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 This study aimed to compare seven numerical methods to determine the most 
efficient one for calculating the parameters of the Weibull distribution on the 
basis of wind speed data. Two approaches were employed: analysis of a set 
of actual time series data and theoretical Weibull probability function. In this 

analysis, the parameters Weibull shape factor ‘k’ and the Weibull scale factor 
‘c’ were adopted. These suitability values were calculated using the 
following popular methods: method of moments (MM), standard deviation 
method (STDM) or empirical method (EM), maximum likelihood method 
(MLM), modified maximum likelihood method (MMLM), second modified 
maximum likelihood method (SMMLM), graphical method (GM) or least 
mean square method (LMSM) and energy pattern factor method (EPFM). 
The performance of these numerical methods was tested by root mean square 

error (RMSE), index of agreement (IA), chi-square test (X2), mean absolute 
percentage error (MAPE) and relative root mean square error (RRMSE) to 
estimate the percentage of error. Among the prediction techniques. The 
EPFM exhibited the greatest accuracy performance followed by MM and 
MLM, whereas the SMMLM exhibited the worst performance. The RMSE 
achieved the best prediction accuracy, whereas the RRMSE attained the 
worst prediction accuracy. 

Keywords: 

Numerical methods 

Probability distribution function 
Statistical tool 

Wind power density 

 

This is an open access article under the CC BY-SAlicense. 

 

Corresponding Author: 
Name of Corresponding Author, Nurul Fadzlin Hasbullaha 

Department of Electrical and Computer Engineering, 

International Islamic University Malaysia, 

Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia 

Email: nfadzlinh@iium.edu.my 

 

 

1. INTRODUCTION 

  

The electric energy crisis has emerged as a significant global problem in the last decade. Therefore, 

many governments put an ambitious goal to supply a significant portion of their electrical grid from 

renewable energy such as PV and Wind energy. In Palestine, traditional energy resources are lacking while 

the consumption of non-renewable sources in various fields continues to rise. Therefore, the critical situation 

in this region, the siege imposed and the growing need for alternative sources of energy have become urgent 
concerns. Such urgency is highlighted by the continued interruption of electric power and fuel supply. In this 

study will lead to assess the wind energy production in Palestine by analysing wind data using the expert 

probability function [1-4]. 

Scale and shape factors are two parameters of the Weibull probability density function that have 

been widely used in different fields, particularly wind energy assessment, sky clearness index, level 

prediction of water and rainfall, material life length analysis and classification. Recently, the Weibull 

distribution becomes the preferred distribution in software designed for commercial wind energy,  like Wind 
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Atlas [5].There is a proportional relationship between Wind power extraction and the cube of wind speed, 

thus, the distribution of wind speed for a specific wind farm should be determined. The abscissa scale of the 

Weibull probability distribution is controlled by the scale parameter. The shape parameter characterises the 

width of the Weibull distribution, such as a large shape factor equates to a less narrow Weibull distribution 

with a high peak value. The following numerical methods can be used to determine the shape and scale factor 

for a given data series: method of moments (MM), standard deviation method (STDM) or empirical method 

(EM), maximum likelihood method (MLM), modified maximum likelihood method (MMLM), second 

modified maximum likelihood method (SMMLM), graphical method (GM) or least mean square method 
(LSM) and energy pattern factor method (EPFM)[6-15]. 

The Weibull distribution is widely utilised to assess wind energy potential and analyse wind for a 

specific region [9, 16-31]. Seguro and Lambert[13]estimated the parameters of the Weibull distribution by 

using three different methods. They determined that the MLM gave better efficiency performance than the 

commonly used GM in Weibull parameters estimation. Akdag and Dinler[12] presented three traditional 

methods, that are, the GM, MLM and MM, and proposed the EPFM for determining Weibull parameters. 

They found that the EPFM exhibits better appropriateness than the other methods in comparing power 

density and mean wind speed MWS. Jowder[32]applied the EM and GM to analyse the wind power density 

(WPD) at the altitudes of 10, 30 and 60 m in the Kingdom of Bahrain. He calculated and compared two 

Weibull parameters then noted that the EM more accurately estimates power density and MWS than the GM. 

M. Sulaiman et al.[33]analysed wind speed record in Oman and referred to the concept of wind speed data 

following the Weibull probability distribution. Nevertheless, actual observed wind speed are not required in 
the Weibull distribution. Chang [14] conducted a statistical study to assess the efficiency performance of six 

different techniques in determining shape and scale factors for Weibull parameters. Costa Rocha et al.[34] 

compared and analysed seven numerical methods to assess their performance  in estimating the parameters of 

the Weibull probability distribution by using the actual wind speed data of Paracuru and Camocim in Brazil. 

Bhattacharya and Bhattacharjee [35] and Chu and Ke [36]compared the estimates obtained by the MLM and 

LSM [37].They concluded that the LSM gave better efficiency performance than  MLM. Odo et al. 

[38]employed a Weibull probability distribution to estimate wind energy potential for 13 years in Nigeria. 

