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 Increasing penetration of electric vehicle (EV) load into the electricity sector 

will result in generation imbalance, an increase in real power loss, a low 

voltage profile and consequently a decrease in the margin of stability of 

voltage. It is necessary for the coordination of charging stations (CSs) for EV 

at the relevant locations to minimize the effect of increased EV load 

penetration in radial systems. In this paper, a new optimization method 

named Archimedes optimization algorithm (AOA) is proposed; it determined 

the optimal location and size for EV-CS for reducing power losses and 

improved voltage profile. In this work we used the photovoltaic (PV) 

renewable source as a main feeder for the CSs. Many of Artificial 

Intelligence technique are applied to determine the optimal sizing and sitting 

of EV-CSs considering the objective of minimization of real power loss. 

IEEE 33-bus testing network conducts simulation tests. The results 

highlighted the need to refine the EV-CS allocation to improve the 

performance. The ability to solve complex, non-linear objective optimization 

issues using AOA and to compare the results with other algorithms, namely 

particle swarm optimization (PSO), cuckoo search algorithm (CSA), shows 

its effectiveness in minimizing the power loss as required. 
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1. INTRODUCTION 

Today, the world's demand for fossil fuels is increasing rapidly in both the transport and power 

generation sectors. Not only does the use of these tools contribute to high prices, but also to greenhouse gas 

emissions and environmental pollution. [1]. According to studies presented in [2], Production will rise by 

54% in the transport industry by 2035, which will increase prices and air pollution by significant demand. 

Therefore, many nations are seeking to replace green vehicles instead of internal combustion cars [3]. 

Electric vehicles (EVs) have shown additional benefits compared with their fossil fuel vehiclecounterparts. 

They produce fewer emissions even when considering their whole process of energy production, 

independently of their energy source [4]. Electric vehicle (EV) is an up-and-coming solution for the problem 

of transportation and pollution [5]. The first technology introduced will take place via vehicle-to-grid in 1977 

[6]. This promising framework has been first used by the provision of a revenue and expenditure model for 

regulatory and auxiliary services [7].  

https://creativecommons.org/licenses/by-sa/4.0/
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Penetrations of electrical vehicles (EVs) in the grid face challenges including thermal limit breaches 

in certain sensitive network buses of transmission lines because of overload or voltage drop and demand 

uncertainty [8], [9]. The most popular vehicles in the parking mode are almost 95% of the day, according to 

previous studies. As a consequence, can be used this capacity for frequency and voltage regulation through 

V2G [10]. Vehicle participation in V2G generates money for owners of cars. It can also be used to minimize 

network challenges by using EV and PHEV charging station capabilities [11], [12]. Vehicles will refill 

batteries at these stations and sell excess stored energy to grid and profit from it. In this situation, it is 

possible to handle the charging and discharging of vehicles using various approaches, such as adjusting 

energy tariffs at different time slots. 

Renewable sources have been widely regarded in recent years as an alternative to fossil-fuel power 

plants. Since these tools can be mounted near the load, losses and voltage fluctuations can be minimized [13], 

Because of the random nature of their output, the widespread penetration of these resources into the grid may 

create challenges. Consequently, high-capacity energy storage devices can be used to sustain the network. In 

this sense, charging stations can be integrated into the network as ESS via V2G. Charging stations store 

excess power generated by RES and injects it into the electricity grid in due course, distributing the energy 

and reducing the burden on the distribution network. Emission rates are minimized in a smart grid with an 

optimum mix of RES and PHEV charging stations and many technological and economic problems can be 

solved effectively [14]. 

