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 Hydropower has been used for many years and is essential to meet the 

renewable energy ambition of the world at present. In a hydroelectric power 

plant, voltage and frequency control are required, but, the voltage control 

could be done on the load side. In the present paper, frequency control using 

Harris Hawks optimization (HHO) for improved performance has been 

presented. Simulations are performed on the dynamic model of the 

hydropower plant and results are compared with the conventional PID that is 

designed using the Ziegler-Nichols method. The efficacy of the proposed 

algorithm is also tested at dynamic conditions of the hydropower plant. 
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1. INTRODUCTION 

Hydropower is clean and lowers costs in long run. It is a great contributor to renewable energy these 

days and is also used as a spinning reserve. Typically, a hydropower plant comprises different subsystems as 

shown in Figure 1 [1]. Frequency control in the good range is crucial for hydropower plants as power 

demand is increasing these days. However, the technologies involved in the hydropower plant are 

conventional, people still prefer gain scheduling for load frequency control but this is not suitable for more 

range of operating points. Many researchers proposed load frequency controllers with optimization methods 

for interconnected power systems [2]−[10]. Some works have been presented on load frequency control of 

hydropower plants using nonlinear controllers [11]−[14]. Artificial intelligence-based controllers using fuzzy 

and ANN controllers are proposed for load frequency control in [15]−[23]. A nonlinear load frequency 

controller is developed in [8], also with sliding mode controller in [24], [25], however, they have more 

mathematical intricacies. More new optimization methods are implemented for this problem in [20]−[23].  

In literature, very few of them are based on nature-inspired optimization methods for control of 

frequency in a typical hydropower plant to the best of the knowledge of the authors. In the present paper, 

Harris Hawks optimization (HHO) for improved performance of frequency control for a hydropower plant 

has been presented. The benefits of the proposed method are: i) simple control strategy with lesser 

https://creativecommons.org/licenses/by-sa/4.0/
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mathematical complexities, ii) easy to implement the control parameters like PID values in off-line for the 

real-time system, iii) cost-effective and consume less time in implementation, and iv) effective working on 

non-linear hydropower plant. The remaining paper is structured as follows: the dynamic equations of 

hydropower plant are described in section 2, proposed Harris Hawks optimization (HHO) is detailed in 

section 3, the result analysis and conclusions are described in section 4 and section 5 respectively. 

 

 

 
 

Figure 1. Hydropower plant and its subsystems 

 

 

2. THE DYNAMIC EQUATIONS GOVERNING THE HYDRO-ELECTRIC POWER PLANT  

The equations which are governing the liquid flow penstock and output power of the turbine are 

detailed as below to represent the dynamic model of the Hydropower plant. 
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The transfer function model of the servo system that is used to control the motion of the wicket gate 

system is shown below. Where, the gate position change due electric servo system is given by (6). In (7) 

represents the generator model and (8) represents the state-space model of the entire hydropower plant. 
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g(x) = [0 0 0
1

tp
]
T

 (10) 
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Where, ∆ω̅ = ω̅ − ω̅ref (12) 

 

 

3. HARRIS HAWKS OPTIMIZATION (HHO) 

This algorithm is realized by imitating the capture of prey by harries hawks and their behavioral 

steps during this process. One may find its image in Figure 2. It involves exploratory and exploitative phases 

such as exploring prey, surprise pounce, and various ways of attacking the prey. This method is successful as 

it has main features of: (i) population-based approach and (ii) gradient-free method. The main behavior steps 

are described as given in [26]. In the proposed HHO algorithm, the position of the hawk and its best position 

is expressed in (13). 
 

𝑓(𝑡 + 1) = {
𝑓𝑟𝑎𝑛𝑑(𝑡) − m1|𝑓𝑟𝑎𝑛𝑑(𝑡) − 2𝑚2𝑓(𝑡)| 𝑥 ≥ 0.5 

𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − f𝑚(𝑡) − m3(𝐿𝑏 + m4(𝑈𝑏 − 𝐿𝑏) 𝑥 < 0.5
  (13) 

 

Where, f(t + 1) is next iteration position,  𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) is rabbit position at instant t, current position is f(t), m1, 

m2, m3, m4, and x are random numbers updated in each iteration step and they lie in between {0,1}, Lb & Ub 

are lower and upper bound of the variable respectively, randomly a hawk being selected from the population 

is represented by 𝑓𝑟𝑎𝑛𝑑(𝑡), and the average position is fm. It is calculated using (14). Energy-related to prey is 

mathematically described as in (15) and will decrease during escaping considerably. It will also randomly 

vary in every iteration and lies in {-1,1}. When energy increases towards 1 from 0 indicates that the prey (or 

rabbit) is physically strengthening and is decreasing from 0 to -1, indicating that the prey is flagging. This 

aforesaid energy variation in the prey and its behavior for every iteration is mathematically shown by (16). 
 