Oyedepo et al. [39] analysed the actual long-term wind data in southeast Nigeria at a height of 10 m from 24 

to 37 years. Abbas et al. [40]statistically analysed the actual wind speed record in Pakistan to estimate the 

best fitting probability distribution of wind speed record. They used two-parameter Weibull, Rayleigh and 

other types of probability distributions to fit the data. They also used MLM to determine the parameters of 
every distribution [37, 41-48]. Mostafaeipour and Mohammadi[49]utilised two methods (PDM and STDM) 

to assess wind record in  Iran. At 2012. Genc et al. [50]and Senoglu and Kantar[51] compared several 

numerical methods in terms of accuracy in estimating Weibull parameters. However, the scale parameters 

that they applied were all less than 1.5 m/s, which is likely less than the cut-in wind speed for most small-

scale wind turbines. They convened that MWSapproximately10% lower than the scale factor, if the shape 

factor is approximately 2.Stathopoulos et al. [52] applied statistical and numerical models to estimate wind 

power. Zhou et al. [53]conducted a case study and comprehensively estimated the wind speed distribution 

curves for North Dakota. 

Wind energy applications require the evaluation of Weibull parameters. Thus, determining the 

method with superior performance on shape and scale factor values is important. The Kolmogorov–Smirnov 

statistic test is selected to test the goodness of fit of a Weibull distribution in measured data at the 1% and 5% 
significance levels[14]. Dorvlo[54] analysed the actual wind speed record from four different stations in 

Oman. He determined that the chi-square estimation method yields better estimates of Weibull parameters 

than the MM and GM on the basis of the Kolmogorov–Smirnov statistic. 

In examining the feasibility of wind energy at a specific location, the best strategy seen by 

calculating the wind power density (WPD)according to the measured information of a target meteorological 

location. Another strategy is the WPD using different frequency distribution functions, such as Weibull 

distribution, chi-square distribution, Rayleigh distribution, lognormal distribution, generalised normal 

distribution, gamma distribution, three-parameter lognormal distribution, kappa distribution, inverse 

Gaussian distribution, wake distribution, normal two-variable distribution, hybrid distribution and normal 

square root of wind speed distribution [55-57]. Researchers have indicated that the Weibull function is better 

suited for the wind probability distribution in comparison with other functions[58]. The Weibull function is 

used to fit time series data. This distribution is essential in maintainability and reliability analyses. The 
appropriate values for the shape and scale parameters of the Weibull probability distribution are crucial in 

identifying ideal sites for the installation of wind turbine generators. The Weibull  scale parameter, in 

particular, is essential in determining the effectiveness of wind farms[59, 60]. 

The available electricity generated by a wind power generation framework in a given wind field depends on 

the MWS, standard deviation of wind speed and installation location. This paper utilise the information 
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recorded from the coastal city of Ashqelon from January 2012 to December 2015. The wind industry should 

be able to describe variations in wind speed. Such information benefits the optimisation of the design of wind 

turbines to minimise the costs of energy generation. In this study wind energy  potential can be estimated in 

south coastal plain of Palestine and describe how varying wind speeds can aid the optimisation of wind 

energy turbine design for cost-effective wind energy generation[61, 62]. 

 

 

2. ESTIMATION OF WIND POWER DENSITY 

 

WPD indicates the capacity of wind energy resources in a target location[63]. WPD could be 
measured with two approaches: (1) available power based on the observed MWS of the meteorological 

station and (2) frequency distribution function (two-parameter Weibull method)[55, 64-66]. In this study, 

Weibull distribution adopted the to assess wind power. 

WPD is an essential indicator that is used to estimate the potential of wind speed data. It also 

denotes the wind energy amount at different wind speed in a specific location. Moreover, WPD aids the 

evaluation of the performance of wind turbines to identify the optimum ones. Furthermore, WPD identifies 

the level of reachable energy at the location. This study WPD had been calculated based on measured wind 

speed data and calculation using the appropriate distribution function. Although many PDFs for various 

applications of wind energy have been proposed in the literature, the Weibull function is unarguably one of 

the most widely used functions in terms of statistical probability distributions. The major advantages of the 

Weibull distribution function have been characterised extensively in[62, 63, 67]. Accordingly, the Weibull 
probability distribution function is selected in calculating WPD and is used to illustrate the wind speed 

frequency distribution. To estimate Weibull parameters, it can be adopted the numerical methods MM, EM, 

MLM, MMLM, SMMLM, GP and EPFM. The estimation is performed to (a) distinguish past conditions 

retrospectively,(b) predict future power generation at one site,(c) predict power generation among a grid of 

wind turbines and (d) calibrate meteorological records [2, 55, 61, 62]. 