Literature reviews many researchers have investigated the design and operation of EV CSs and PV 

renewable source on the distribution systems and little researcher used the Archimedes optimization 

algorithm (AOA). Li et al. [15], the AOA to choose the optimum location and capacity of DG and used the 

power losses objective and compare between the results by using AOA, IGA and particle swarm optimization 

(PSO). Ali et al. [16] presented an objective optimization approach is formulated to optimally size multiple 

DGs and SOPs placements via AOA and NR from the planning and operational viewpoints, Case studies are 

conducted on the real distribution networks, including the 59-node distribution network in Cairo and the 135-

node distribution network in Brazil, to step on the effectiveness of SOPs insertion in enhancing DGs 

penetration. Various EV-PV charger architectures were tested and analyses. Mouli et al. [17], the charger of 

EV-PV was presented with two optimal designs. Goli and Shireen [18], design of smart charging station was 

implemented in which the charging of the PHEVs was controlled to minimize the effect of charging during 

the peak load period on the grid. The PHEVs were paid in that scheme via the PV of grid-connected system 

and/or the utility a special controller has been developed to allow effective energy transfer while at the same 

time reducing the conversion stage between source and load. [19]. The system consists of modules designed 

to enhance flexibility and encourage development. In an unregulated charge method, the integration of PV 

and EVs was studied [20]. In addition, we explored the implementation of intelligent charging and V2G 

strategies. The paper has shown that the grid strategy vehicles can be used to rub the peaks of the classical 

load curve using the PV output. 

Hafez and Bhattacharya [21] proposed optimum configuration, with regard to renewable energy and 

diesel generation, for an electric vehicle charge station (EVCS). The goal was that the lifecycle costs were 

reduced while taking environmental pollution into account. Mouli et al. [22] proposed the option of charging 

EV on site using an optimized storage power system PV has been investigated. A comparison between these 

profiles and a comparison between these profiles were carried out to minimize the reliance on grids and to 

optimize the use of PV power to charge the electricity directly. Khan et al. [23], the proposed rapid delivery 

network linked EV-CS model. By reducing harmonic current, the proposed model improves the power 

efficiency. In order to minimize the effect of fast charging on the grid, a PV power system was also 

developed with a strategy focused on optimum power flow EV-CS. A genetic algorithm was used by 

optimizing benefit determined by its net current value to maximize the installation and activity of EV fast 

charging [24]. In order to increase the profitability of the stations and decrease the high grid energy 

requirements, wind, photovoltaic and storage systems have been connected to EV-CS. 

The main contributions of this work are illustrated as follows: 1) discusses the impact of EV-CSs on 

electric feeder losses by feeding the PV, 2)the main objective of this paper is to detect the optimal allocation 

of CSs for loss reduction subjected to system constraints, 3) the PSO, Cuckoo search algorithm (CSA), and 

AOA techniques are used to detect the optimal placement for the CSs, 4) the proposed algorithm is applied to 

a standard 33-bus radial distribution system, to determine optimum size and location of EV-CS, and 5) the 

results are analysed and compared. 

This paper is organized; section 2 presents the mathematical formulation of the problem. The 

definition and description of the PSO, CSA, and AOA methods are introduced in section 3. Section 4 

presents the procedure used for solving the problem whereas section 5 introduces numerical applications and 

case studies. The results and discussion are introduced in section 6, whereas section seven concludes the 

paper. 
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2. PROBLEM FORMULATION 

The problem is formulated as an optimization for general CSs placement considering practical 

features of CS, the operation, and load restrictions at different rates of the load. The optimization problem is 

formulated with a non-differentiable objective function. This paper proposes a solution algorithm depends on 

PSO, CSA and AOA techniques and aims to detect the locations where CSs are to be installed. The algorithm 

can detect the global optimal solution for sitting the CSs. 

 

2.1. Objective function 

The aim of this article is to find the best locations and size of charge station by increase the system 

losses. The problem of optimization is conceived as one purpose function. The calculation of the power loss 

in the line section connecting buses i and i+1 before integrating any charging station formulated as (1) [25]: 

 

PLoss(i. i + 1) = Ri (
Pi

2+Qi
2

|Vi
2|

) (1) 

 

where: 

Ri : the section line resistance, Ω 

Pi : active power of the ithbus, W 

Qi : reactive power of the ith bus, VAR 

Vi : voltage of the ith bus, V 

The total network losses are calculated as (2): 

 

𝑃𝑇𝐿𝑜𝑠𝑠(𝑖. 𝑖 + 1) = ∑ Ii
2Ri 

𝑛

𝑖=1
 (2) 

 

where n is the total line sections in the system. 

