A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics Distortion and High Power Factor

Santhi Mary Antony1, Godwin Immanuel2
School Of Electrical And Electronics, Sathyabama University, Chennai, India

ABSTRACT
Now day’s the power factor has become a major problem in power system to improve the power quality of the grid due to the non-linear loads connected to it. Single phase bridgeless AC/DC power factor correction (PFC) topology to improve the power factor as well as the total harmonic distortion (THD) of the utility grid is proposed. By removing the input bridge in conventional PFC converters, the control circuit is simplified; the total harmonics distortion (THD) and power factor (PF) are improved. The PI controller operates in two loops one is the outer control loop which calculates the reference current through LC filter and signal processing. Inner current loop generates PWM switching signals through the PI controller. The output of the proposed PFC topology is verified for prototype using MATLAB circuit simulations. The experimental system is developed, and the simulation results are obtained.

Keyword:
Total harmonics distortion (THD)
Power factor correction (PFC)
bridgeless converter
SEPIC converters
DSP

1. INTRODUCTION
The purpose of improving power quality of the AC system has become excessive interest from years ago. There is huge usage of power electronic devices, such as variable speed drives, uncontrolled rectifiers and other switching devices, these devices affects the power quality of the utility grid significantly. To decrease harmonics in transmission lines, the Research on active power factor correction (PFC) techniques has taken on an accelerated path typical PFC converter topologies are boost Buck-boost [8], buck and SEPIC [2-5]. The boost converter is rarely used in practical applications, as the input current can be easily formed into a sinusoidal waveform to maintain unity power factor. However, the boost PFC converter [8] has a restricted capability since the peak value of the AC input voltage must be lesser than the DC output voltage. On the other hand, the DC output voltage of the buck PFC is lower than the peak of the AC input voltage, which reduces the cost and the rating of the component. A buck PFC converter [9-11] gives an alternative for low-voltage applications such as a 48V DC bus. The buck converter has high efficiency for entire input voltage range with distorted input current that comfortably crosses the limits imposed by IEC requirements.

A buck PFC AC/DC converter provides an alternative option for low-voltage applications [15]. Unlike in the boost chopper, the output voltage of the buck chopper is lower than the peak of the input ac voltage, and this significant feature allows the low voltage rating of switching devices to be used in the converter, which can significantly reduce the component cost [17]. On the one hand, depending on the application, a resonant converter can be excluded from the buck converter topology. The input current of the buck PFC converter has dead zones along the cycle, which requires extensive passive filtering to improve the power factor [16]. The conventional SEPIC converter can supply a high-power factor in wide range of voltage conditions [12-13]. The output voltage could be reduced or increased without the need of inversion with the SEPIC converters [14].
This introduces a new topology for single phase bridgeless AC/DC PFC converters. This used to reduce the THD and increasing PF of the operation. In Section1 Proposed SEPIC converter combines the bridge and DC-DC stages into one stage. Section2 analyses operation of the proposed SEPIC PFC converter. In Section3 component selection and control circuit design are presented. The simulation results of the conventional and proposed SEPIC converter are presented. Summary and future work is provided in it.

2. NEED FOR IMPROVING POWER FACTOR

Power factor is the ratio of Real power flowing to the load to the apparent power in the circuit. Ideal power factor is 1 and device consumes all the power it draws. The range of power factor is lies between to -1 to +1. The benefits of power factor correction is

i. To reduce losses
ii. To protect devices from high currents
iii. Power quality is improved
iv. Reduction of electricity bills

Power factor is dependent on load so vary according to the loads. Linear loads with lower power factor can be corrected with passive network of capacitors or inductors. Non-linear loads with lower power factor can destroy the current from the system. In such active or passive networks is used to avoid the distortion of current and by improving the power factor.

3. PROPOSED BRIDGELESS SEPIC PFC CONVERTER

Proposed SEPIC converter combines the bridge and DC-DC stages into one stage. We simplified the controller circuit by eliminating the input bridge in conventional PFC converters, the total harmonic distortion [THD] and power factor [PF] are improved. The proposed converter is able to reduce the THD 2.83% from 5.72% and improve the power factor to 0.998. The proposed bridgeless SEPIC PFC converter topology provides much better performance than conventional SEPIC PFC converter. The proposed converter single phase bridgeless SEPIC PFC is better for lower power equipment especially those requiring high quality input power. The operation of the conventional SEPIC PFC converter circuit can be separated in to two modes depending on the position of the switches. When the switch \(Q_1 \) switched on, output diode \(D \) acts as reverse biased. The input inductor \(L_1 \) gets charge, then output inductor \(L_2 \) and AC input capacitor \(C_1 \) creates a resonant circuit. Here, load draws current from the output capacitor \(C_0 \). During this time of operation, the voltage of the input inductor will be equal with the rectified AC voltage \(V_{ac} \). Input capacitor voltage and output inductor voltage are also equal to \(V_{ac} \) during this first mode of operation. In the second mode, the \(Q_1 \) switch is turned off, then the diode \(D \) is forward biased and \(L_1, C_1, L_2 \) creates a loop. The load is directly connected to the inductors during in second mode, which will discharge them during the mode of operation Figure 1.