 

3. CALCULATION USING THE WEIBULL DISTRIBUTION 
 

Wind speed is a random variable that is used to estimate the wind potential of a region. This parameter 

is generally applied in statistical analyses [17, 68, 69], and its use requires time series records of wind speed 

data. Based on the wind speed data collected, the Weibull probability distribution can be represented as a 

cumulative distribution function (CDF) or Weibull function, F(υ), and Weibull PDF, f(υ)[31].The CDF is 

obtained by computing the integral of the PDF [63, 70, 71], which is ultimately determined using the 

following equation [10, 31, 59, 63, 68, 70-72]: 
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Where𝑣, 𝑐 and 𝑘 are the wind speed (m/s), scale factor (m/s), shape factor (dimensionless), respectively. 

Parameter 𝑘 indicates the width of the wind speed probability distribution, which represents the wind 

probability distribution peak of any specific region[63, 73].Parameter𝑐indicates the abscissa scale of the wind 

probability distribution, which shows the wind in particular location[63, 74]. Shape parameter𝑘  and scale 

parameter 𝑐are calculated using the methods previously reported in the literature. Parameters 𝑐 and 𝑘 can be 
obtained using MM, STDM (EM), MLM, MMLM, SMMLM, GM (LSM) and EPFM. These methods are 

frequently compared in the literature on wind energy. However, the results, conclusions and 

recommendations of previous studies differ greatly due to the change of wind speed data conditions. Hence, 

it can be verified the most  appropriateness of the methods that may change with the sample data distribution, 

sample data size, , goodness-of-fit tests and sample data format[12, 55]. 

Based on the Weibull PDF, WPD is determined using equation (3)[63, 75, 76]: 
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to simulate the required electric power output for wind turbine model[77, 78]. 

 

 

4. NUMERICAL METHODS FOR DETERMINING WEIBULL PARAMETERS 

4.1 Method of Moments 

The MM is recommended by Justus and Mikhail [79, 80]. The standard and mean deviations of the elements 

are noted initially at a suitable scale MM. On the basis of the numerical iteration of the equations 4 and 5, the 

standard deviation σ and mean (�̅�) of wind speeds are derived[14, 68, 79, 81-86]. The MM is an effective 
approach to deriving Weibull parameters. The first moment relates to the origin, and the second moment 

pertains to the mean. These moments are used to measure parameters 𝑘 and c, as expressed in Equations (4) 

and (5), respectively. The calculation includes the MWS and standard deviation which are obtained from the 

calculated wind speed[86, 87]. 
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Where Γ(x) is the gamma function expressed as 
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4.2 Empirical Method or Standard Deviation Method 

The EM is also commonly known as the power density method. The EM is easy and simple to 

implement[86]. The empirical approach involves a straightforward and practical solution that only requires 

knowledge of MWS �̅� and standard deviation σ[79]. The EM uses the average of the cube of wind speed (𝜐3) 

and the cube of MWS �̅�3.
�̅�3

�̅�3known as (𝐸pf). The scale factor is determined from the energy pattern factor. 

The equations used to determine the scale parameter are identical to those used in the MM and EM[88]. 

Thus, the EM can be categorised as  a special case of the MM [14, 68].On the basis of the EM introduced by 

Justus[63, 89, 90], parameters 𝑘 and 𝑐 are computed using equations (9) and (10), respectively[63, 81, 89, 

90]. The EM can also be called the STDM. Several studies have adopted the numerical STDM to calculate 

Weibull parameters. In [49], this method was utilised to assess wind data in Zarrineh, Iranin 2012 as 

mentioned. Reference [68]analysed and compared seven numerical methods to assess their effectiveness in 

determining the parameters of the Weibull distribution using wind data collected from Camocim and 

Paracuru in the northeast region of Brazil in[14], the authors conducted a statistical study to check the 

efficiency performance by determining the Weibull shape and scale factor for six different numerical 

methods for wind energy applications. In the STDM, the parameters of Weibull can be estimated as shown 
below: 
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4.3 Maximum Likelihood Method 

The MLM was put forward by Fisher[79, 91] and then introduced by Stevens and Smulders as an approach to 

obtaining wind speed information [79, 92]. The MLM is based on the indirect results of numerical iteration 

methods for determining parameter 𝑘. Therefore, the MLM is effective despite being a laborious and 

complicated procedure [79]. The MLM is a mathematicalformulation technique also recognized as the 

likelihood function in time series format for the wind speed data [63]. MLM requires extensive numerical 

iterations [14]. These numerical iterations are needed to estimate the parameters 𝑘 and 𝑐 of the Weibull 

function. Through the MLM, parameters 𝑘 and 𝑐 are calculated using equations(11) and (12), 

respectively[63, 93, 94]. 
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Where 𝑣𝑖 the wind speed is in time step 𝑖 (m/s) and 𝑛 is the number of non-zero wind speed data points. 

 

4.4  Modified Maximum Likelihood Method (MMLM) 

The MMLM is only applicable when the wind speed data are in frequency distribution format. Similar to the 

MLM, the MMLM entails several iterations when used to determine Weibull parameters. Parameters 𝑘 

and 𝑐 are obtained using the following equations [34, 63, 95]: 
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Where 𝑣𝑖 is MWS central to bin 𝑖 and 𝑛 is the total number of bins, 𝑓(𝑣𝑖) is the frequency of wind speed 

falling within bin 𝑖, where 𝑓(𝑣 ≥ 0) is the probability distribution curve that wind speed reaches or exceeds 

zero. 
 