Network losses can be formulated due to the addition of CSs as (3) [25]: 

 

𝑃′𝑇𝐿𝑜𝑠𝑠(𝑖. 𝑖 + 1) = ∑ IT
2Ri 

𝑛

𝑖=1
 (3) 

 

where ITis the current total line section, including the current charging station. 

The PV losses to the charge station are represented: 

 

𝑃′′𝑇𝐿𝑜𝑠𝑠 = ∑ (Ics − Ipv)
2

Ri

𝑛

𝑖=1
 (4) 

 

where Ipv is photovoltaic current delivered to the CS or the utility. 

Substituting (6) it is proposed objective function can be expressed as (5): 

 

𝑀𝑖𝑛. 𝑃𝑇𝐿𝑜𝑠𝑠 = ∑ (𝐼𝑖 + 𝐼𝑐𝑠 − 𝐼𝑝𝑣)
2𝑛

𝑖=1 𝑅𝑖 (5) 

 

2.2. Constraints 

Voltage constraints: maximum and minimum voltages limits at each busbar that is, ±5% of the 

nominal value. 

 

0.95 pu ≤Vi≤ 1.05 pu (6) 

 

Line loading constraints: maximum and minimum apparent power limits of each line. 

 

𝑆𝑖𝑗_𝑚𝑖𝑛 ≤ 𝑆𝑖𝑗 ≤ 𝑆𝑖𝑗_𝑚𝑎𝑥 (7) 

 

Charging stations’ capacity constraints: maximum and minimum limits of each EV-CS capacity. 

 

CCSk_min ≤ CCSk ≤ CCSk_max (8) 

 

Active power balance constraints: the total generated active power must equal the demand active power plus 

the losses. 

 

Pi+1 = Pi − Ploss.i − PL.i+1 (9) 
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Reactive power balance constraints: the total generated reactive power must equal the demand reactive power 

plus the losses. 

 

Qi+1 = Qi − Qloss.i − QL.i+1 (10) 

 

The (9) and (10) can be modelled through the following mathematical relations [25]. 

 

Pi+1 = Pi − Ploss.i − PL.i+1 = Pi −
Ri

|Vi
2|

(Pi
2 + (Qi + Yi|Vi

2|2)2) − PL.i+1 (11) 

 

𝑄𝑖+1 = 𝑄𝑖 − 𝑄𝑙𝑜𝑠𝑠.𝑖 − 𝑄𝐿.𝑖+1 

= 𝑄𝑖 −
𝑋𝑖

|𝑉𝑖
2|

(𝑃𝑖
2 + (𝑄𝑖 + 𝑌𝑖1|𝑉𝑖

2|2)2) − 𝑌𝑖1|𝑉𝑖
2| − 𝑌𝑖2|𝑉𝑖+1

2 | − 𝑄𝐿.𝑖+1     

 

(12) 

 

|𝑉𝑖+1
2 | = |𝑉𝑖

2| +
𝑅𝑖

2+𝑋𝑖
2

|𝑉𝑖
2|

(𝑃𝑖
2 + 𝑄𝑖

2) − 2(𝑅𝑖𝑃𝑖 + 𝑋𝑖𝑄𝑖) (13) 

 

where: 

𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 : minimum and maximum bus voltages, 

𝐶𝐶𝑆𝑘 : capacity of the 𝑘𝑡ℎ PV charging station, 

𝐶𝐶𝑆𝑘_𝑚𝑖𝑛 : minimum capacity of the 𝑘𝑡ℎ PV charging station, 

𝐶𝐶𝑆𝑘_𝑚𝑎𝑥 : maximum capacity of the 𝑘𝑡ℎ PV charging station, 

𝑆𝑖𝑗  : apparent power in the line connecting between bus 𝑖 and bus 𝑗, 

𝑆𝑖𝑗_𝑚𝑖𝑛 : minimum apparent power of the line 𝑖𝑗, 

𝑆𝑖𝑗_𝑚𝑎𝑥 : maximum apparent power of the line 𝑖𝑗, 

𝑃𝑖  , 𝑄𝑖  : real and reactive power flow out of the 𝑖𝑡ℎ bus, 

𝑃𝐿.𝑖+1 , 𝑄𝐿𝑖+1 : load real and reactive power at bus 𝑖 + 1, 

𝑅𝑖 , 𝑋𝑖 : section line resistance and reactance respectively 

 

