used. 
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1. INTRODUCTION 

Recently, the research on active power filters (APFs) fed from renewable energy sources has 

witnessed a significant increase due to the ability of such filters to solve many power quality issues [1]. 

However, the performance of these filters will be dramatically degraded if a failure in one leg of the inverter 

is introduced to the SAPFs. Hence, many techniques have been proposed in the literature to enhance the 

reliability of the inverter and to maintain the performance of the SAPF post a failure. Most of these 

techniques are based on the use of some kind of redundancies that exist in the 2-level inverters [2]. This 

redundancy can be inherited in the structure of the 2-level inverter [3] or it is introduced intentionally to the 

2-level inverter to make it fault-tolerant [4]. This is done by adding a fourth leg to the conventional 2-level 

inverter as reported in [5], [6].  

Multi-level inverters have many advantages over the 2-level inverters in terms of the low THD in 

the output, less dv/dt, and higher output voltages. These characteristics have encouraged the researcher to use 

the multi-level inverters in many applications especially in APFs [7]-[11]. A fault-tolerant multi-level 

inverter can be achieved through different techniques including neutral-shift, DC-bus voltage 

reconfiguration, and redundant modules installation is employed [12]-[14]. Various pulse width modulation 

https://creativecommons.org/licenses/by-sa/4.0/
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(PWM) and control techniques have been reported and discussed in the literature [15]. These techniques aim 

to control the currents of the inverter that is used in the APFs and to convert the output voltage of the 

controllers to a digital signal that will be used to gate the inverter. One example of these control techniques is 

the Hysteresis control. Hysteresis control has many advantages such as it is simple and has a fast dynamic 

response. But on the other hand, it has a variable switching frequency and produces relatively large current 

ripples in the system [16]. Another example is the predictive control which has a lower current ripple and 

constant frequency [16]. Many modulation techniques were proposed to convert the output voltage signals of 

the control to digital pulses to switch the multi-level inverter such as selective harmonics, multi-level PWM, 

and multi-level SVPWM [17]. Among these modulation techniques, SVPWM can be considered as an ideal 

solution to be used in APFs. This is related to the ability to implement it in 3 and 4-wire systems. In addition 

to its ability to reduce the switching losses, minimize the capacitor balancing problem, and reduce the total 

harmonic content in the output [18]. In a 3-wire system, 2D-SVPWM can be used [19] while 3D-SVPWM is 

used in a 4-wire system to control the neutral current [20]. 

In this paper, a SAPF using the 3-phase 4-wire (leg) asymmetric CHB 27-level inverter system is 

implemented with the 3D-SVM algorithm. The 3-phase 4-leg multi-level inverter is powered from a PV 

system to have better reliability and control. The SAPF can maintain the operation pre and post a non-healthy 

operating condition for both the load such as asymmetry and the SAPF such as the failure in one leg of the 

SAPF. 

 

 

2. RESEARCH METHOD 

2.1.  Shunt active filter 

The structure of the SAPF that is proposed in this paper is shown in Figure 1. The SAPF is 

consisting of the CHB inverter. The multi-level inverter has an extra leg that is connected permanently to the 

neutral of the load or the power system. Moreover, it is supplied from batteries that are fed from 

photovoltaic arrays. P&O maximum power point (MPPT) technique is used to get maximum possible power 

from the solar energy [21]. The controller is using 3D-SVPWM to generate the pulses that trigger the multi-

level inverter. A brief view in each part of the SAPF is introduced: 

 

 

 
 

Figure 1. the structure of the proposed SAPF 

 

 

2.1.1.  Fault-tolerant 27-level inverter  

Each leg of the multi-level inverter is composed of three H-Bridges connected in series. Each H-

Bridge is fed from seperate battery. The voltage levels of the three batteries in each leg will be 36 V, 108 V, 

and 324 V which means that the ratio is 1:3:9 [14], [22]. This ratio makes it is possible to connect the SAPF 

to the PCC directly without the need for any transformer. Moreover, it makes the multi-level inverter 
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generates the maximum number of levels (27-level) while using only three H-Bridges per leg. This is quite 

important to minimize the harmonic content of the output voltage of the multi-level inverter and produce a 

sinusoidal output which helps to eliminate the need for any kind of filtering at the output of the multi-level 

inverter. The output of each H-Bridge and the output of one leg of the 27-level inverter are shown in Figure 

2. The H-Bridge that is interfaced to the 324 V battery will generate 69% of the total power generated by the 

multi-level inverter. Also, The H-bridge that is connected to the 108 V battery will be responsible for 

generating about 23.1% of the total power while the H-Bridge interfaced with the 36 V battery will generate 

about 7.7 % of the total power. the switching frequency of each bridge varies from 50 Hz which is the 

switching frequency of the H-Bridge interfaced with the 324V battery to reach 5 kHz which is the frequency 

of the H-Bridge connected to the 36 V battery and the switching frequency of the multi-level inverter too. 

