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 A dc-dc zeta converter is a switch mode dc-dc converter that can either step-

up or step-down dc input voltage. In order to regulate the dc output voltage, a 

control subsystem needs to be deployed for the dc-dc zeta converter. This 

paper presents the dc-dc zeta converter control. Unlike conventional dc-dc 

zeta converter control which produces a controller based on the nominal 

value model, we propose a convex polytope model of the dc-dc zeta 

converter which takes into account parameter uncertainty. A linear matrix 

inequality (LMI) is formulated based on the linear quadratic regulator (LQR) 

problem to find the state-feedback controller for the convex polytope model. 

Simulation results are presented to compare the control performance between 

the conventional LQR and the proposed LMI based controller on the dc-dc 

zeta converter. Furthermore, the reduction technique of the convex polytope 

is proposed and its effect is investigated. 
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1. INTRODUCTION  

In modern world nowadays, electronic equipment can be found almost everywhere. This electronic 

equipment usually operates using dc voltage or current. Different electronic equipment normally will use 

different dc voltage value. In order to produce the desired dc voltage value, a dc-dc converter needs to be 

deployed. There are several dc-dc converter topologies that can step-up or step-down input voltage namely 

buck-boost, sepic, cuk, and zeta with various applications [1-5]. Out of these topologies, the later has the 

least attention given [6] and this motivates the authors to explore this topology for this paper. 

Previous research on the dc-dc zeta converter have been presented in [6-16]. To regulate or stabilize 

the converter, different types of controllers are used such as proportional-integral (PI) [6-9], proportional-

integral-derivative (PID) [10,11], lead compensator [11], adaptive [12-14] and state-feedback [15,16]. In 

addition, [16] shows the comparison of the performance between PI and state-feedback controllers. Although 

[6-16] proposed different types of controllers for the dc-dc zeta converter voltage regulation, one thing they 

share in common that is all of them model their dc-dc zeta converter in nominal value which mean they do 

not take into account the possible uncertainty in the parameter. 

To cope with the uncertainty in the parameter, we employ a convex polytope model for the dc-dc 

zeta converter. We take into account the parameter uncertainty arising from input voltage and load resistance 

which are the primary source of uncertainty for the dc-dc zeta converter. Other works [18,19] consider 

parameter uncertainty in their model but they use other converter topology which is dc-dc boost converter 

[18,19] and dc-dc buck converter [18].  
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As for the control part of the dc-dc zeta converter, although [15,16] implemented state-feedback 

control, they use the conventional LQR problem. The conventional LQR approach deals with the 

optimization of a cost function or performance index. This conventional LQR method produces optimal 

performance if the system operates in nominal condition. However, when the operating condition change due 

to uncertainty of the system, the performance deteriorates. 

In this paper, we propose LMI based controller design method that can cope with parameter 

uncertainties in the dc-dc zeta converter. In [17-19], they proposed a design method for state-feedback 

control based on LMI approach by formulating an LMI for the H∞ fuzzy [17], LQR problem [18], and 

deriving a new LMI algorithm [19] to find the state-feedback gain. However, the dc-dc- converter is confined 

to a boost converter [18,19] or a buck converter [17,18]. We differentiate our research in two points of view. 

Firstly, a boost converter can only step-up and a buck converter can only step-down input voltage whereas a 

zeta converter can operate in both ways. Thus, the control problem for a zeta converter has to deal with large 

uncertainty caused by the two operations (step-up/step-down). Our contribution is we investigate the dc-dc 

zeta converter responses in large uncertainty in such a way that there is transition of operation mode from 

step-down to step-up mode which has never been investigated to the best of the authors' knowledge. 

Secondly, we investigate the reduction of conservatism in control performance when the system uncertainty 

is described by a smaller convex polytope. By this way, we can verify the relation of convex polytope 

reduction with the conservativeness and thus the performance of the controller. 

The other sections of this paper are organized as follows. Firstly, in Section 2, we show the 

modeling of the dc-dc zeta converter under parameters uncertainty. Next, in Section 3, we give LMI based 

feedback control scheme formulation. After that in Section 4, we present the design examples to illustrate the 

advantages of this approach. The transient responses have been simulated with PSIM®. Lastly in Section 5, 

we give the summary. 

 

 

2. MODELING OF THE DC-DC ZETA CONVERTER WITH PARAMETERS UNCERTAINTY 

The dc-dc zeta converter circuit is shown in Figure 1. The circuit consists of two capacitors (C1 and 

C2), two inductors (L1 and L2), an ideal diode, a dc voltage source (vg), a resistor (R), and an ideal switch (S). 