 

4.5 Second Modified Maximum Likelihood Method (SMMLM) 

The SMMLM was developed by Christofferson and Gillette (1987) by replacing the iterative estimation of 
the shape parameter with [96] 
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Which requires neither the iteration nor the sorting of data. Thus, SMMLM was selected by Hanitsch 

and Ahmed Shata in (2006)[97]. 
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4.6 Graphical Method (GM) or Least Mean Square Method (LSM) 

The GM, also called the LSM[98], is employed using the CDF. In GM, the wind speed record ought first be 

categorised into bins. After using the logarithm of equation (16) twice, the GM equation can be obtained as 

follows. 

. 

)ln()ln()]}(1ln[ln{ ckkF        (16) 

The GM is used by a logarithmic function of the CDF F(v), that is, the CDF F(v) is modulated for the 

inclusion of a dual logarithmictransformation [79] 

Plotting ln(𝜐)as the 𝑥-axis versus ln {− ln(1 − 𝐹(𝑣)}as the y-axis shows a straight line in which 𝑘 is the 

slope and the y-intercept is 𝑘𝑙𝑛(𝑐)[14, 63, 99]. 

 

4.7 Energy Pattern Factor Method (EPFM) 

The EPFM is related to the mean records of wind speed; it is described by equations(17)[12, 68]. 
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where �̅� is given as Equation (4). 
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where 𝐸𝑝𝑓 is the energy pattern factor and is the gamma function represented by equation (17). 

 

 

5. GOODNESS OF FIT 

 

The performance of the five parameter estimation techniques of the Weibull provability distribution for 

calculating WPD is evaluated using several statistical techniques, including five statistical tools indicators. 

To achieve a comparative assessment, it can be utilised the root mean square error (RMSE), chi-square test 

(X2), index of agreement (IA), mean absolute percentage error (MAPE), and root mean square error 

(RRMSE), along with some other statistical tools. In the aforementioned subsections, it can be presented a 

summarise of the statistical tools parameters used in this work[63]. 

 

5.1 Root Mean Square Error (RMSE) 

RMSE shows the accuracy of a model by comparing the deviations between the values gathered by the 

Weibull function besides those obtained from measurement data. The positive value of RMSE is calculated 

by equation(19)[63]. 
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5.2 Chi-Square Test (X
2
) 

X2 is applied to analyse proportions of independent variables, that is, possible inconsistency between the 

expected frequencies and observed of the events of occurrence. X2is a non-parametric test that is independent 

of factors like the average population and variance. Two series  behave comparably if the variance between 

the frequencies for every category are negligible, therefore, close to 0. Souza [100] indicated that for this 

model, the groups should be independent, the items should be randomly selected from each group, the 

observations should be frequently counted, and every observation should belong to only one group[79].𝐹(𝑣) 

is the empirical probability distribution estimated from any wind speed record. Then, parameters 𝑘 and 𝑐 are 

determined to be minimum [101]. 
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where 𝑦 is the observed value and 𝑥 is the expected value. 

 

5.3 Index of Agreement (IA) 

The IA presents the precision degree of predicted values relative to observed values. The IA that change from 

0 to 1 is computed by [63, 102] 
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In equations (15)–(21), 𝑃𝑖,𝑊 and 𝑃𝑖,𝑀 are the 𝑖 th calculated wind power density via WDF and the 𝑖th 

calculated WPD by measured data, respectively. 𝑃𝑊,𝑎𝑣𝑔  and 𝑃𝑀,𝑎𝑣𝑔 are the average𝑃𝑖,𝑊and 𝑃𝑖,𝑀 values, and𝑛 

is the total number of observations. 

 

5.4 Mean Absolute Percentage Error (MAPE)  

MAPE presents the average absolute percentage variance between the estimated wind power using Weibull 

probability function and thatcalculatedfromthe observed data (measured data wind speed). MAPE can be 

calculated by [63] 
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5.5 Relative Root Mean Square Error (RRMSE)  

RRMSE can be acquired by dividing the RMSE with the mean wind power calculated by the observed 

values. 
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Various domains of RRMSE can be set to demonstrate model precision according to the percentage as clarify 

below [63, 103, 104]. 

RRMSE is considered: Excellent if the efficiency performance less than 10%, Good if 10% < RRMSE < 

20%, Average if  20% < RRMSE < 30% and Poor if RRMSE more than 30%. 

RRMSE, MAPE, IA, X
2
, and RMSE with values close to zero are considered satisfactory [31]. 