This low switching frequency especially for the high power H-Bridges helps to enhance the efficiency of the 

multi-level inverter by reducing the switching losses.  

In addition to the previously mentioned features of the proposed multi-level inverter, it has another 

important feature which is the fourth leg connected to the neutral of the electrical system. The use of the 

added leg besides using 3D-SVPWM will enable the SAPF to work under unhealthy operating conditions 

such as load asymmetry and a failure on one leg of the SAPF due to the open-circuit fault. This will help in 

enhancing the reliability of the SAPF and maintains its performance post a failure in one leg of the multi-

level inverter. 

 

 

 
 

Figure 2. output voltage waveforms of the 27- level 4-leg inverter 

 

 

2.1.2.  PV system design 

A 125 W polycrystalline PV modules (BP 3125S photovoltaic module) were used to design all PV 

arrays. The specifications of these modules are given in Table 1. 

 

Table 1. Specification of BP 3125S photovoltaic module 
Maximum power 125 watt 

Maximum power voltage 17.6 V 

Maximum power current 7.1 A 

Open circuit voltage 22.1 V 

Short circuit current 7.54 A 

 

 

According to the load current of the grid, a 30Kwp, 48.3 A, 400 V, and 50 Hz PV source is needed, the 

design of the PV system will be as: 

 

No. pv =
Ppv

Pmpp
=

30000

125
= 244 module (1) 

 

The number of modules connected in series Ns can be obtained as: 

 

Ns =
needed voltage

Vmpp for module
=

300

17.6
≈ 17 (2) 
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The number of strings connected in parallel can be calculated as: 

 

Number of strings =  
total power

string power
=  

30000

17∗125
 ≈ 14 (3) 

 

The Boost converter should receive DC voltage from PV which varies between 0 to 299 volts and fixed the 

output voltage to 324 V (DC). The specifications of the boost converter are given in Table 2.  

 

 

Table 2. Specification of the boost converter 
Specification Detail 

Input voltage 0-299 

Output voltage 324 

 

 

2.1.3.  3D–SVPWM 

The proposed 3D-SVPWM technique that is adopted in this work is presented in [20]. This 

technique is very simple and based on geometrical consideration. Moreover, it is independent of the number 

of levels of the multi-level inverter. And more importantly, can be used under healthy conditions such as load 

asymmetry and failure in one phase of the SAPF without modifications. The reference voltage will be 

pointing to a sub-cube. This sub–cube can be identified using the components (a, b, c) which are the integer 

values of the reference voltage (V_ref). This cube can be decomposed into six tetrahedrons. These 

tetrahedrons and the associated PWM waveforms are shown in Figure 3.  

 

 

 
 

Figure 3. Switching sequence and timing diagram of type 3 used in SVPWM for the multi-level converter 

 

 

2.2.  Control structure of the SAPF 

The performance of the SAPF especially in the harmonics mitigation process depends on the 

harmonic extraction method. Many techniques were proposed in the literature to extract the harmonic signal. 

These techniques can be divided into two categories. The first one works in the frequency domain [21] while 

the second one is base on the time domain [23]. In the frequency domain techniques, a transformation from 

the time domain to frequency domain using fast fourier transform (FFT) is needed while in the time-domain 

technique, an instantaneous estimation is done without the need for any frequency transformation. The time-
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domain method is simpler and needs less calculation compared to the frequency domain so the result will be 

faster [23]. 

 

2.2.1.  Harmonic extraction using d-q method   

d-q Harmonic extraction method was adopted in this research to calculate the current reference for 

the SAPF filter [24], [25]. The illustration of the principle of operation of this technique is shown in Figure 4. 

The voltages (Vabc) and the currents (IL abc) of the non-linear loads are measured firstly. Then, the load 

currents (IL abc) are transformed to a synchronous frame oriented to voltages of the nonlinear load (VL abc). 

This step is achieved with the help of the phase locked loop (PLL). The currents of the nonlinear loads (IL 

abc) become IdL, and IqL at this stage. The d-component of the current of the nonlinear load will be in the 

direction of the voltage of the nonlinear load (VL abc) and so it will present the real power of the nonlinear 

load while the q-component of the current of the nonlinear load will be perpendicular to the voltage of the 

nonlinear load (VL abc) and so it will present the reactive power of the nonlinear load. Due to the presence of 

the harmonics in the nonlinear load currents (IL abc), then, the nonlinear load power component (IdL) and 

reactive power component (IqL) that is obtained from the transformation to the synchronous frame will have 

components as shown in equations (4-5). 