The internal resistances are considered small enough so they can be neglected. The voltage across the 

capacitors are denoted as vC1 and vC2, and the current through the inductors are denoted as iL1 and iL2. The 

purpose of the circuit is to draw power from the dc voltage source, and supply power to the load at a 

lower/higher dc voltage value. For our work, it is assumed that the dc-dc zeta converter operates in 

continuous conduction mode (CCM) all the time.  

 

 

 
 

Figure 1. A dc-dc zeta converter circuit 

 

 

With the switch being closed for the time dT and open for (1-d)T, the weighted average of the equation is 

 

      ,11 goffonoffon vdBdBxdAdAx            (1) 

 

where x is the state variables which is x = col (iL1, iL2, vC1, vC2) in this paper while A and B are the system and 

input matrices, respectively. The subscripts on and off refer to the intervals during which the switch is closed 

and open, respectively. By assuming that the variables are changed around steady-state operating point 

(linear signal), the variables can now be written as 
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where X, D, and U represent steady-state values, and x~ , d
~

, and     represent small signal values. During 

steady-state, the derivatives ( x) and the small signal values are zero while for the small signal analysis, the 

derivatives of the steady-state component are zero. By considering the above conditions and neglecting 

nonlinear terms, substituting (2) into (1) will produce the small signal averaged model for the dc-dc zeta 

converter as follows: 
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In order to obtain a zero steady-state error between the reference voltage, Vref and the output voltage, 

vo, the model is augmented with an additional state variable xint which stands for the integral of the output 

voltage error 

 

.)(int dtvVx oref   

 

The state vector for the new augmented model is now written as xaug = col (iL1, iL2, vC1, vC2, xint) with the 

matrices defined as follows: 
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The uncertainty for the dc-dc zeta converter is caused when there is variation in the circuit 

parameters. Since the system and input matrices depend on the uncertain parameters, the new expression of 

the averaged model for the dc-dc zeta converter without external output can be written as 

 

,
~

)(~)(~
)( dpBxpAx augdaugaugaug   

 

where p represents the uncertain parameters vector defined by p = [p1,…,pnp], where np is the number of 

uncertain parameters. The uncertain matrices Aaug(p) and Bd(aug)(p) can be included in a convex polytope, 

where the set {G1,…,GN} consists of the extrema of the convex polytope which contains the images for all 

admissible values of p 
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The most significant uncertain parameters for the dc-dc zeta converter are the input voltage Vg and 

the resistive load R. Since that output or reference voltage Vref is constant, the input voltage Vg can also be 

reflected using duty-ratio D, which is the one that will be used instead of input voltage Vg. The inductors and 

capacitors are not likely to be the candidate because they are not connected to external input/output. In order 

to describe the convex polytope of the uncertainty, each block must depend linearly on the uncertain 

parameters. Since Aaug and Bd(aug) matrices have nonlinear terms of the uncertain parameters, two new 

variables are introduced which are 1/(1-D) and D/((1-D)
2
R) to meet with a linear dependence. Thus, the 

uncertain parameter vector for the dc-dc zeta converter can be written as 

gv~
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The parameters given by (4) define the uncertain matrices Aaug and Bd(aug), which can be included in the 

convex polytope (3).  

 

 

3. LMI BASED FEEDBACK CONTROL SCHEME FORMULATION 

For a controllable system when all the states are accessible, feedback of all of the states through a 

gain matrix can be used. The control law used for state-feedback is [20]: 

 

,~~
augxKu             (5) 

 

where K is the feedback gain matrix. 

 To optimally control the control effort within performance specifications, a compensator is sought to 

provide a control effort for input that minimizes a cost function/performance index [21]: 
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where Qw is a symmetric, positive semidefinite matrix and Rw is a symmetric, positive definite matrix.  

By substituting (5) into (6), the cost function can now be written as  
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Using trace operator Tr(.), the above cost function is equivalent to 
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where 
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augx represents the initial condition of the state.  

Define P by the matrix inequality 
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Hence the matrix P gives an upper bound for the performance of the feedback control (5). 

In this paper, it is intended to solve the feedback gain K by minimizing a linear objective function 

under LMI constraints. Due to the existence of nonlinear term (multiplication of K and P) in (8), from [22], 

new variable  Y = KP is introduced thus the program can be rewritten as 
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Furthermore, the nonlinear term )( 2/112/1
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and by using Schur’s complement [23] 
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Therefore, the complete LMI formulation of the LQR problem is 
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This LMI formulation can be extended to include the system with uncertain parameter in (4) by replacing the 

nominal matrices Aaug and Bd(aug) in (10) with all the matrices correspond to vertices of the polytope Aaug(i) and 

Bd(aug_i) defined in (3) of which can be written as follow 
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It is worth to highlight here that the solution of (12) will produce a common matrix P that satisfies 

(12) at all the vertices of the convex polytope. Once this minimization under constraints is solved, the 

optimal LQR controller can be recovered by K = YP
−1

. Since P satisfies (12), this optimal feedback gain K 

will ensure the quadratic stability of the closed loop system. 