 

3. RESULTS AND DISCUSSION 

3.1. Particle swarm optimization algorithm 

To determine EV-CS location and sizing, PSO algorithm [26], [27] is applied to optimize the 

constrained objective function in (14) for the case study. The number of variables in the optimization 

problem is 2. Thus, each particle of swarm searches for optimal result in 2- dimensional search space. Can be 

represented the particle as: 

 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 = (𝐿𝐶𝑆 , 𝑃𝐶𝑆) (14) 

 

where,𝐿𝐶𝑆is the EV-CS location and 𝑃𝐶𝑆 is the EV-CS size. The flowchart of optimization technique using 

PSO shown in Figure1. 

 

3.2. Cuckoo search algorithm 

Cuckoo search (CS) is an optimization algorithm which invented by Yang and Deb [28].CS is 

driven by the aggressive parasitism behavior of cuckoo species that lay their eggs with fascinating abilities in 

the nests of other host birds, such as the selection of newly spawned nests and the removal of host bird eggs 

that increase the likelihood of hatching their eggs. Eggs are taken care of by the host bird, assuming that the 

eggs are their own. If a host bird finds foreign eggs in its nest, it either leaves the nest and otherwise builds a 

new nest or merely throws away the foreign eggs. This method is based on three basic rules [29]. In a 

randomly selected nest, each cuckoo lays one egg (solution) at a time; the best option (nest) with the best 

quality eggs will be transported to the next generation. The number of host nests available is set, and the egg 

laid by a cuckoo is found by the host bird with a probability pa∈ [0, 1] of the host bird will either throw away 

the alien egg or leave the nest and establish a new nest. A cuckoo egg represents a new solution to define this 

algorithm for simplicity, while each host bird egg in a nest represents a solution. The goal is to substitute the 

latest and even better alternatives for the worst solution in the nests. The flowchart of optimization technique 

using CS shown in Figure2. 
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Figure 1. Flowchart of PSO algorithm 

 
 

Figure 2. Flowchart of CS algorithm 
 
 

3.3. Archimedes optimization algorithm 

AOA is a population-based algorithm. In the suggested solution, the submerged objects are the citizens 

of the population. AOA also begins the search process with the initial population of objects (candidate 

solutions) with random volumes, densities and accelerations, as other population-based metaheuristic 

algorithms. Each object is also initialized at this stage by its random fluid location. AOA functions in iterations 

after assessing the fitness of the original population before it satisfies the termination criterion. AOA changes 

the density and volume of every object in every iteration. Object acceleration is modified depending on the state 

of its collision with some other adjacent object. The updated density, volume, acceleration determines the new 

position of an object. Following is the detailed mathematical expression of AOA steps [30]. The AOA 

algorithm is provided in the mathematical formulation. In theory, AOA is a global optimization algorithm, 

which involves both discovery and operating processes. Algorithm2 presents the pseudo-code of the proposed 

algorithm; including population initialization, population evaluation, and updating parameters. Mathematically, 

steps of the proposed AOA are detailed as: 

Step 1: initialization, initialize the positions of all objects using (15). 
 

Qi = lbi + rand ∗ (ubi − lb i); i = 1,2,3, …,N (15) 
 

where Qi is the ith object in a population of N objects.lbi, and ubi are the lower and upper bounds of the 

search-space, respectively. Initialize volume (vol) and density (den) for each ith object using (16): 
 

𝑑𝑒𝑛𝑖 = 𝑟𝑎𝑛𝑑 

𝑣𝑜𝑙𝑖 = 𝑟𝑎𝑛𝑑 
(16) 

 

where rand is a D dimensional vector randomly generates number between [0, 1]. And finally, initialize 

acceleration (acc) of ith object using (17): 
 

𝑎𝑐𝑐𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (17) 
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In this step, evaluate initial population and select the object with the best fitness value. Assign, 

 

𝑥𝑏𝑒𝑠𝑡 , 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 , 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 , 𝑎𝑛𝑑𝑎𝑐𝑐𝑏𝑒𝑠𝑡 . 
 

