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 A Constant Switching Frequency Direct Torque Control (CSF-DTC) with 

low switching losses Space Vector modulation (SVM) for Permanent Magnet 

Synchronous Motor (PMSM) drive is proposed in this work. The CSF-DTC 

combines Field Oriented Control (FOC) and basic DTC advantages. Indeed, 

the proposed control strategy improves the basic DTC performances, which 

features low flux and torque ripples as well as a fixed switching frequency. 

The improved DTC ensures also a fast and robust flux and torque responses 

by using Integral and Proportional (IP) controllers which guaranteed a good 

disturbance rejection.On the other hand, a symmetrical SVM technique with 

low switching losses in the PWM inverter is used in order to generate the 

desired stator voltage vector needed to control the stator flux and the motor 

torque. Simulation and experimental results are presentedin this paper.These 

results demonstrate well the performance of the basic and proposed DTC and 

they show the effectiveness of the constant switching frequency direct torque 

control. 
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1. INTRODUCTION 

Today Field Oriented Control (FOC) and Direct Torque Control (DTC) are considered the most 

important techniques to achieve high dynamic performance in AC machines [18]. DTC technique has been 

first proposed and applied for induction machines in the mid-1980s, by Takahachi and Noguchi, for low and 

medium power applications [9]-[14]. The basic idea of DTC for an induction motor is to control the torque 

and flux linkage by selecting the voltage space vectors properly, which is based on the relationship between 

the slip frequency and torque [18]. This concept can also be applied to synchronous drives [10].  

Indeed, DTC technique for PMSM has appeared in the late 1990s as reported in [8]-[9]. However, 

for some applications, the DTC has become unusable although it significantly improves the dynamic 

performance (fast torque and flux responses) of the drive and is less dependent on the motor parameters 

variations compared to the classical vector control (FOC) due to torque and flux ripples [7]-[8]. Indeed, 

hysteresis controllers used in the conventional structure of the DTC generates a variable switching frequency, 

causing electromagnetic torque oscillations. Also this frequency varies with speed, load torque and hysteresis 

bands selected. In addition, a high sampling frequency is needed for digital implementation of hysteresis 

comparators and a current and torque distortion is caused by sectors changes [6].In the last decade, several 

contributions have been proposed to overcome these problems : 

a. By matrix converter [23] or also by changing de switching Table [1, 4, 11]. 
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b. By combining basic DTC and fuzzy logic control in one control strategy, named fuzzy direct torque 

control [8]. 

c. By replacing the hysteresis controllers and the switching table by a PI regulator, predictive controller 

and SVM [6, 7, 9, 10, 14]. 

In the modified DTC, proposed in these works, at least one of the propertiesbellow is needed to achieve a 

lower torque and flux ripple: 

a. More power switches. 

b. Variable switching frequency. 

c. Increase of the system cost and/or complexity. 

This paper proposes a modified DTC algorithm for PMSM drive in order to reduce the flux and torque 

ripples. But, at the same time this control strategy is characterized by:  

a. Low switching losses and fixed constant switching frequency by using a symmetrical SVM. 

b. Good speed, torque and flux dynamic state by using the IP controllers. 

c. Simple algorithm. 

The basic DTC and the proposed DTC algorithms were investigated by simulations under 

Matlab/Simulink and then experimentally using dSPACE 1104 board. In order to show the superiority of the 

proposed DTC strategy, the sampling time used to investigate the standard DTC, in simulation and in 

practice, is smaller than that used to investigate the proposed DTC algorithm. Also, these control strategies 

were compared at different operating conditions, namely: no load, speed tracking and disturbance rejection 

(load torque). Indeed, both simulation and experimental results show that our proposed DTC algorithm is 

more performant than classical DTC in all the cited operating conditions. 

 

 

2. BASIC DTC FOR PMSM DRIVE 

DTC is a vector control method used to control the torque and therefore the speed of the motor by 

controlling the switching sequence of the inverter transistors. The Figure 1 shows the basic DTC principle. 