 

 

4. DESIGN EXAMPLE 

To see the advantages of our approach, we give a design example in this section. For the dc-dc zeta 

converter circuit shown in Figure 1, the parameters are tabulated in Table 1. From [15], the input voltage Vg, 

the output voltage Vo and the duty-ratio D are related by 
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Equation (13) is the gain (output to input ratio) for the dc-dc zeta converter. For 0 < D < 0.5, the converter 

will step-down the input voltage vg while for 0.5 < D < 1, the step-up operation will take place. By solving 

for D in (13), this would produce D = 0.375 (for Vg = 15 V) and D = 0.6 (Vg = 6 V). This is one of our 

research contribution where we investigate the system’s response during the transition of operation between 

step-down (D = 0.375) and step-up (D = 0.6) operation. In Table 1, the nominal value Vg = 15 V, thus this 

implies the nominal value for the duty-ratio D = 0.375. On the other hand, since nominal value for the 

resistive load is R = 1.5 Ω, the corresponding nominal value for the load current is Io = 6 A. 

 

 

Table 1. The dc-dc zeta converter parameters. 
Parameter Value Nominal value 

vg [6, 15] V 15 V 

Vo(Vref) 9 V - 
R [1.5, 3] Ω 1.5 Ω 

C1/C2 100/200 μF - 

L1/L2 100/55 μH - 
VM 1 V - 

f 100 kHz - 
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Figure 2. PSIM® simulation diagram for the dc-dc zeta converter with state-feedback controller. 

 

 

     
        D                  D 

 

Figure 3. The new coordinates for the uncertain parameters to tighten the convex polytope of uncertainty. 

 

 

Table 2. The reduced order of uncertain parameter vectors (eight vertices) for the convex polytope of 

uncertainty. 
Uncertain parameter vector 

p1 = [0.375, 1.6, 0.96∙(0.33), 0.33] 

p2 = [0.375, 1.6, 0.96∙(0.67), 0.67] 

p3 = [0.52, 1.97, 1.78∙(0.33), 0.33] 
p4 = [0.52, 1.97, 1.78∙(0.67), 0.67] 

p5 = [0.52, 2.01, 1.78∙(0.33), 0.33] 

p6 = [0.52, 2.01, 1.78∙(0.67), 0.67] 
p7 = [0.6, 2.5, 3.75∙(0.33), 0.33] 

p8 = [0.6, 2.5, 3.75∙(0.67), 0.67] 

 

 

The simulation diagram for the dc-dc zeta converter is shown in Figure 2. The simulation is done 

using PSIM® software. As shown in the figure, the resistive load R is varied by means of a voltage-

controlled switch. Voltage and current sensors are deployed to feedback the voltage and current at each 

capacitor and inductor, respectively. There is a limiter in series with the control duty-ratio line to limit the 

magnitude to 1. This is to mimic the actual limit of the comparator.  

1.  The weight matrices Qw and Rw are selected as follows:  
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2.  The criteria for the selection of these weight matrices are such that integral action is enforced and 

that the control duty-ratio ripple is lower than 20% of the PWM ramp amplitude VM to avoid 

nonlinear behavior of the PWM circuitry [24,25]. 

In this paper, we constructed two convex polytopes of uncertainty for the dc-dc zeta converter. For 

the first polytope, we constructed them based on hyper-rectangular bounded by minimum and maximum 

value of the uncertain parameters. There are four uncertain parameters (defined in (4)), thus there is sixteen 
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vertices (coordinate) for the first convex polytope of uncertainty. On the other hand, for the second polytope, 

we proposed a tighter polytope to reduce the conservativeness which is one of the aim of this paper. The 

procedure for tightening the polytope is depicted in Figure 3. We constructed the tangents of the two 

extreme points and found the intersection of the tangents. This procedure will produce eight vertices for the 

convex polytope of uncertainty as shown in Table 2. 

By solving (9), (10), and (11), the conventional LQR controller feedback gain vector KLQR will be 

produced, whereas solving (9), (11), and (12) will yield the feedback gain vectors for LMI based controller 

denoted as KLMI16 (sixteen vertices), and KLMI8 (eight vertices). We use LMI solver in Matlab® [26] called 

mincx which is based on barrier function of the interior-point method to find KLMI16 and KLMI8. The feedback 

gain vectors for KLQR, KLMI16, and KLMI8 are  

 

KLQR = [-0.0673 -0.0441 -0.0661 -0.1876 2236.1], 

KLMI16 = [-0.3755 -0.0701 -0.1588 -0.3408 2226.4], 

KLMI8 = [-0.2531 -0.0450 -0.1736 -0.3551 2240.1]. 