Step 2: update densities, volumes the density and volume of object 𝑖 for the iteration 𝑡 +  1 is updated 

using (18): 

 

 

𝑑𝑒𝑛𝑖
𝑡+1 = 𝑑𝑒𝑛𝑖

𝑡 + 𝑟𝑎𝑛𝑑 ∗ (𝑑𝑒𝑛𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑛𝑖
𝑡

𝑣𝑜𝑙𝑖
𝑡+1 = 𝑣𝑜𝑙𝑖

𝑡 + 𝑟𝑎𝑛𝑑 ∗ (𝑣𝑜𝑙𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑙𝑖
𝑡)

 (18) 

 

where 𝑣𝑜𝑙𝑏𝑒𝑠𝑡  and 𝑑𝑒𝑛𝑏𝑒𝑠𝑡  are the volume and density associated with the best object found so far, and rand 

is uniformly distributed random number. 

Step 3: transfer operator and density factor in the beginning, collision between objects occurs and 

after a period of time, the objects try to reach at equilibrium state. This is implemented in AOA with the help 

of transfer operator 𝑇𝐹 which transforms search from exploration to exploitation, defined using (19): 

 

𝑇𝐹 = 𝑒𝑥𝑝 (
𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
) (19) 

 

where transfer 𝑇𝐹 increases gradually with time until reaching 1. Here 𝑡 and 𝑡𝑚𝑎𝑥 are iteration number and 

maximum iterations, respectively. Similarly, density decreasing factor 𝑑 also assists AOA on global to local 

search. It decreases with time using (20): 

 

dt+1 = exp (
tmax−t

tmax
) − (

t

tmax
) (20) 

 

where 𝑑𝑡+1 decreases over time and enables convergence in the promising area that has already been 

established. Note that proper handling of this variable will ensure balance between exploration and 

exploitation in AOA. 

Step 4.1: exploration phase (collision between objects occurs) If 𝑇𝐹 ≤  0.5, collision between 

objects occurs, select a random material (𝑚𝑟) and update object’s acceleration for iteration 𝑡 +  1 using (21): 

 

𝑎𝑐𝑐𝑖
𝑡+1 =

𝑑𝑒𝑛𝑚𝑟+𝑣𝑜𝑙𝑚𝑟∗𝑎𝑐𝑐𝑚𝑟

𝑑𝑒𝑛𝑖
𝑡+1∗𝑣𝑜𝑙𝑖

𝑡+1  (21) 

 

where 𝑑𝑒𝑛𝑖, 𝑣𝑜𝑙𝑖 , and 𝑎𝑐𝑐𝑖  are density, volume, and acceleration of object 𝑖. Where as 𝑎𝑐𝑐𝑚𝑟 , 𝑑𝑒𝑛𝑚𝑟  and 

𝑣𝑜𝑙𝑚𝑟  are the acceleration, density, and volume of random material. It is important to mention that 𝑇𝐹 ≤
 0.5 ensures exploration during one third of iterations. Applying value other than 0.5 will change exploration-

exploitation behavior. 

 

Step 4.2: exploitation phase (no collision between objects). If𝑇𝐹 >  0.5, there is no collision 

between objects, update object’s acceleration for iteration 𝑡 +  1 using (22): 

 

𝑎𝑐𝑐𝑖
𝑡+1 =

𝑑𝑒𝑛𝑏𝑒𝑠𝑡+𝑣𝑜𝑙𝑏𝑒𝑠𝑡∗𝑎𝑐𝑐𝑏𝑒𝑠𝑡

𝑑𝑒𝑛𝑖
𝑡+1∗𝑣𝑜𝑙𝑖

𝑡+1  (22) 

 

where 𝑎𝑐𝑐𝑏𝑒𝑠𝑡  is the acceleration of the best object. 