𝑓𝑚(𝑡) =
1

𝑁
∑ 𝑓𝑖(𝑡)

𝑁
𝑖=1  (14) 

 

The energy of prey, 𝐸 = 2𝐸𝑜(1 −
𝑡

𝑇
) (15) 

 

𝑓(𝑡 + 1) = ∆𝑓(𝑡) − 𝐸|𝐽𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑓(𝑡)| (16) 
 

Where, ∆𝑓(𝑡) = 𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑓(𝑡), in which ∆𝑓(𝑡) is position difference of prey with respect to previous 

position and randomly lies between {0, 1}. The J = 2(1 − m5), is the movement of the rabbit (prey) in each 

iteration. Hard encircle of the prey will happen when x ≥0.5 and |E|<0.5, it indicates the low energy level of 

the prey and very difficult to escape. Hence harries hawks do not encircle and implement the surprise pounce 

at this condition. Then the present positions are updated as given in (17). 

 

𝑓(𝑡 + 1) = 𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|∆𝑓(𝑡)| (17) 

 

For |E| ≥0.5 but x <0.5, the prey will have sufficient energy to escape. Thus, harries hawks execute a plan of 

soft besiege just before deciding the surprise pounce. Now the concept of levy flight (LF) is used to 

mathematically model this intelligent behavior in the HHO algorithm as in (18). When the prey is moving 

more irregular and deceptive then movements are described mathematically in (19). 
 

𝑦 = 𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑓(𝑡)| (18) 
 

𝑧 = 𝑦 + 𝑠 × 𝐿𝐹(𝐷) (19) 
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Where the random values u, v in the range between {0, 1}, β=1.5. Hence, the final soft besiege phase position 

is modelled as (22). When |E| < 0.5, the prey has very low energy to escape and it is a hard besiege stage to 

catch and kill the prey. It is governed by (23). 
 

𝑓(𝑡 + 1) = {
𝑦 𝑖𝑓 g(𝑦) less than 𝑔(𝑓(𝑡))

𝑧 𝑖𝑓 𝑔(𝑧) 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑔(𝑓(𝑡))
 (22) 

 

𝑓(𝑡 + 1) = {
𝑦 𝑖𝑓 𝑔(𝑦) < 𝑔(𝑥(𝑡))

𝑧 𝑖𝑓 𝑔(𝑧) < 𝑔(𝑥(𝑡))
 (23) 

 

Where, 𝑦 = 𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑓𝑚(𝑡)| (24) 
 

𝑧 = 𝑦 + 𝑠 × 𝐿𝐹(𝐷) (25) 

 

 

 
 

Figure 2. Harris Hawk 
 

 

HHO algorithm [10] 
Inputs: Enter total population (N) and iterations (T) 

Outputs: Prey position and fitness value  

                𝑓𝑖 (i = 1, 2. . . N)  

While (terminate when the statement is failed) do 

Compute the fitness of position  

Keep frabbit as best location of the prey 

for (every hawk (f(i)) do  

Update the E0 and J   

Eo =2*rand-1; 

J=2*(1-rand) 

Update the E if (|E|≥ 1)    

𝐸 = 2𝐸𝑜(1 −
𝑡

𝑇
)  

Update the current location vector using below equations  

𝑓(𝑡 + 1) = {
𝑓𝑟𝑎𝑛𝑑(𝑡) − m1|𝑓𝑟𝑎𝑛𝑑(𝑡) − 2m2𝑓(𝑡)| 𝑥 ≥ 0.5 

 𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑓𝑚(𝑡) − 𝑚3(𝐿𝐵 + 𝑚4(𝑈𝐵 − 𝐿𝐵) 𝑥 < 0.5 
 

 if (|E|< 1) then < <exploitation_phase >>  

 if (x ≥0.5 & |E|≥ 0.5) then << Soft_ besiege> > 

       Update the position using the following equation  

              𝑓(𝑡 + 1) = ∆𝑓(𝑡) − 𝐸|𝐽𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑓(𝑡)|, where ∆𝑓(𝑡) = 𝑓𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑓(𝑡) 
 else if (r ≥0.5 and |E|< 0.5) then << Hard_besiege>>  

 else if (r < 0.5 and |E|≥ 0.5) then < <Soft besiege> >  

        𝑓(𝑡 + 1) = {
𝑦  𝑖𝑓 𝑔(𝑦) < 𝑔(𝑓(𝑡))

𝑧 𝑖𝑓 𝑔(𝑧) < 𝑔(𝑓(𝑡))
 

else if (r < 0.5 and |E|< 0.5) then <Hard besiege> 

Position update using the following equation  

𝑓(𝑡 + 1) = {
𝑦 𝑖𝑓 𝑔(𝑦) < 𝑔(𝑓(𝑡))

𝑧 𝑖𝑓 𝑔(𝑧) < 𝑔(𝑓(𝑡))
 

Return 𝑓𝑟𝑎𝑏𝑏𝑖𝑡 
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In this paper, an objective function is the minimization of the integral square error of frequency deviation as 

shown in (26), and the remaining optimization parameters are with lower bound (lb) =-1; upper bound 

(ub=100) and with number iterations are 50.  
 