 

 

 
 

Figure 1. Basic DTC scheme for PMSM drive with speed loop 

 

 

In the DTC, the motor torque control is achieved with two hysteresis controllers, one for stator flux 

magnitude error and the other for the torque magnitude error. The selection of one switching vector per 

sampling time depends on the sign of these two controllers without inspections of the magnitude of the errors 

produced in the transient and dynamic situations per sampling time and level of the applied stator voltage. 

 

2.1. Stator Flux Control 
The stator voltage vector equation, in a stator reference frame, is given by : 

 

  ̅       ̅    
   ̅ 

  
         (1) 

 

Where   ̅           
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So  ̅   ̅  ∫ (  ̅       ̅)   
 

 
       (2) 

 

For high speeds, the term      ̅ can be neglected, so the equation 2 is given by: 

 

 ̅    ̅  ∫   ̅   
 

 
        (3) 

 

During the same sampling time    the selected stator voltage vector is always constant, Equation 3 becomes: 

 

 ̅ (   )    ̅ ( )    ̅           (4) 

 

Or as   ̅    ̅      ̅ (   )    ̅ ( )      (5) 

 

With:  ̅ ( ) is the stator flux vector at the actual sampling time. 

 ̅ (   )is the stator flux vector at the next sampling time. 

  ̅ is the variation of stator flux vector. 

From Equation 5, it is seen that the variation of the stator flux is directly proportional to the stator 

voltage; consequently the control is carried out by varying the stator flux vector by selecting a suitable 

voltage vector with the Voltage Source Inverter (VSI).  

Figure 2 shows that the stator flux vector is varied in the same direction as the applied stator voltage 

vector. Therefore, applied a collinear stator voltage vector as the stator flux vector and in the same direction 

as it is a sufficiently condition to increase it, and vice versa.Indeed, to control the stator flux vector  ̅ ( )an 

estimator of its module  ̂ and its argument  ̂  is needed. 

 

 

 
 

Figure 2. Stator flux vector evolution in the αβ subspace 

 

 

The stator flux can be estimated from the measure of stator currents and voltages and their 

transformation in the αβ subspace, by integrating of difference between the input voltage and the voltage 

drop across the stator resistance as given by : 

 

      ∫ (        )   
 

 
       (6) 

 

   ∫ (        )   
 

 
        (7) 

 

From Equations 6 and 7, the stator flux module and its argument are given by: 
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 ̂        (
  

  
)         (9) 

 

A two level hysteresis controller, as indicated in figure 1, is used to control the stator flux, which 

compares the reference stator flux   
∗ with the estimated stator flux ̂ . The flux hysteresis comparator output 

is denoted by Boolean variable    which indicates directly if the amplitude of flux must be increased      

or decreased      : if     , it means that the actual value of the flux linkage is below the reference 

value and outside the hysteresis limit; so the stator flux must be increased, while if     , it means that the 

actual value of the flux linkages is above the reference value and outside the hysteresis limit; so the stator 

flux must be decreased. 

The two levels VSI, as shown in Figure 1, is used to select proper voltage vectors from the output of 

flux and torque hysteresis controller (will be presented in the next part). The inverter has eight permissible 

switching states (V0, V1 … V7), out of which six are active (V1, V2… V6) and two zero or inactive states (V0 

and V7). The voltage vector plane is divided into six sectors so that each voltage vector divides each region in 

two equal parts as shown in Figure 3. In each sector four of the six non-zero voltage vectors along with zero 

vectors may be used. 

 

 

 
 

Figure 3. Control of stator flux by selection of the suitable voltage vector Vi(i=0,...,7) 

 

 

2.2. Electromagnetic Torque Control 
The electromagnetic torque equation is defined as follows : 

 

      ( ̅   ̅ )  ‖ ̅ ‖ ‖ ̅ ‖            (10) 

 

Where   is the angle between the rotor and the stator flux vectors and the constant k is expressed as  

(when Ld = Lq):  
  

   
 . The Equation 10 indicates that the electromagnetic torque depends to the rotor and 

stator amplitude, and the angle  . So, if the stator flux vector is perfectly controlled, by mean of the stator 

voltage vector  ̅, in module and in position; consequently, the electromagnetic torque can be controlled by 

the same stator voltage vector. 