![Figure 1. Conventional SEPIC PFC converter](image)

![Figure 2. Proposed SEPIC PFC converter circuit](image)
The proposed bridgeless SEPIC PFC converter bridge diode system replaced with three active switches which is shown in Figure 2. When all the switches such as Q_1, Q_3 and Q_4 turn on, input inductor currents are linearly increasing. The output inductor voltage is equal to the capacitance voltage C_1 which was equal input voltage before all the switches are turned on. Thereby, i_{L2} reduces linearly. This mode ends by turning off Q_1, Q_3 and Q_4. By turning Q_1, Q_3 and Q_4 off, Diode D starts to conduct. Then Input inductors current reduces linearly and output inductors current increases linearly until the diode current extinguishes. When D turns off, output side is detached from the input side, the current through the inductors freewheel at the input side. Working modes for proposed SEPIC PFC converter is provided.

4. PRINCIPLE OF OPERATION

Since the proposed SEPIC converter circuit consists of two symmetrical structures as shown in Fig. 3, this circuit is mainly used for the positive half cycle structure. Suggesting that the circuit working in a positive half cycle of a switching period T_s can be divided into three working modes and it can be defined as follows.

Mode 1. In this mode, Q_1, Q_3 and Q_4 switches are turned on. In this mode of operation shown in fig. 1, the output inductor currents decreases and input inductor current increases linearly at a rate of proportional to the input voltage V_{ac}.

Mode 2. In this mode, Q_1, Q_3 and Q_4 switches are turned off, but Q_1 and Q_4 are conducting through anti parallel body diodes shown in fig.2. Then forward diode D is turned on, providing a path for the input and output inductor currents. In this mode, the input inductor currents are linearly decrease, at the rate of proportional to the output voltage V_{dc} and output inductor current linearly increase.

Mode 3. In this mode, all the active switches are turned off, as shown in below fig 5. Q_1 and Q_4 are conducting through anti parallel body diodes. This mode ends by the next switching cycle. In this mode, the inductors L_1, L_2 and L_3 currents are equal. The switch voltage and diode voltage are equal input voltage V_{ac} and output voltage V_{dc}, respectively.

Figure 3. Circuit diagram for Mode 1

Figure 4. Circuit diagram for Mode 2

Figure 5. Circuit diagram for Mode3
4.1 Block Diagram
The block diagram consists of power factor improvement unit based on microcontroller which consist of SEPIC PFC converter and PI controller. The input is in the form of AC. Bridgeless rectifier/Bridgeless SEPIC converter is used to convert AC to DC. The DC voltage is given to DC to DC converter; output of converter is fed to different types of load. The PI controller is used to calculate power factor by using phase difference between voltage and current. The DSPIC30F devices contain extensive Digital Signal Processor (DSP) functionality within a high performance 16-bit microcontroller (MCU) architecture. Device block diagrams for the dsPIC30F4011 and dsPIC30F4012 device.

![Block Diagram](image)

4.2 Proportional Integral (PI) Control
The combination of proportional and integral terms is important to increase the speed of the response and to eliminate the steady state. The multi loop control is proposed for the converter, outer voltage controller generating the reference current to regulate the DC voltage and the inner PI controller generating the gating signals as shown in Figure 4. The high frequency switching of the converter produces switching ripples on the DC voltage. Thus, the measured DC voltage is processed through a band stop filter to eliminate the noise on the measurements.

![PI Control Diagram](image)

The DSPIC30F devices contain extensive Digital Signal Processor (DSP) functionality within a high performance 16-bit microcontroller (MCU) architecture. Device block diagrams for the dsPIC30F4011 and dsPIC30F4012 device.