 

 

 
 

6. WIND SPEED FOR COASTAL PLAIN IN PALESTINE AS A CASE STUDY 

 

Palestine is located in Western Asia between the Mediterranean Sea and the Jordan River. It is also 

surrounded by Jordan and Syria inthe east, Egypt and the Gulf of Aqaba in the south, the Mediterranean Sea 

in the west and Lebanon in the north. For this study, it can be focused on the Ashqelon sit which lies in the 

southern coast of the Mediterranean Sea in Palestine. The climate of the coastal area is hot and dry in summer 

and warm and rainy in autumn. For almost an entire year, the wind speeds in the coastal area are below 7 m/s, 

with the mean speeds of strong winds not exceeding 25 m/s [105]. 

 

 

 
Figure 1. South coastal plain of Palestine (Ashqelon City)[106]. 

 

 

The map in figure 1 shows the site of the data collection. Wind speed in Ashqelon is collected between 

January 2012 and December 2015. The Mediterranean coastal plains of Palestine exhibit the same weather 

[105]. 
 

 

7. RESULTS AND DISCUSSION 

 

Wind speed records from wind monitoring stations are adopted to identify the most ideal numerical method 

for the Weibull distribution. Wind speed data from Ashqelon during the period of January 2012–December 

2015 are selected and used in performance testing. Seven methods used in the statistical analysis are 

employed to estimate the shape factor𝑘 and scale factor 𝑐 of the Weibull probability distribution. These 

numerical techniques are then compared to clearly determine their efficiency. In the comparison of these 

methods, it can be used the statistical tools of RMSE, X2, IA, MAPE and RRMSE. Analysis of efficiency or 
variance of the method (R2) is also used. Notably, it can be utilised only 1 column to make ranking for the 

methods. The ranking is performed using the aforementioned statistical tools to ensure an accurate diagnosis. 
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Figure 2 MWS in Ashqelon from January 2012 to December 2015 [105].  

 

 

Figure 2 shows the percentage of the monthly MWS of Ashqelon in the coastal plain of Palestine between 

2012 and 2015. The sources of the meteorological data on Ashqelon, which is adjacent to Gaza City, are 

recorded on a daily basis according to the MWS that is usually calculated every month. The graph shows that 

MWS dramatically decreased from February to April 2012, reaching an all-time low of 3.2 m/s. In January, 

MWS rose as high as or more than 5 m/s. MWS increased steadily and reached approximately 4 m/s. In the 

last three months, the curve declined. In April 2013, MWS increased dramatically, reaching around 4.7 m/s. 
The curve suddenly fluctuated during the last eight months of the year. In January to August 2014, MWS 

significantly increased, reaching 4.8 m/s before finally dropping in the last four months of the year. In 

January 2015, MWS jumped and reached 5.1 m/s. It then fluctuated significantly and reached the peak point 

in June. However, MWS gradually declined between July and December, reaching an all-time low of 3 m/s. 

Overall, MWS fluctuated between 3 m/s to 5 m/s during this period [105]. 

 

 

 

Table 1.  Frequency of actual MWS records from January 2012 to December 2015. 
Wind speed (m/s) Jan  Feb Mar April May Jun Jul Aug Sep Oct Nov Dec 

1.0615 13 6 5 4 3 1 0 0 1 2 10 11 

2.0734 7 2 3 1 0 1 0 0 1 2 3 4 

3.0853 3 4 7 4 4 3 1 1 2 3 2 7 

4.0972 3 11 11 11 11 12 17 15 9 13 4 6 

5.1091 2 2 1 4 4 7 8 8 10 4 1 1 

6.121 1 0 2 3 6 5 5 4 6 6 3 2 

7.1329 2 2 2 3 3 1 0 3 1 0 3 0 

8.1448 0 1 0 0 0 0 0 0 0 0 0 0 

9.1567 0 0 0 0 0 0 0 0 0 0 0 0 

10.1687 0 0 0 0 0 0 0 0 0 0 0 0 

11.1806 0 0 0 0 0 0 0 0 0 0 0 0 

12.1925 0 0 0 0 0 0 0 0 0 0 0 0 

13.2044 0 0 0 0 0 0 0 0 0 0 0 0 

14.2163 0 0 0 0 0 0 0 0 0 1 0 0 

 

Table 1 lists the frequency distribution of the actual MWS records of Ashqelon between January 2012 and 

December 2015. According to the sample frequency distribution, more than 70% of the total frequency 

distribution lies between 1 and 7 m/s of MWS. Table 1 can be used to determine the total number of hours for 

four years at certain wind speeds available monthly. 
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Figure 3. Frequency of actual MWS records from January 2012 to December 2015. 

 

 

Figure 3 illustrates the frequency distribution of the actual MWS records of Ashqelon between January 2012 

and December 2015. The bar graph is extremely close to the PDF of the wind speed data. More than 90% of 

the frequency lies between 1 and 7 m/s of wind speed for four years.  

 

 

 
Figure 4. Comparison between observed and estimated PDF 

curves for Ashqelon in 2012. 

 

 
Figure 5. Comparison between observed and estimated PDF 

curves for Ashqelon in 2013. 

 

 
Figure 6. Comparison between observed and estimated PDF 

curves for Ashqelon in 2014. 