 

Step 4.3: normalize acceleration, normalize acceleration to calculate the percentage of change using 

(23): 

 

𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 = 𝑢 ∗

𝑎𝑐𝑐𝑖
𝑡+1−min (𝑎𝑐𝑐)

max(𝑎𝑐𝑐)−min (𝑎𝑐𝑐)
+ 𝑙 (23) 

 

where 𝑢 and 𝑙 are the range of normalization and set to 0.9 and 0.1, respectively. The 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1  determines 

the percentage of step that each agent will change. If the object 𝑖 is far from being globally optimal, the 

acceleration value would be high—meaning that the object will be in the discovery process; otherwise, it will 

be in the exploitation phase. This shows how the hunt is shifting from scanning to manipulation. The 

acceleration factor usually starts with high value and decreases with time. This helps quest engineers travel to 
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and from the right global solution They are turning away from local options concurrently. However, it is 

worth noting that certain search agents may remain that need more time than average to remain in a search 

point. AOA then hits the balance. 

Step 5: update position If TF ≤ 0.5 (exploration phase), the 𝑖𝑡ℎ object’s position for next iteration 

𝑡 +  1 using (24) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 ∗ 𝑑 ∗ (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖

𝑡) (24) 

 

where 𝐶1 is constant equals to 2. Otherwise, if 𝑇𝐹 >  0.5 (exploitation phase), the objects update their 

positions using (25). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 + 𝐹 ∗ 𝐶2 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 ∗ 𝑑 ∗ (𝑇 ∗ 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) (25) 

 

where 𝐶2 is a constant equal to 6.𝑇 increases with time and it is directly proportional to transfer operator and 

it is defined using 𝑇 =  𝐶3 × 𝑇𝐹. 𝑇 increases with time in range [𝐶3 ∗  0.3, 1] and takes a certain percentage 

from the best position, initially. It begins with a small percentage as these lead to a large gap between the best 

position and the current position, so the random walk step-size would be high. This proportion increases 

progressively to reduce the gap between the optimal location and the current position as the hunt progresses. 

This leads to achieving an appropriate balance between exploration and exploitation. 𝐹 is the flag to change 

the direction of motion using (26): 

 

𝐹 = {
+1 𝑖𝑓𝑃 ≤ 0.5
−1 𝑖𝑓𝑃 > 0.5

 (26) 

 

where 𝑃 =  2 × 𝑟𝑎𝑛𝑑 − 𝐶4. 

Step 6: evaluation, evaluate each object using objective function f and remember the best solution 

found so far. Assign 𝑥𝑏𝑒𝑠𝑡 , 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 , 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 , and 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 . 

 

 

4. OPTIMIZATION TECHNIQUE 

The problem is solved for the base case and then the proposed algorithm is applied to detect the 

optimal location and size of the EV-CSS. The procedure for solving the problem can be summarized as: 

Step 1: enter input data: line data, bus data.  

Step 2: run the load flow program, for the base case, to determine the bus voltage profile, branches current, 

and network power losses.  

Step 3: initialization of optimization algorism. Set the iteration counter k=0. 

Step 4: run power flow to determine the objective function. 

Step 5: compute the CSs size and location according to iterative steps.  

Step 6: rebait for K=k+1 and go to step 4. 

Step 7: comparison between the new power loss and the base case loss. If the difference is less or equal to the 

tolerance error. Then stop and record the results. Otherwise, go to step 3 

 

 

5. CASE STUDY 

5.1. System data 

The proposed algorithms are used on a 33-bus distribution network with substation voltage of 12.66 

KV, base 100 MVA and total load of 3.7 MW and 2.3 MVAR [31]. And it has been implemented using 

MATLAB environment to run the load flow, calculate power losses, voltage stability index and identify the 

optimal size and location of EV-CS unit. Figure 3 shows the modified system with different load types 

connected to each bus. 

 

5.2. Load modeling and daily load curves 

Loads of the distribution network presents distinct behaviors for variations in grid voltage. For e.g., 

the voltage magnitude is affected strongly by the real and reactive power usage of fluorescent lamps, whereas 

personal computers are less susceptible to voltage variations [32]. The actual load of the device does not 

consist of constant power, constant current or constant form of impedance but is fundamentally complex. 