Note that the electromagnetic torque can be controlled by mean of a two level comparator as the 

same as stator flux (see Figure 3) or by using a three level comparator as shown in Figure 4. In this work, a 

three level comparator has been used in order to minimize the switches commutation numbers and to have 

the two senses of the motor rotation. The output of this controller is represented by a Boolean variable 

KTwhich indicates directly if the amplitude of the torque must be increased, maintained constant or 

decreased, respectively, when KT is equal 1, 0 or -1. The goal of this controller is to maintain the torque 

variation      in the bandwidth [-εT ,εT] chosen by the programmer of DTC algorithm. Indeed, this 

controller adjusts the torque variation generated by a comparator of electromagnetic torque reference 

(   
∗  )and the estimated torque (  ̂  ). 
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∗    ̂          (11) 

 

The torque can be estimated by using the Equation: 

 

  ̂    
 

 
 [   β   β  ]        (12) 

 

 

 
 

Figure 4. Three level hysteresis controller 

 

 

2.3. Switching Table for Controlling Flux and Torque 

According to the signal generated by the hysteresis controller of stator flux and electromagnetic 

torque presented in Figure 3 and 5, respectively; just one voltage vector can be selected to adjust the torque 

and flux. The choice of this vector depends on the outputs of the torque and flux controller and the position 

of the stator flux vector, as shown in Table 1. 

 

 

Table 1. Takahashi and Noguchi Switching Table 
KΨ KT θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 

1 
1 V2 V3 V4 V5 V6 V1 
0 V7 V0 V7 V0 V7 V0 
-1 V6 V1 V2 V3 V4 V5 

0 
1 V3 V4 V5 V6 V1 V2 
0 V0 V7 V0 V7 V0 V7 
-1 V5 V6 V1 V2 V3 V4 

 

 

2.4. Speed IP Controller Design 

Figure 5 shows the block diagram of the IP speed controller. From this figure, the Equation bellow 

can be obtained: 
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This transfer function in regulation mode doesn’t have a zero contrary to that of the classical PI speed 

controller. In fact, the IP controller allows ensuring a good dynamic and steady states in tracking or 

regulation mode in spite of the torque load variation (disturbance). Indeed, the proportional and integral gains 

can be expressed as: 
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Figure 5. Closed loop speed using IP controller 

 

 

3. Proposed DTC for PMSM drive  

The block diagram of the proposed DTC-SVM for a voltage source PWM inverter fed PMSM is 

presented in Figure 6. In this modified DTC, torque and flux hysteresis controllers and the switching Table 

used in basic DTC are replaced by a two IP torque and flux controllers and a Space Vector PWM technique. 

 

 

 
 

Figure 6. Proposed DTC-SVM scheme 
 

 

3.1.  PMSM model in d-q frame 

The dynamic model of the PMSM in the rotor oriented coordinate d-q can be presented by the 

following Equations 15 and 16: 
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The electromagnetic torque equation in the rotor oriented coordinate d-q can be expressed as:  

 

     
 

 
  (           )                                                                                                               (  ) 

 

 
IP Controller 

     
∗     

   

   
 

 
 

     
 + 

- 

+ 

- 

+ - 
    

 
   

 
  𝐞𝐦
∗  

Torque and Flux 

Estimator 

abc/dq 

iabc 

vsα_ref  

 

vsβ_ref  

 

 ̂s  

 

PMSM 

  ̂em  

 Ψ̂s  

SVM 

𝐕𝐝𝐜 

 

- 
+ IP 

 

- 
+ IP 

 

- 
+ IP 

 

 dq 

 

αβ 

 

Ωm
∗

 

 

 s
∗ 

 

vq  

 

vd  

 