 

IdL=IdL̃+ IdL̅̅ ̅̅  (4) 

 

IqL=iqL̃ + IqL̅̅ ̅̅  (5) 

 

The DC components (𝑖dL̅̅ ̅, iqL̅̅ ̅) represent the fundamental component of the non-linear load real and 

reactive power. While the oscillating components (idL,̃ iqL̃) represent the harmonics in the non-linear load 

currents. The d-q components of the currents of the nonlinear load will be processed further to obtain the 

reference signals idL _ref and iqL _ref according to the task of the SAPF as follows: 

− If the SAPF is wanted to mitigate harmonics only, then the DC components (𝑖dL̅̅ ̅, iqL̅̅ ̅) are filtered out 

using s high pass filter. 

−  If the SAPF is wanted to mitigate harmonics and inject reactive power, then the DC component (idL̅̅ ̅) is 

filtered out using a high pass filter. 

− If the SAPF is wanted to mitigate harmonics, inject reactive power, and inject real power, then the DC 

component (idL̅̅ ̅) is filtered out using a high pass filter and then an offset DC value is added to idL_ref. 

 

 

Phase locked 

loop

VL abc

Ɵ

IL abc

idL_ref

abc

dq

High pass 

filtter

iqL_ref

Real power 

injection

+

+

idL

iqL  
 

Figure 4. d-q harmonic extraction technique 

 

 

2.2.2. Modelling and controlling the SAPF 

Assuming that the SAPF is connected to the PCC through cable that has a small resistance and 

inductance as shown in Figure 5. The (6)-(8) hold true: 

 

𝑣𝑎𝑛𝑖𝑛𝑣 = 𝑖𝑎𝑖𝑛𝑣 ∗ 𝑟 + 𝐿
𝑑𝑖𝑎𝑖𝑛𝑣

𝑑𝑡
+ 𝑣𝑎𝑛𝑝𝑐𝑐 (6) 

 

𝑣𝑏𝑛𝑖𝑛𝑣 = 𝑖𝑏𝑖𝑛𝑣 ∗ 𝑟 + 𝐿
𝑑𝑖𝑏𝑖𝑛𝑣

𝑑𝑡
+ 𝑣𝑏𝑛𝑝𝑐𝑐 (7) 

 

𝑣𝑐𝑛𝑖𝑛𝑣 = 𝑖𝑐𝑖𝑛𝑣 ∗ 𝑟 + 𝐿
𝑑𝑖𝑐𝑖𝑛𝑣

𝑑𝑡
+ 𝑣𝑐𝑛𝑝𝑐𝑐 (8) 

 

The (6)(8) are transformed into the load voltage-oriented frame (d-q-0) frame as: 
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𝐿
𝑑𝑖𝑑𝑖𝑛𝑣

𝑑𝑡
 =  −𝑖𝑑𝑖𝑛𝑣 ∗ 𝑅 + (𝑉𝑑𝑖𝑛𝑣 − 𝑉𝑑𝑝𝑐𝑐) −  𝜔 ∗ 𝐿 ∗  𝑖𝑞𝑖𝑛𝑣 (9) 

𝐿
𝑑𝑖𝑞𝑖𝑛𝑣

𝑑𝑡
 =  −𝑖𝑞𝑖𝑛𝑣 ∗ 𝑅 + (𝑉𝑞𝑖𝑛𝑣 − 𝑉𝑞𝑝𝑐𝑐) +  𝜔 ∗ 𝐿 ∗ 𝑖𝑑𝑖𝑛𝑣 (10) 

 

𝐿
𝑑𝑖𝑜

𝑑𝑡
 =  −𝑖𝑜 ∗ 𝑅 + +Vo (11) 

 

The (9)-(11) can be rewritten as: 

 

𝑣𝑑 =  𝑖𝑑𝑖𝑛𝑣 ∗ 𝑅 + 𝐿
𝑑𝑖𝑑𝑖𝑛𝑣

𝑑𝑡
 (12) 

 

𝑣𝑞 = 𝑖𝑞𝑖𝑛𝑣 ∗ 𝑅 + 𝐿
𝑑𝑖𝑞𝑖𝑛𝑣

𝑑𝑡
 (13) 

 

𝑣𝑜 = 𝑖𝑜𝑖𝑛𝑣 ∗ 𝑅 + 𝐿
𝑑𝑖𝑜𝑖𝑛𝑣

𝑑𝑡
 (14) 