Different groups and types of loads could be present in delivery systems, such as residential industrial and 

commercial loads. In this article, the study takes into account the static load model. Can express the real and 
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reactive power static load model in polynomial form. The Polynomial Load Model Characteristic [33] can be 

given as:  

 

𝑷𝑳 = 𝑃𝐿0 [𝐹𝑍 (
𝑉

𝑉0
)

2

+ 𝐹𝐼 (
𝑉

𝑉0
) + 𝐹𝑃] (27) 

 

𝑸𝑳 = 𝑄𝐿0 [𝐹′
𝑍 (

𝑉

𝑉0
)

2

+ 𝐹′
𝐼 (

𝑉

𝑉0
) + 𝐹′

𝑃] (28) 

 

where constants 𝐹 and 𝐹′ are fractions; and the subscripts𝑍, 𝐼and 𝑃 stand for constant impedance, constant 

current, and constant power contributions, respectively. 𝐹𝑍 + 𝐹𝐼 + 𝐹𝑃 = 1 and 𝐹′𝑍 + 𝐹′𝐼 + 𝐹′𝑃 = 1. The 

values of the real and reactive constants used in the present work for industrial, residential, and commercial 

loads are given in Table 1 [34]. A typical daily load curves of industrial, residential, and commercial load 

types are given in Figures 4, 5and 6 respectively [35]. 

 

 

 
 

Figure 3. The modified 33 bus radial distribution networks 

 

 

Table 1. The composition values of different loads 
 Composition 𝐹𝑍 𝐹𝐼 𝐹𝑃 

Active Power 
Residential 0.24 0.62 0.13 
Commercial 0.16 0.80 0.04 

Industrial -0.07 0.24 0.83 

Reactive Power 
Residential 2.44 -1.94 0.50 
Commercial 3.26 -3.10 0.84 

Industrial 1.00 0.00 0.00 

 

 

 
 

Figure 4. Industrial load curve 
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Figure 5. Residential load curve 
 

 

 
 

Figure 6. Commercial load curve 
 

 

5.3. Data of PV system 

The following data of PV system in Table 2. Itis including the type of PV modules, the power, size 

of modules. The cost from ENFSOLAR website (cost taken at 5/2/2021) [36]. 

 

 

Table 2. Type of PV modules, price of items and the size of PV module 
Type Power 

(w) 

At Irr. Length 

(mm) 

Width 

(mm) 

Area 

(m2) 

Power 

(MW) 

No. of 

Modules 

Price 

(L.E/ item) 

LE 

(million) 

Area 

(m2) 

Length 

(mm) 

Width 

(mm) 

Trina Solar 

TSM-PE15H 
340 at1000W/m2 2024 959 1.941016 2.5 7353 1632 12 14272 150 95 

Poly-325W, 
Polycrystalline 

325 at1000W/m2 1956 992 1.940352 2.5 7692 890.5 6.850 14936 150 100 

Series: GPNE-

S144/FNH 435-

460W, 

Monocrystalline 

460 at1000W/m2 2108 1048 2.209184 2.5 5435 1591.5 8.6495 2006 150 80 

 

 

6. RESULTS AND DISCUSSION 

According to load modelling and different load curves mentioned, Figure 7 shows the daily load 

profile of the substation (at bus#1). It can be observed from that the daily load is continuously varying and 

the peak load is 3.255 MW at hour 18 (6 PM). Table 3 and Figure 8 shows the best location and size for 24 

hours of the three optimization techniques. Table 3 shows the effects of various load types include the effect 

of load variations throughout a day in the optimal location and size of EV- CS. It can be seen from Table 3 

that the results obtained by the proposed algorithms are concur with each other and that is show the validity 

of the results. From Table 3, it can be highlighted that the maximum size of EV-CS unit is 2.27 MW at peak 

load hour of day so the design of PV size must be around this size and located at bus 6. 
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Figure 7. Daily load profile of the substation 

 

 