Ωm  

 

d m

dt
 



                ISSN: 2088-8694 

IJPEDS  Vol. 8, No. 2, June 2017 :  558 – 583 

564 

Finally the motion Equation is given by:  

 

             
   
  

                                                                                                              (  ) 

 

According to the Equations 14 and 15, if the stator flux vector is oriented along the d axis; 

 qbecomes equal to zero and the electromagnetic torque is a function of stator flux linkage  s and the q-axis 

current Iq. So if a fast dynamics flux control loop is imposed compared to the torque control loop; this last 

would be a direct function of the Iqcurrent component. In these conditions, the Equation 13 shows that the 

torque can be controlled throughthe q-axis voltage component Vqand the stator flux via the d-axis voltage 

component Vd. 

 

3.2.  Stator flux control 

Figure 7 shows that when the stator flux is oriented along the d-axis, the d-axis flux component is 

directly proportional to the current Id andq-axis flux component becomes zero. Therefore, by controlling and 

keeping constant the d-axis component of the stator current a decoupled flux and torque control can be 

obtained. 

 

 

 
 

Figure 7. Vector diagram of the stator flux orientation strategy 

 

 

According to the proposed DTC-SVM control strategy, the stator flux closed loop is represented in the  

Figure 7. 

 

 

 
 

Figure 8. Closed loop stator flux using IP controller 

 

 

Where  ( ) isthe opened loopstator flux transfer function and Ed is constant disturbance. They are given by 

the Equations: 

 

{

 ( )  
 

  
  
   

    
  

  
  

         (19) 

 

 s  

d 

q 

α 

β 

 s  

𝐢𝐬 

𝐈𝐝 

𝐈𝐪 

 sα   

 sβ   

  Ed  

Vd  + 

- 

 𝐬
∗  s  

𝐆(𝐬)  IP 
+ 

+  



IJPEDS  ISSN: 2088-8694  

 

A Constant Switching Frequency DTC for PMSM Using… (K. Chikh) 

565 

The closed loop flux transfer function is expressed as: 

 

 ( )  
  

  
∗  

 

  (    
  

        
)  

 

      
  
 

 

  
  

  
  

  

  
 

     (20) 

 

We get by identification :  
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3.3. Torque control 

The electromagnetic torque closed loop by using an IP controller is represented in the Figure 9. 

 

 

 
 

Figure 9. Closed loop electromagnetic torque using IP controller 

 

 

Where: 
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The closed loop torque transfer function is expressed as: 
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We get by identification: 
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3.4.   Space Vector Modulation 

The SVM block is used to generate the stator voltage vector Vs, needed to control 

theelectromagnetic torque and the stator flux in the CSF-DTC strategy, through the voltage source 

inverter.It’s known that the inverter states can be considered to be voltage vectors and can be plotted on a 

state map as shown in Figure 9. In each sampling time, these vectors will be used to generate the Vs vector 

can be given by the following Equation: 
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Figure 10. SVM state map and switching sequence 

 

 

In the literature there are different SVM techniques due to the switching sequence choice. In fact, 

the choice of the null vector determines the SVM technique and it affects the phase waveform which affects 

inverter operation and inverter power losses.The popular SVM technique presented in the most papers is also 

the same technique used in DS1104 card. This technique is presented in Figure 10.b can be called 

symmetrical SVM. It’s seen that this technique is to alternate the null vector in each sequence and reverse the 

sequence after each null vector, all that in each modulation period Tm [7, 20]. However, with this sequence 

strategy the 3 legs inverter are in commutation which generates 8 switching states in each Tm. 

 

 

  
 

Figure 11a. Asymmetrical SVM 

 

Figure 11b. Symmetrical SVM 

 

Figure 11. Time sequences and applications of adjacent vectors in the first sector 

 

 

In order to reduce the power inverter losses, we propose in this work a novel SVM technique 

whichguaranteed a good phase waveform and just 2 legs inverter will be in commutation in each modulation 

period as shown in Figure 10a. So, just 6 switching states will be generated. this SVM sequence strategy can 

be called asymmetrical SVM because it does not presents symmetry relative to the modulation period 

midpoint. 