 

During the nominal condition where D = 0.375 or Vg = 15 V, the responses for the output voltage vo 

and the load current io are shown in Figure 4. At this nominal condition, when there is no perturbation, they 

have nominal vo = 9 V and io = 6 A. At t = 0.5 ms, the resistive load R is switched to 3 Ω which is the 

maximum load allowed in the design, while at t = 3 ms, resistive load R is switched back to 1.5 Ω. This 

correspond to large load current io deviation of ±3 A or equivalent to ±300%. Although there exists large load 

current perturbation io, all the controllers can regulate the output voltage vo. From the output voltage vo 

figure, either at t = 0.5 ms or t = 3 ms, out of the three controllers, the KLQR produces the best performance in 

term of least overshoot (the magnitude is almost the same with KLMI8 though) and the shortest settling time 

(assume the system stays at ±5% of the operating point). As for the comparison between LMI based 

controllers KLMI16 and KLMI8, the later produces superior performance for both overshoot and settling time. 

This shows that tightening the convex polytope has reduced the conservativeness and significantly improved 

the response of the dc-dc zeta converter. 

On the other hand, the non-nominal condition occurs when the input voltage vg drop by 60% (9 V) 

to settle at 6 V as shown in Figure 5. By solving for D in (15), this imply that during non-nominal condition, 

the duty-ratio D = 0.6. Figure 6 shows the response during the non-nominal condition. As shown in the 

figure, at t = 0.5 ms, the KLQR produces the least overshoot for output voltage vo as compared to the other two 

controllers but the down side is that the output voltage vo has very high oscillation. Furthermore, at t = 3 ms, 

its output voltage vo and the load current io responses deteriorate in such a way that they do no return to their 

operating point. However, this is not the case for the LMI based controllers. Both the controllers can cope 

with the large load current perturbation of either -300% or +300% where the output voltage vo and the load 

current io are successfully return to their operating point although the overshoot and settling time are a bit 

higher compared to those during nominal condition. As expected also, the reduction in the convex polytope 

produces better controller performance. 

We have shown the responses both under nominal and non-nominal condition when subjected to 

large perturbation. Next, we will show the control duty-ratio response which indicates the control effort that 

needs to be done to regulate the output voltage of the dc-dc zeta converter. Under the nominal condition (left 

of Figure 7), the control efforts are quite minimum at both instances (t = 0.5 ms and   t = 3 ms) for all three 

controllers. As for the non-nominal condition (right of Figure 7), larger control efforts need to be produced at 

t = 0.5 ms for the same amount of load current perturbation of -300% compared to the nominal condition. 

The control duty-ratio for the KLQR deteriorates and at t = 3 ms where it eventually saturated. On the contrary, 

for the LMI based controller, both control duty-ratio can return to their operating point. 

 

 

   
 

Figure 4. Output voltage (left) and load current (right) responses under nominal condition 

for KLQR (dashed line), KLMI16 (dotted line) and KLMI8 (solid line). 
 

Time (s) Time (s) 
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Figure 5. Input voltage perturbation which produces the non-nominal condition. 

 

 

   
 

Figure 6. Output voltage (left) and load current (right) responses under non-nominal condition 

for KLQR (dashed line), KLMI16 (dotted line) and KLMI8 (solid line). 
 
 

   

   

   
 

Figure 7. Control duty-ratio response under nominal (left) and non-nominal (right) condition 

for KLQR (top), KLMI16 (middle) and KLMI8 (bottom) subject to load current perturbation of ±3 A. 

 

 

The next important criteria that we want investigate is the amount of ripple present in the control 

duty-ratio signal because certain limit (< 20%) need to be imposed to avoid nonlinear effect [24,25]. As 

shown in Figure 7, in both the nominal and the non-nominal conditions, KLQR propagates the least ripple 

(9.6% and 4.8%, respectively) followed by KLMI8 (19% and 10%, respectively) and the worst ripple is by 

KLMI16 (28% and 16%, respectively) of which the former could poses nonlinear behavior in PWM circuitry if 

implemented experimentally because it is more than 20%. Since our focus is to prove that the LMI based 
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controller is better than the conventional LQR controller especially when the system is highly uncertain, it is 

worth to mention that by reducing the number of vertices for the convex polytope, it’s performances not only 

improves but also increases the stability margin of the system by reducing the chance of nonlinear behavior 

in PWM circuitry. 

 

 

5. CONCLUSION 

This paper has proposed a dc-dc zeta converter control based on LMI approach by taking account 

parameter uncertainty. Simulation results show that the conventional LQR controller only produces optimal 

result during the nominal condition whereas the proposed LMI based controller can cope with highly 

uncertain dc-dc zeta converter. Furthermore, the reduction of the convex polytope not only improves the 

output voltage response, but also and more crucially reduces the existence of the ripple in the control duty-

ratio. 
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