5. SIMULATION RESULTS
5.1 SEPIC PFC Converter Using Bridge Configuration
The Figure 6 represents the simulation for SEPIC PFC converter using bridge configuration. Here the input voltage is given through variable ac source as shown in Figure 7. Boosting of the input voltage is done by the SEPIC converter which acts as a boost converter. The converter converts ac to dc and then used to run the load. Here we have used PWM technique to generate pulse. This pulse is given to the MOSFET switch in the converter side. Scope is connected to view the power factor and the total harmonic distortion. The output dc voltage and current respectively are shown in Figure 7.
The proposed single phase bridgeless SEPIC topology is simulated by MATLAB based on the design. The presents the transient input voltage, input current, output voltage, output current for conventional SEPIC PFC converter.

Figure 6. Simulation diagram for existing system

Figure 7. Input voltage and current waveforms

Figure 8. Output Voltage Waveforms for Conventional System
5.2 SEPIC PFC Converter Using Bridgeless Configuration

The Figure 10 represents simulation of SEPIC PFC converter with bridgeless configuration by removing input bridge. The four diodes are replaced with MOSFETS. The input voltage is given through variable ac source. Boosting of the input voltage is done by the SEPIC converter which acts as a boost converter. The converter converts ac to dc and then used to run the load. PWM technique is used to generate pulse. This pulse is given to the MOSFETS for switching purpose in the converter circuit. Scope is connected to view the power factor and the total harmonic distortion. The output voltage and current are shown in Figure 11.

Figure 9. Output Current Waveforms for Conventional System

Figure 10. Simulation diagram for proposed system

Figure 11. Waveforms of Output voltage and Output current
5.3 Comparison of Power Factor and THD

<table>
<thead>
<tr>
<th></th>
<th>P.F</th>
<th>T.H.D</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>83.87%</td>
<td>2.9077</td>
<td>1kW</td>
</tr>
<tr>
<td>Proposed</td>
<td>98.88%</td>
<td>0.9944</td>
<td>150mA</td>
</tr>
</tbody>
</table>

Simulation results have been compared with the conventional sepic converter. It has obtained that the power factor correction for conventional sepic converter is 0.8397 with total harmonics distortion of 0.4677. In the proposed, bridgeless sepic converter, the power factor correction is 0.9888 with reduced total harmonics distortion of 0.1563. By comparing the conventional converter with the proposed converter, the proposed bridgeless sepic converter power factor is improved by 1.49% with reduced total harmonic distortion of 31.14%.

6. EXPERIMENTAL RESULTS

The experimental circuit of the proposed converter is developed. The experimental results of input voltage, input current and output voltage for conventional SEPIC PFC are shown in the Figure 9. For the input voltage of 24 Vrms. Output voltage of 10 Vrms and input current of 140mA, the THD is measured to be 15.63%, with power factor of 98.88%.

The experimental results of input voltage input current and output voltage for proposed SEPIC PFC of input voltage of 24Vrms, output voltage of 10Vrms, and the input current of 140 mA shown in fig.6, the THD is measured to be 15.837%, with power factor of .9. The output voltage ripples is obtained 0.15 V at 10 Vdc. The phase of input current is similar to the input voltage and the obtained PF is nearly unity shown in Figure 10.

![Figure 12. Experimental Prototype for Proposed Bridgeless SEPIC Converter](image1)

![Figure 13. Proposed converter with Input voltage and Input current are in Phase](image2)

Theoretical Calculation for P.F and THD for Proposed Converter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage (E)</td>
<td>24 Volts</td>
</tr>
<tr>
<td>Input Current (I)</td>
<td>60mA</td>
</tr>
<tr>
<td>Resistance (R0)</td>
<td>145 Ω</td>
</tr>
<tr>
<td>Power Factor (P.F)</td>
<td>Real powr(p) / Apparent Power(S)</td>
</tr>
<tr>
<td>Real Power (p)</td>
<td>E²/R</td>
</tr>
<tr>
<td></td>
<td>(24)²/145</td>
</tr>
<tr>
<td></td>
<td>3.9 watts</td>
</tr>
<tr>
<td>Reactive Power (Q)</td>
<td>I*E</td>
</tr>
<tr>
<td></td>
<td>6010.324</td>
</tr>
</tbody>
</table>

A Novel Single Phase bridgeless AC/DC PFC converter for Low Total Harmonics.. (Santhi Mary Antony)
7. CONCLUSION
A Novel Single Phase bridgeless AC/DC PFC converter topology is proposed, analysed and compared with the simulation to improve the power factor (PF) as well as Total Harmonic Distortion (THD) in grid applications. The full bridge consisting of diode in input is removed and replaced by bridgeless SEPIC converter. Topology are compared with conventional SEPIC converter, the proposed bridgeless SEPIC PFC topology provides much better performance than conventional SEPIC PFC converter. The topology is implemented on a converter operating from 25V AC input to generate into 10V DC. By this we can achieve high PF and low THD.

REFERENCES