 

 

4. SIMULATION RESULTS 

The models of the PMSM, voltage inverter, basic DTC algorithm and proposed DTCwith the 

asymetrical SVM algorithmsare developed in Matlab/Simulink in order to examine and to compare the 

complete behavior of these two strategies stydied in this paper.The switching delays and the forward drop of 
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the power switches, the dead time of the inverterand the nonideal effects of the PM machine are all neglected 

in the models. The PMSM parameters used in this work are shown in Table 2. 

 

 

Table 2.The PMSM parameters values 
Rated output power (Watt) Rated phase voltage (Volt) Magnetic flux linkage (Wb) 

500 190 0.052 

Rated torque (Nm) Rated speed (rpm) Maximum speed (rpm) 

0.8 1000 6000 

d-axis inductance (mH) q-axis inductance (mH) Inertia (Kg.m2) 
3.3 3.3 0.003573 

Poles Stator resistance (Ω) friction coefficient (Nm.s/rd) 

3 1.59 0.00047 

 

 

Various tests at different operating conditions have been carried out, in Matlab/Simulink 

environment, in order to investigate the PMSM drive performances by using classical and proposed DTC. 

For this reason, the sampling time is 50µs (20 kHz) for the basic DTC and 100 µs (10 kHz) for the modified 

DTC. Note that this choice have real influence on the switching frequency and the torque and flux ripples, 

mainly in case of the basic DTC.To examine and to compare the robustness of these two strategies, a same 

operation of speed and load torque variation was applied to control the PMSM. 

The simulation results of basic DTC and CSF-DTCare presented in Figure 12 and 13, respectively. 

As shown in Figures 12 and 13, it’s seen that the stator flux and torque ripples are greatly reduced under the 

proposed DTC, in spite of the smaller samling time used to simulate the classical DTC. Also a high current 

distorsion can be observed in Figure 12f when compared to Figure 13f. This is mainly because in SVM 

algorithm, contrary to hysterisis controller and the switching table, the switching frequency is constant and 

also, in SVM, many vectors (IGBT states) are selected to adjust the torque and flux ripple in each sampling 

time, whereas in basic DTC just one vector is selected to adjust ripple inside hysteresis bands of torque and 

flux regulators. 

In brief,the steady state performance of the CSF-DTC is much better than that of the basic DTC, in 

one hand. In the other hand, the same torque and flux dynamic state can be observed, expect the small delay 

in the flux at the start-up of the motor (see Figure 14). Figures 15 shows the stator phase current spectrums 

under the basic and modified DTC. Indeed, the current spectral analysis presented in Figure 15a shows that 

the Total Harmonic Distortion (THD) of the current waveform under basic DTC is 11.1 % whereas the THD 

of the current waveform of DTC-SVM is 3.35 %, it is smoother than that of the basic DTC. This is mainly 

due to the fact that the switching function of the inverter is only updated at the sampling instant and also the 

number of vectors applied to adjust the torque and flux ripple. 

 

 

 
 

Figure 12a. Reference (w-ref) and measured speed (w-mes) 

 

 

 
 

Figure 12b. Load torque and motor torque 
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Figure 12c. Estimated stator flux linkage 

 

 
 

Figure 12d. Estimated stator flux vector components in (α,β) axis 

 

 
 

Figure 12e. Measured phase stator current 

 

 
 

Figure 12f. Zoom in measured phase current 

 

Figure 12. Simulation results of the basic DTC performance under speed and load torque variations 
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Figure 13a. Reference (w-ref) and measured speed (w-mes) 

 

 
 

Figure 13b. Load torque and motor torque 

 

 
 

Figure 13c. Estimated stator flux linkage 

 

 
 

Figure 13d. Estimated stator flux vector components in (α,β) axis 
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Figure 13e. Measured phase stator current 

 

 
 

Figure 13f. Zoom in measured phase current 

 