𝑓 = 𝑚𝑖𝑛 (∫ (𝜔𝑟 − 𝜔)2𝑑𝑡
𝑡𝑠
0

) (26) 

 
 

4. RESULT ANALYSIS  

Harris Hawks optimization (HHO) for frequency control of a hydropower plant has been executed 

and tested comprehensively for frequency control. In MATLAB/Simulink environment, the proposed method 

is tested at different conditions with parameters shown in Table 1. In frequency control, the controller is 

mostly PID control and the gains of this controller are tuned using Ziegler Nichols (ZN) method. However, it 

will not provide better control for dynamic changes and is a tedious procedure. The HHO is used to optimally 

tune the PID gains in this paper and thereby, control the frequency effectively. The PID gains obtained while 

running the algorithm are kp =100; ki =100 and kd= 79.94717, with convergence shown in Figure 3. Figure 4 

illustrates the frequency deviation (normalized) value during control and the remaining figures show the 

variation of the other variables, i.e., Figure 5, Figure 6, and Figure 7 shows the normalized gate opening, 

water velocity in turbine, and change in the pilot actuator position respectively during this operation. In 

comparison to the conventional (ZN) technique, the frequency deviation is lower and the steady-state is 

reached within less than 2 seconds as shown in Figure 4. The traditional method took longer, taking more 

than 20 seconds to reach negligee frequency deviation. At the same time, the proposed control technique 

causes relatively little disruption in gate opening, turbine water velocity, and change pilot location. 

The usefulness of the proposed work is also tested for ±10% dynamic change in the normalized 

water velocity. Figure 8 and Figure 9 shows the ∆ω̅ plot for +10% sudden increments in the normalized 

water velocity and its zoomed view. Similarly, Figure 10 shows the ∆ω̅ plot for -10% sudden decrement in 

the normalized water velocity and the corresponding zoomed view is shown in Figure 11. From Figure 8 to 

Figure 11, when this system is subjected to dynamic conditions, such as a sudden change in water velocity, 

the frequency deviation is greatly reduced using the proposed control approach. In addition, as compared to 

the traditional ZN technique, the turbine water velocity is within the safe range. When comparing the 

suggested HHO algorithm based frequency controller to the ZN-based controller, the dynamic functionality 

of the presented technique is superior with the proposed HHO algorithm based frequency controller. 
 

 

Table 1. Simulation parameters 
Parameter Value 

Equivalent damping (D) 1 

Net head of water ( h̅0) 1 pu 

Equivalent inertia constant (M) 6 

Normalized output power (p̅e) 0.05 pu 

Servo time constant of the main gate (tg) 0.2 sec 

Time constant of the pilot actuator (tp) 0.02 sec 

Time constant of water starting (tw) 1.3 sec 

Velocity water at no load(u̅̅̅
nl) 0.068 pu 

  
  

 Figure 3. Convergence curve during the control of 

Hydropower plant 

 

 

  
  

Figure 4. Frequency deviation ∆ω̅ Figure 5. Normalized gate opening (g̅) 
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Figure 6. Normalized water velocity in turbine ( u̅t) Figure 7. Normalized change in pilot actuator 

position 

  

  

  
  

Figure 8. ∆ω̅ for sudden increment in u̅t Figure 9. Zoomed view ∆ω̅̅ ̅̅  for sudden increment in 

u̅t 
  
 

  
  

Figure 10. ∆ω̅ for the sudden decrement in u̅t Figure 11. Zoomed view ∆ω̅̅ ̅̅  for the sudden 

decrement in u̅t 

 

 

5. CONCLUSION  

Frequency control using Harris Hawks optimization (HHO) for improved performance has been 

successfully presented in this paper. The hydropower plant is simulated using its dynamic model and PID 

gains of load frequency controller are optimally tuned using the HHO algorithm. The efficacy of the 

proposed frequency controller is tested at dynamic conditions on the hydropower plant and is also compared 

with the conventional ZN method. It is experiential that the efficacy of the proposed approach is better than 

the conventional ZN method for frequency control of Hydropower plants.  
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