Table 3. EV-CS size and location by the proposed algorithms for all hours of a day 
Hour PSO CS AOA 

 
Hour PSO CS AOA 

Bus Size Bus Size Bus Size 
 

Bus Size Bus Size Bus Size 

No. MW No. MW No. MW 
 

No. MW No. MW No. MW 

1 6 0.8353 6 0.8482 6 0.8123 
 

13 6 1.76 6 1.6966 6 1.6998 

2 6 0.7668 6 0.7895 6 0.8056 
 

14 6 2.0084 6 2.0189 6 1.9973 

3 6 0.7180 6 0.7910 6 0.7936 
 

15 6 1.9954 6 2.0135 6 2.0242 
4 6 0.7717 6 0.7836 6 0.7852 

 
16 6 2.1331 6 2.0864 6 2.0511 

5 6 0.8549 6 0.7702 6 0.7823 
 

17 6 2.1074 6 2.0995 6 2.0938 

6 29 0.8281 29 0.8128 29 1.184 
 

18 6 2.2752 6 2.1525 6 2.1451 
7 30 1.0595 30 1.0919 30 1.6283 

 
19 6 1.7487 6 1.8503 6 1.8804 

8 30 1.0140 30 1.0923 30 1.6336 
 

20 7 1.7906 7 1.7595 7 1.8448 

9 6 1.9326 6 1.9358 6 1.9696 
 

21 7 1.7926 7 1.7446 7 1.827 
10 6 2.0849 6 1.9379 6 1.9741 

 
22 7 1.5943 7 1.6305 7 1.7017 

11 6 1.9918 6 1.9591 6 1.9778 
 

23 6 0.9442 6 0.913 6 0.9156 

12 6 1.8291 6 1.7282 6 1.7451 
 

24 7 0.7031 7 0.8808 7 0.9068 

 

 

 
 

Figure 8. EV-CS allocation by using AI technique 

 

 

Table 4 and Figure 9, shows total power and power loss by the proposed algorithms for all hours of a day, it 

can be highlighted that the total power 3.25 MW, and maximum power loss 77.47 kw at peak load hour of day. From 

the Table 3, it can see that the total power losses for the system at worst hour (18:00) are improved than the base case 

(power losses improved from 142.509 kw to 77.47 kw, 45.64% reduction). It can also see that AOA has best result 

than CS and PSO. Taking hour 18 as an example the power losses is 77.2475 kw in case of AOA technique better 

than that of PSO which is 77.4738 kw and CS which is 77.2482 kw. 

Figure10 shows the voltage profile for all busses in the system at worst hour (18:00). From the 

Figure 10 it can be seen that the voltage profile is improved than the base case (minimum voltage at bus 33 

improved from 0.9279 pu to 0.9579 pu). It can also see that AOA has best result than CS and PSO. Taking 

bus 33 as an example the voltage magnitued is 0.9579 p.u. in case of AOA technique better than that of PSO 

which is 0.9562 p.u. and CS which is 0.9563 p.u. Table 4 shown the number of modules for the type in, the 

price of items and the size of module. 
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Table 4. Total power and power loss by the proposed algorithms for all hours of a day 

 

 

 
 

Figure 9. Total power and power losses by using AI technique 

 

 

 
Figure 10. Voltage profile 

 

 

7. CONCLUSION 

This paper conducts a comprehensive research and analysis on EV-CS optimal allocation-CS 

comprehensive optimization model with minimum power loss as the objective is proposed, and a method for 

solving the model is presented based on AOA. The paper handles EV-CS locations and capacities for optimal 

configuration. The optimal configuration schemes ensure the system operates in an optimal state in the sense 

of power loss. Comparing the results of AOA with CS and PSO in this paper, AOA has faster convergence 

speed, shorter running time and more stable results in dealing with configuration problems. The results show 

that the AOA has obvious advantages in solving the EV-CS configuration problem. In future work, we used 

the multi objectives to determine the optimal allocation of EVCS such as minimization of cost, and power 

loss study the effective of EV on the grid (V2G and G2V) and implementation to an actual distribution 

network in Egypt. 
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