Figure 13. Simulation results of the Proposed CSF-DTC performance under speed and load torque 

variations 

 

 

 
 

Figure 14a. DTC 

 

 
 

Figure 14b. Proposed CSF-DTC 

 

Figure 14. Simulation results, stator flux dynamic state in case of basic DTC and proposed CSF-DTC 
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Figure 15a. Reference (w-ref) and measured speed (w-mes) 

 

 
 

Figure 15b. Load torque and motor torque 

 

Figure 15. Simulation results of the basic DTC performance under speed and load torque variations 

 

 

5. EXPERIMENTAL RESULTS 
A test bench was constructed, as indicated in Fgiure 16, in order to validate the simulation results of 

the DTC algorithms presented in this paper. Indeed, the Figure 16 shows that the IGBT inverter and the 

dSPACE DS1104 cardare used to drive the PMSM under test (whose pertinent parametres are given in  

Table 1). This motor is coupled to a separately excited DC generator. This later supplies a resistive bank, 

used to produce differents load torques. The DSP card is plugged in the PC and its equiped by a Matlab  

(to program the DSP card) and ControlDesk (to supervise the system) software. 

The DS1104 digital signal processing DSP card is used to carry out the real-time algorithms, this 

system is based on PowerPC 603e microprocessor (main processor) running at 250 MHz (CPU clock) on 

wich the DTC algorithms were implemented and TMS320F240 DSP of Texas Instruments running at 20 

MHz can be used to provides Space Vector Modulation, but in our case switching table ans SVM are 

generated by the main processor.The board is equipped with analog-to-digital converters for current and 

voltage sensors, digital-to-analog converters and an input for an incremental encoder how is used to detect 

the initial rotor position and the actual rotor speed. 

 



                ISSN: 2088-8694 

IJPEDS  Vol. 8, No. 2, June 2017 :  558 – 583 

572 

 
 

Figure 16. Laboratory setup block diagram 

 

 

 
 

Figure 17. Laboratory setup (laboratory test bench) 
 

 

In order to examine the performances of the classical and proposed DTC, the same tests were 

applied for each control strategy, which are: Speed tracking at no load, load torque variation atconstant speed 

and speed tracking at load torque. Figures 19, 21 and 23 show thatthe torque and flux ripples are greately 

reduced under the proposed DTC when compared to classical DTC (Figures18, 20 and 22) for various 

operating conditions within the speed/torque plan. In addition, the dynamic performance of these strategies 

are very similar. Indeed, Figure 24 shows that the speed and torque response time are very similar to that 

presented in Figure 25, respectively. 

 

 



IJPEDS  ISSN: 2088-8694  

 

A Constant Switching Frequency DTC for PMSM Using… (K. Chikh) 

573 

 
 

Figure 18a. Reference (w-ref) and measured speed (w-mes) 

 

 
 

Figure 18b. Reference (c-ref) and estimated torque (c-est) 

 

 
 

Figure 18c. Estimated stator flux linkage 

 

 
 

Figure 18d. Estimated stator flux vector components in (α,β) axis 

 

 
 

Figure 18e. Measured stator currents 
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Figure 18f. Zoom in measured phase current (ia-mes), with and without low-pass filter (wc=700 rad/s) 

 

Figure 18. No load experimental results of DTC. Measured speed and electromagnetic torque tracking 

performance, stator flux and currents waveforms 
 

 

 
 

Figure 19a. Reference (w-ref) and measured speed (w-mes) 

 

 
 

Figure 19b. Reference (c-ref) and estimated torque (c-est) 

 

 
 

Figure 19c. Reference and estimated stator flux linkage 
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Figure 19d. Estimated stator flux vector components in (α,β) axis 

 

 
 

Figure 19e. Measured stator currents 

 

 
 

Figure 19f. Zoom in measured phase current (ia-mes), with and without low-pass filter (wc=1000 rad/s) 

 

Figure 19. No load experimental results of CSF-DTC. Measured speed and electromagnetic torque tracking 

performance, stator flux and currents waveforms 

 