 

where 

 

𝑣𝑑 = (𝑉𝑑𝑖𝑛𝑣 − 𝑉𝑑𝑝𝑐𝑐) −  𝜔 ∗ 𝐿 ∗  𝑖𝑞𝑖𝑛𝑣 (15) 

 

𝑣𝑞 =  (𝑉𝑞𝑖𝑛𝑣 − 𝑉𝑞𝑝𝑐𝑐) +  𝜔 ∗ 𝐿 ∗  𝑖𝑑𝑖𝑛𝑣 (16) 

 

Figure 6 shows the closed-loop through which the controllers can be designed. In this work three 

proportional-integral (PI) controllers are designed to regulated the currents of the multi-level inverter 

(𝑖𝑑𝑞0𝑖𝑛𝑣) to make the SAPF capable of mitigating harmonics, injecting reactive power, and injecting real 

power-based on the reference currents (idq0L_ref.) obtained from the dq-harmonic extraction technique. The 

outputs of the controllers (Vdq0_ref) are then transformed to digital pulses using 3D-SVPWM technique as 

illustrated in Figure 7. 

 

 

Phase locked 

loop

VL abc

Ɵ

IL abc

idL_ref

abc

dq

High pass 

filtter

iqL_ref

Real power 

injection

+

+

idL

iqL  
 

Figure 5. Dynamic modelling of the shunt active filter 

 

 

 

PI 

Controller

1

R+Ls

idq0 L_ref Vdq0_ref idq0inv

+

-

 
 

Figure 6. SAPF controller design 
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Figure 7. The control structure of active filter 

 

 

3. RESULTS AND DISCUSSION  

The proposed SAPF is simulated in MATLAB/Simulink environment to check its performance and 

reliability. Many scenarios have been considered as: 

− The first scenario was about testing the performance of the proposed SAPF when the load is a single 

nonlinear load.  

− The second scenario was about investigating the functionality of the proposed SAPF on the IEEE fifteen 

bus system where the load at bus 5 was made nonlinear. In this case, the SAPF was put near the source 

(i.e the harmonics inside the network are out of scope).  

− The third scenario was about investigating the effect of the SAPF on the loesses and harmonics of the 

whole IEEE fifteen bus system when the SAPF was put near to the bus that has the nonlinear load (bus 5).  

 

3.1.  Fist scenario 

The structure of the whole electrical system during this test is shown in Figure 8. There are two 

objectives of this test:  

− The first objective is to check the ability of the SAPF to inject the reactive power, real power, and to 

mitigate the harmonics 

− The second objective is to check the fault-tolerant capability of the SAPF in the case of a loss of one  
− phase during operation  

The results obtained from the above test under healthy operating conditions and in the cases of an 

open circuit in phase ‘c’ of the SAPF are given in Figure 9 and Figure 10 respectively. Figure 9 demonstrates 

the effectiveness of the system in mitigating the harmonics, injecting reactive power, and injecting real power 

under healthy operating conditions. The SAPF was disabled till t= 0.2s. after that, at t=0.2s, the SAPF was 

commanded to mitigate the harmonics only. It can be noticed that the source currents became almost pure 

sinusoidal as the Total Harmonic Distortion was reduced from 20.86% before the use of the SAPF to 2.43% 

after using it. Then at t= 0.4s, the APF was commanded to inject reactive power in addition to the mitigating 

of the harmonics. The results of reactive power measurements of the source in Figure 9 show that the APF 

was responded to this command properly. It can be noticed from the results that the reactive power that 

comes from the source at this time became zero which means that all the reactive power needed by the load 

no was generated from the SAPF and the p.f at the source became 1. Finally, at t=0.6s, a command was sent 

to the SAPF to inject a real power in addition to the mitigating of the harmonics, and the injection of the 

reactive power. The results show that the SAPF at that time started to inject real power. The evidence of that 

can be obtained from two things: the first one is the reduction of the source current which means that part of 

the real power consumed by the load was generated by the SAPF. The second one is the reduction of the 

measurements of the source real power due to the same reason mentioned previously. 

Figure 10 demonstrates the enhancement of the reliability of the SAPF obtained by adding a fourth 

leg connected permanently to the neural and using a 3D-VPWM technique. Before t= 0.8s, the SAPF was 

running under healthy operating conditions. Also, it was used to inject real and reactive power in addition to 

mitigating the harmonics. After that, at t=0.8s, an open-circuit fault on phase ‘c’ was introduced to the SAPF 

without enabling the fourth leg. It can be noticed from the results that the SAPF was no longer able to 
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mitigate harmonics in the failure leg. At t, 1s the fourth leg was enabled and the SAPF returned to work as 

before the failure and could maintain the system performance.  