 

 
Figure 7. Comparison between observed and estimated PDF 

curves for Ashqelon in 2015. 
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Figure 8. Comparison between observed and estimated 

CDF curves for Ashqelon in 2012. 

 
Figure 9. Comparison between observed and estimated 

CDF curves for Ashqelon in 2013. 

 
Figure 10. Comparison between observed and estimated 

CDF curves for Ashqelon in 2014. 

 
Figure 11. Comparison between observed and estimated 

CDF curves for Ashqelon in 2015. 

 

Weibull analysis of the wind speed data plots of the CDF and PDF for the entire data and seasons (Figs. 4–7). 

The results demonstrate that all the wind profiles for these periods follow the same cumulative distribution 

pattern. Figures 3–7 present a comparison of theoretical PDFs with the observed wind speeds. The 

corresponding cumulative probability distributions are also plotted in Figures 8–11. The probability density 

distributions of the yearly wind speed records are obtained from the measured daily time series data of 

Ashqelon. The observed and theoretical curves of Weibull PDF for 2012, 2013, 2014 and 2015 are shown in 

Figures 4–7 using actual measured wind speed records. The theoretical estimated curves are plotted based on 

the data generated using the MM, EM, GM, MLM, MMLM, SMMLM and EPF. 
On the basis of the Weibull distribution, it can be calculated several important quantities related to 

the wind characteristics in Ashqelon for a year. The observed and estimated CDF curves for 2012, 2013, 

2014 and 2015 are shown in Figures 8–11 on the basis of the data generated using the MM, EM, GM, MLM, 

MMLM, SMMLM and EPF. 

 
Table 2: Estimation of Weibull parameters, wind power and energy for maximum wind speed in 2012. 

 

Years 

2012 

Estimated scale factor and shape factor using seven numerical 

methods for Ashqelon 2012 

𝑐(m/s) 𝑘 MWS(m/s) Standard 

divination 

σ(m/s) 

Variation 

Coefficient % 

1. MM 4.5988 2.0608 4.0738 2.0729 50.8836 

2. EM, STDM 4.5991 2.0725 4.0738 2.0624 50.6248 

3. MLM 4.6053 2.0616 4.0795 2.0751 50.8663 

4. MMLM 4.7555 2.3526 4.2142 1.9041 45.1831 

5. SMMHM 4.1000 2.2322 3.6313 1.7198 47.3613 

6. GM,LSM 4.3642 1.7848 3.8827 2.2492 57.9291 

7. EPF 4.5946 1.9559 4.0738 2.1727 53.3336 

Observed 4.6053 2.0616 4.0800 1.9873 51.1173 
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Table 2 presents the variations in the values of the Weibull shape and scale parameters, along with the 

standard deviations of the measured data and Weibull results for both site analyses in 2012. The shape 

parameter lies between 2.0608 and 2.2526, and the scale parameter is between 4.1000 and 4.7555 m/s. 

Different wind parameters reflect dissimilar wind turbine systems and energy potential. Estimating these 

parameters accurately for a particular time period is necessary in wind energy applications. 

 

 

Table 3: Estimation of Weibull parameters, wind power and energy for maximum wind speed in 2013. 
 

Years 

2013 

Estimated scale factor and shape factor using seven numerical methods 

for Ashqelon 2013 

𝑐(m/s) 𝑘 MWS(m/s) Standard 

divination 

σ(m/s) 

Variation 

Coefficient % 

1. MM 4.3076 2.0990 3.8152 1.9095 50.0496 

2. EM, STDM 4.3077 2.1105 3.8152 1.9002 49.8045 

3. MLM 4.3119 2.1006 3.8190 1.9101 50.0166 

4. MMLM 4.3513 2.1937 3.8536 1.8538 48.1071 

5. SMMLM 4.0403 2.1865 3.5781 1.7264 48.2480 

6. GM , LSM 3.7570 1.8225 3.3391 1.8981 56.8458 

7. EPF 4.3074 2.0834 3.8152 1.9224 50.3863 

Observed 4.3119 2.1006 3.8200 1.9179 50.2685 

 

 

Table 3 shows that the scale and shape factors 4.3119 m/s and 2.1006 for MLM, are completely identical to 

the observed values in 2013. The standard deviation ranges from 1.7264 m/s to 1.9224 m/s, whereas the 

observed value is 1.9179 m/s. 

 

Table 4: Estimation of Weibull parameters, wind power and energy for maximum wind 

speed in 2014. 
 

 

Years 

2014 

Estimated scale factor and shape factor using seven numerical methods for 

Ashqelon 2014 

𝑐 𝑘 MWS(m/s) Standard 

divination 

σ(m/s) 

Variation 

Coefficient % 

1. MM 4.5376 2.2464 4.0190 1.8927 47.0934 

2. EM, STDM 4.5374 2.2570 4.0190 1.8847 46.8951 

3. MLM 4.5231 2.2089 4.0058 1.9152 47.8094 

4. MMLM 4.4696 2.0668 3.9592 2.0093 50.7497 

5. SMMLM 4.2750 2.2924 3.7872 1.7514 46.2446 

6. GM , LSM 3.8086 1.6942 3.3990 2.0644 60.7359 

7. EPF 4.5375 2.2536 4.0190 1.8873 46.9588 

Observed 4.5231 2.2089 4.0200 1.8993 47.2570 

 

 

 

 

Table 5: Estimation of Weibull parameters, wind power and energy for maximum wind speed in 2015. 
 