 

 
 

Figure 20a. Reference (w-ref) and measured speed (w-mes) 
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Figure 20b. Reference (c-ref) and estimated torque (c-est) 

 

 
 

Figure 20c. Estimated stator flux linkage 

 

 
 

Figure 20d. Estimated stator flux vector components in (α,β) axis 

 

 
 

Figure 20e. Measured stator currents 
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Figure 20f. Zoom in measured phase current (ia-mes), with and without low-pass filter (wc=700 ras/s) 

 

Figure 20. Experimental results of DTC under various load torque values at 1000 rpm. Measured speed and 

electromagnetic torque tracking performance, stator flux and currents waveforms 

 

 

 
 

Figure 21a. Reference (w-ref) and measured speed (w-mes) 

 

 
 

Figure 21b. Reference (c-ref) and estimated torque (c-est) 

 

 
 

Figure 21c. Reference and estimated stator flux linkage 
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Figure 21d. Estimated stator flux vector components in (α,β) axis 

 

 
 

Figure 21e. Measured stator currents 

 

 
 

Figure 21f. Zoom in measured phase current (ia-mes), with and without low-pass filter (wc=700 ras/s) 

 

Figure 21. Experimental results of DTC-SVM under various load torque values at 900 rpm. Measured speed 

and electromagnetic torque tracking performance, stator flux and currents waveforms 

 

 

 
 

Figure 22a. Reference (w-ref) and measured speed (w-mes) 

 

 
 

Figure 22b. Reference (c-ref) and estimated torque (c-est)  
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Figure 22c. Estimated stator flux linkage 

 

 
Figure 22d. Estimated stator flux vector components in (α,β) axis 

 

 
 

Figure 22.e. Measured stator currents 
 

 
 

Figure 22.f. Zoom in measured phase current (ia-mes), with and without low-pass filter (wc=700 ras/s)  
 

Figure 22. Experimental results of DTC under various speed set-pints with load torque. Measured speed and 

electromagnetic torque tracking performance, stator flux and currents waveforms 

 

 

 
 

Figure 23.a. Reference (w-ref) and measured speed (w-mes) 
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Figure 23b. Reference (c-ref) and estimated torque (c-est)  
 

 
 

Figure 23c. Estimated stator flux linkage 

 

 
 

Figure 23d. Estimated stator flux vector components in (α,β) axis 

 

 
 

Figure 23e. Measured stator currents 
 

 
 

Figure 23f. Zoom in measured phase current (ia-mes), with and without low-pass filter (wc=700 ras/s)  
 

Figure 23. Experimental results of DTC-SVM under various speed set-pints with load torque. Measured 

speed and electromagnetic torque tracking performance, stator flux and currents waveforms 
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(a) 

 

 
(b) 

 

Figure 24. Speed (a) and torque (b) dynamic performance in case of DTC at no load 

 

 

 
(a) 
 

Figure 25. Speed (a) and torque (b) dynamic performance in case of DTC-SVM at no load 

 

 
(b) 

 

Figure 25. Speed (a) and torque (b) dynamic performance in case of DTC-SVM at no load 
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6. CONCLUSION 
A robust constant switching frequency DTC using low switching losses SVM for PMSM drive has 

been proposed and validated in Matlab/Simulink and in DS1104 board. The simulation results confirm that, 

in spite of lower sampling time, both torque and flux ripples obtained with the modified DTC are greatly 

reduced when compared with those of the basic DTC.Also, the experimental torque and flux ripples are agree 

with the simulation results. In addition, the simulation and experimental results confirm that the studied 

control strategies ensure a fast dynamic response and very good decoupling in torque and stator flux control. 

Additionnaly, the studied schemes use an Integral and Proportional controllerswhich guaranteed a good 

disturbance rejection in speed, torque and flux closed loops. On the other hand, the asymmetrical SVM 

technique, proposed and validated based on the theoretical analysis, guarantee a constant switching frequency 

and reduce the power losses in the inverter. 
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