 

 

 
 

Figure 8. Four-leg 27-level inverter APF supplying nonlinear load 

 

 

 
 

Figure 9. Results of the APF with single nonlinear load under healthy operating condition 
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Figure 10. Results of the APF with single nonlinear load under a failure in phase ‘c’ 

 

 

3.2.  Second scenario  

In this test, the IEEE 15 bus network was utilized with the nominal voltage of 400 V as shown in 

Figure 11. The load at the bus no 5 was made nonlinear. The SAPF was connected to bus no 1 and the whole 

network is treated as a single load. The current waveform of the source currents at Bus no 1 was measured 

and the THD was calculated as shown in Figure 12. The current waveforms in addition to the Fast Fourier 

Transform (FFT) show a significant reduction in the harmonic content of the source currents which became 

near sinusoidal. The above-mentioned results also were confirmed from the calculated values of the THD of 

the source currents. The THD was reduced from 13% before using the SAPF to 4.5% after using it.  

 

 

 
 

Figure 11. SAPF connected to bus no 1 of the IEEE 15 bus network 
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Figure 12. Source current when APF connected to bus no 1 of the IEEE 15 bus network 

 

 

To investigate the effect of the SAPF on the THD in the whole network in this case, the currents 

waveforms were measured at buses 7,9,11, and 15. The results are given in Figure 13. Figure 13 shows that 

there is a slight improvement in the current waveforms at these buses which means that the total harmonic 

distortion inside the network is still high. Figure 14 shows the calculation of the THD at these buses before 

and after using the SAPF. The results confirm that the SAPF at this place is inefficient in reducing the THD 

in the network since it is far away from the place of the nonlinear load at bus 5.  

 

 

 
 

Figure 13. Currents waveforms at buses 7, 9, 11, 15 when APF connected to bus no 1 
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Figure 14. Currents waveforms at buses 7,9,11,15 when APF connected to bus no 1 

 

 

3.3.  Third Scenario  

The results obtained from the previous scenario (i.e connecting the SAPF at bus no 1 and far from 

the nonlinear load) shows an improvement in the THD of the source currents but the currents in the network 

still distorted and the THD of these currents is still high which will cause many power quality issues to the 

network. In this scenario, the SAPF was connected at bus no 5 near the nonlinear load as shown in Figure 15. 

The current waveform of the source currents at Bus no 1 was measured and the THD was calculated 

as shown in Figure 16. The current waveforms in addition to the fast fourier transform (FFT) show a 

significant reduction in the harmonic content of the source currents which became near sinusoidal. The 

above-mentioned results were also confirmed from the calculated values of the THD of the source currents. 

The THD was reduced from 13% before using the SAPF to 2.79 % after using it. These results of the source 

current are even better than the results obtained by connecting the SAPF at bus 1.  

To investigate the effect of the APF on the THD in the whole network in this case, the currents 

waveforms were measured again at buses 7,9,11, and 15. The results are given in Figure 17. Figure 17 shows 

that there is a significant improvement in the current waveforms at these buses which means that the total 

harmonic distortion inside the network is very low. Figure 18 shows the calculation of the THD at these 

buses before and after using the SAPF. The results confirm that the SAPF at this place is efficient in reducing 

the THD in the network since it is near the place of the nonlinear load at bus 5. 

 

 

 
 

Figure 15. SAPF connected to bus no 5 of the IEEE 15 bus network 
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Figure 16 source current when APF connected to bus no 5 of the IEEE 15 bus network 

 

 

 
 

Figure 17. Currents waveforms at buses 7,9,11,15 when APF connected to bus no 5 

 

 

 
Figure 18. Currents waveforms at buses 7,9,11,15 when APF connected to bus no 5 
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4. CONCLUSION 

This paper has presented a four-leg 27-level SAPF that can maintain operation in the cases of 

asymmetric nonlinear loads and even in the case of a loss in one phase of the APF due to the open circuit 

fault. This enhancement in the reliability of the APF is achieved through two things; the first one is the 

addition of the fourth leg to the multi-level inverter which is connected to the neutral permanently. The 

second one is the use of the 3D-SVPWM technique instead of the 2D-SVPWM. The proposed SAPF can do 

many tasks under healthy operating conditions and post and open circuit fault. It can mitigate harmonics in 

the power system, improve power factor in the system by injecting reactive power, and inject real power to 

the system. The proposed SAPF can be used if the load just a single nonlinear load and if the load is a 

complete power system network.  In the case that the network is a power system network, the best place of 

the SAPF is near the load to improve the whole network.   
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