 

2015 

Estimated scale factor and shape factor using seven numerical 

methods for Ashqelon 2015 

𝑐 𝑘 MWS 

(m/s) 

Standard 

divination 

σ(m/s) 

Variation 

Coefficient % 

1. MM 5.0981 2.4321 4.5205 1.9827 43.8593 

2. EM, STDM 5.0977 2.4414 4.5205 1.9759 43.7096 

3. MLM 5.0839 2.3990 4.5068 2.0010 44.3994 

4. MMLM 5.0234 2.2321 4.4491 2.1073 47.3645 

5. SMMLM 4.8565 2.4650 4.3075 1.8666 43.3344 

6. LSM, GM 4.4173 1.9389 3.9174 2.1057 53.7534 

7. EPF 5.0981 2.4315 4.5205 1.9831 43.8692 

Observed 5.0839 2.3990 4.5300 1.9873 43.9606 

 

Tables from 2 to 5 indicate that 𝑘 and 𝑐 are nearly the same for the MM, STDM (EM), MLM and EPFM. The 

results of the MM, STDM (EM), MLM and EPFM are close and better than those of the other methods. 
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Figure 12. GM estimated results for Ashqelon in 2012. 

 

 
Figure 13. GM estimated results for Ashqelon in 2013. 

  
Figure 14. GM estimated results for Ashqelon in 2014. Figure 15. GM estimated results for Ashqelon in 2015. 

Weibull parameters can be estimated using the GM of every year presented in Figures 12, 13, 14, and 15. The 

first step is to plot the natural logarithm of the observed speed versus ln(-ln(1-F(υ)). Then, it can be  noted the 

Weibull parameters by linearly fitting the plotted points; here, 𝑘 is the slope of the fitted line, and 𝑐 is equal 

to exp(b/k), where b is the y-intercept of the fitted line. 

 

Where, 

 

ln(𝒗)as x axis versus 𝑙𝑛(−𝑙𝑛(1 − 𝐹(𝑣))
 

𝑦 = 𝑚𝑥 − 𝑏           

where  𝑚 = 𝑘,      𝑏 = 𝑘 ln(𝑐) 

ln(𝑐) =
𝑏

𝑘
 

𝑐 =  𝑒
𝑏

𝑘  
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Tables 6–9 show the statistical error analysis of the five statistical techniques. 

 

 

Table 6: Error percentage for checking accurate numerical methods in 2012. 
2012 

 

Goodness of fit tests for Coastal plain Palestine- Ashqelon 2012 

Numerical 

methods 

Comparative analysis 

  

RMSE Ranking X
2
 Ranking IA Ranking MAPE Ranking RRMSE Ranking 

1 MM 0.0074 3 0.9780 4 0.7893 3 0.0196 3 11.1391 3 

2 STDM,EM 0.0075 4 1.0926 5 0.7912 5 0.0194 2 11.2563 5 

3 MLM 0.0074 3 0.9610 3 0.7895 4 0.0196 3 11.1577 4 

4 MMLM 0.0089 5 13.5805 6 0.8316 6 0.0158 1 13.3614 6 

5 SMMLM 0.0223 6 222.8923 7 0.7795 2 0.0215 5 33.3957 7 

6 GM,LSM 0.0043 1 0.3073 1 0.7415 1 0.0239 6 6.4394 1 

7 EPFM 0.0066 2 0.4346 2 0.7705 2 0.0212 4 9.9210 2 

 

 

 

 
Table 6 shows that the GM (LSM) yields the greatest efficiency according to the RMSE, X2, IA and RRMSE 

in 2012. It is followed by the EPFM, MLM, MM, and STDM (EM). The method with the worst efficiency 

reflected in the RMSE, X2 and RRMSE is the SMMLM, followed by the MMLM. 

 

Table 7: Error percentage for checking accurate numerical methods in 2013. 
2013 

 

Goodness of fit tests for Coastal plain Palestine 2013 

Numerical methods Comparative analysis 

 RMSE Ranking X
2
 Ranking IA Ranking MAPE Ranking RRMSE Ranking 

1 MM 0.0053 3 0.1393 2 0.7229 4 0.0317 3 5.2971 5 

2 STDM, EM 0.0054 4 0.1402 3 0.7239 5 0.0316 2 5.4297 4 

3 MLM 0.0053 3 0.1393 2 0.7224 3 0.0318 4 5.3135 3 

4 MMLM 0.0063 5 0.1493 4 0.7254 6 0.0317 3 6.2557 6 

5 SMMLM 0.0071 6 0.2126 6 0.7509 7 0.0295 1 7.1193 7 

6 GM, LSM 3.2001e-

04 

1 0.1916 5 0.7027 1 0.0352 5 0.3200 1 

7 EPFM 0.0051 2 0.1383 1 0.7214 2 0.0318 4 5.1099 2 

 

 

 

 

Table 7 shows that the GM (LSM) achieves the best efficiency according to the RMSE in 2013. It is followed 

by the EPFM, MM, MLM and EM (STDM). The MM, STDM (EM), and MLM showed approximately the 
same efficiency performance according to the RMSE, X

2
, IA and MAPE in 2013. The SMMLM shows the 

worst efficiency performance according to the RMSE, X2, IA and RRMSE. 

The GM (LSM) and EPFM show the highest efficiencyfollowed by MLM and MM, whereas the SMMLM 

and MMLM show the lowest efficiency for the period of 2012–2013. 

 

 

 

 

Table 8: Error percentage for checking accurate numerical methods in 2014. 
2014 

 

Goodness of fit tests for Coastal plain Palestine- 2014 

Numerical methods Comparative analysis 

 RMSE Ranking X
2
 Ranking IA Ranking MAPE Ranking RRMSE Ranking 

1 MM 0.0046 2 1.9073 6 0.6761 5 0.0323 1 6.4148 3 

2 STDM, EM 0.0045 1 2.1563 5 0.6764 6 0.0323 1 6.3530 1 

3 MLM 0.0048 3 1.3660 3 0.6751 4 0.0324 2 6.6635 4 

4 MMLM 0.0056 4 0.5520 1 0.6723 3 0.0325 3 7.8650 5 
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5 SMMLM 0.0304 6 22.2735 7 0.6501 2 0.0347 4 42.6080 7 

6 GM, LSM 0.0117 5 0.5048 2 0.6119 1 0.0389 5 16.3687 6 

7 EPFM 0.0046 2 2.0717 4 0.6764 6 0.0323 1 6.3728 2 

 

 

 

 

 

In terms of the RMSE in 2014, the STDM (EM) exhibits the best efficiency performance, followed by the 

EPFM, MM and MLM(Table 8). The SMMLE shows the lowest efficiency performance according to the 
RRMSE, X2 and RMSE. 

 

 

 

 

Table 9: Error percentage for checking accurate numerical methods in 2015. 
2015 

 

Goodness of fit tests for Coastal plain Palestine- Ashqelon 2015 

Numerical methods Comparative analysis 

 RMSE Ranking X
2
 Ranking IA Ranking MAPE Ranking RRMSE Ranking 

1 MM 0.0098 2 0.2858 2 0.5991 3 0.0468 5 9.7861 2 

2 STDM,EM 0.0097 1 0.2867 4 0.5997 4 0.0468 5 9.7396 1 

3 MLM 0.0099 3 0.2838 1 0.5987 2 0.0467 4 9.9406 4 

4 MMLM 0.0110 4 0.2863 3 0.5948 1 0.0466 3 11.0351 5 

5 SMMLM 0.0384 6 0.3746 5 0.6035 5 0.0462 2 38.4354 7 

6 GM,LSM 0.0137 5 0.4159 6 0.6040 6 0.0460 1 13.6533 6 

7 EPFM 0.0098 2 0.2858 2 0.5991 3 0.0468 5 9.7892 3 

 

 
 

 

Table 9 shows that in terms of the RMSE in 2015, the STDM (EM) presents the highest efficiency 

performance, followed by the EPFM, MM and MLM. By contrast, the SMMLE shows the lowest efficiency 

performance. Between 2014 and 2015, the EM or STDM shows the best efficiency performance, followed by 

the EPFM, MM and MLM.  

 

8. CONCLUSION 
 

This study presents a first step in determining the feasibility of installing wind turbines in Palestine. Thus, 

statistically analyses of wind speed data for a period of four years obtained using Weibull probability 
distribution. The analysis is aimed at estimating the wind energy potential in the Mediterranean coast of 

Palestine. MWS and coefficient of variation, along with Weibull PDF and CDF are obtained. The parameters 

of Weibull had been calculated theoretically using the MM, STDM (EM), MLM, MMLM, SMMLM, GM 

(LSM) and EPFM. Five statistical tools are employed by the author to calculate the percentage error 

(goodness-of-fit tests) for the seven numerical techniques to check the efficiency performance for each 

method. GM (LSM) shows the best efficiency performance in the assessment of the low wind speed data, but 

it is not suitable when high wind speed. On the contrary, the STDM (EM) is applicable for high wind speed 

data, on the contrary of STDM (EM). The EPFM is applicable to the assessment of any wind speed data and 

shows the greatest accuracy performance through the years followed by MM and MLM. The SMMLM 

presents the worst prediction performance followed by MMLM according to all statistical techniques. Among 

the five statistical tools, RMSE is the most accurately predicted technique. By contrast, the worst predicted 

technique is RRMSE. 
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