Multi-carrier switching strategy for high-bandwidth potential balancing control of multilevel inverters

Zuraidi Md Tahir1, Auzani Jidin2, Mohd Luqman Mohd Jamil3

1,3Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Malaysia 2Power Electronics and Drives Research Group, CeRIA, UTeM, Malaysia

ABSTRACT

This paper confers on investigation of a direct torque control (DTC) of induction motor drive by 3 level neutral point clamp (NPC) multilevel inverter. The imbalance problem may deteriorate the electric drive performances which might cause a short circuit condition. Various balancing control strategies were proposed, however, most of them employed complex space vector modulation (SVM) and hysteresis-based controller that generates variable switching frequencies. The proposed method will offer a reliable balancing control strategy with a constant switching frequency, and moreover, it will provide excellent electric drive performances. This research proposed a new multi carrier switching modulation strategy that establish a high-bandwidth control for neutral point potential in the NPC inverter. Potency of the proposed high-bandwidth potential balancing strategy is validated through the MATLAB/Simulink environment.

Keywords:
CSF
Direct torque control
Induction motor
Neutral point clamp

Corresponding Author:
Zuraidi Md Tahir
Faculty of Electrical Engineering
Universiti Teknikal Malaysia Melaka
Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
Email: zuraidizmt@gmail.com

1. INTRODUCTION

In recent years, research on neutral-point-clamped (NPC) multilevel inverters has received significant interest due to its high-efficiency, low harmonic distortions and excellent drive performances, especially for medium-voltage, and high-power applications [1]-[5]. Because of simple structure and it allows a single direct current (DC) supply with larger voltage values, the NPC inverter that introduced 33 years ago is the most widely used in many industrial applications. Although it also has an advantage, the inverter has a major drawback, namely imbalance capacitor voltages or neutral potential because of inappropriate ON-duration and selection of switching states [6]. The unbalanced voltages for the two DC-link capacitors significantly fluctuate the DC-link neutral point potential (NPP) which may cause failure of the switches due to over voltage stress. This problem may solve to some extent by increase the capacitance value but at the same time, the total cost of the system will increase [7]-[11]. Hysteresis-based controller [12] and space vector modulation (SVM) [13], [14] are available topologies to balance the voltages across DC-bus capacitor. The SVM approach also offers a constant switching frequency, reduction of current ripple and flexible implementation for vector control [13]. However, the SVM implantation to multilevel inverter involves complex control algorithm which may reduce the reliability of the control system. While the hysteresis-based controller provides robust balancing control, but it employs voltage sensors and produces variable switching frequency [15].

Journal homepage: http://ijpeds.iaescore.com
2. SPACE VECTOR MODULATION

Multilevel inverters based on standard two-level space vector pulse width modulation (SVPWM) feed by general SVPWM algorithm was proposed by applying two-level modulation to calculate the on-times and the reckoning of on-times for an n-level inverter become easier. The mapping vector are required to attain the proposed method of SVPWM for a multilevel inverter. This approach has gained popularity as several technical papers have reported to modify the two-level modulation in order to simplify the determination of number of triangular/sector, calculation of on-times and mapping of vectors [16]. Figure 1 shows an example in determining the switching of vectors using two-level based SVPWM in three-level NPC inverter as generally proposed in [17]. At first, the original reference voltage, v^* needs to be modified to the new reference voltage vector, v_{new} such that equivalent to that performed in two-level modulation. As it can be seen from the figure that the origin of v_{new} is changed to locate at v_{L1}, i.e. (221) or (110). Hence, the resultant vector v_{new} is formed by the new direct- and quadrature-axis components, i.e. $v_{new\alpha}$ and $v_{new\beta}$, respectively. Therefore, the standard equation of on-duration of vectors calculated in two-level modulation can be used as given in (1).

$$
t_a = T_s \left[\frac{v_{new\alpha}}{2h} - \frac{v_{new\beta}}{2h} \right]
$$

$$
t_b = T_s \left[\frac{v_{new\beta}}{2h} \right]
$$

$$
t_o = T_s - t_a - t_b
$$

where T_s is the switching period, t_a and t_b are the on-times for adjacent voltage vectors of v_{new} within a triangular. Furthermore, before the mapping vectors conducted, it is desirable to determine the location of reference vector by defining the numbers of sector and triangular. Various techniques to define the sector and triangular have been proposed, in which aimed to reduce the algorithm complexity [17], [18].

In order to keep balance of neutral-point potential, the vectors at particular triangular/sector are switched in sequence as suggested by Hemanth and Makarand [19]. Considering a lower amplitude of reference vector (in Δ_0), the suggested switching of vectors to keep the potential balancing is illustrated in Figure 2. It can be noticed that the switching of vectors within a sampling period avoid large different voltage resulted between the two capacitors, which consequently keep the balancing of neutral-point potential.

Another approach introduced a virtual vector concept, i.e. without using the SVM technique [20]. However, the same idea of selecting the vector is employed where the vector is switch in sequence to compensate the imbalance potentials.

Ultimately, it can be found that the existing approaches may lead to two drawbacks, which are identified as switching of vectors in sequence does not guarantee the neutral-point potential to be balanced for long operations as uncertainty conditions, e.g. sudden large demand/load and dead-time effects may cause the two capacitors voltages deviate gradually. This will reduce the reliability of the system and second drawbacks are the switching of vectors in sequence is not optimized to enhance the power efficiency of...
inverter. By observing the order of switching in Figure 2, transition of vector $v_o (111)$ to $v_{L1} (221)$ results in larger number of switching states for two phases of inverter. It should be noted that higher number of switching will increase the switching losses and hence reduce the efficiency, and this should be avoided for high power applications.

2 level modulation

![Diagram showing 2 level modulation](image)

<table>
<thead>
<tr>
<th>Effect of capacitors' voltages</th>
<th>V_{c1} ↑</th>
<th>V_{c2} ↑</th>
<th>V_{c1} ↓</th>
<th>V_{c2} ↓</th>
<th>V_{c1} ↑</th>
<th>V_{c2} ↓</th>
<th>V_{c1} ↓</th>
<th>V_{c2} ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>$↑$ (increase)</td>
<td>V_{c1} -</td>
<td>V_{c2}</td>
<td>V_{c1}</td>
<td>V_{c2}</td>
<td>V_{c1} -</td>
<td>V_{c2}</td>
<td>V_{c1} -</td>
<td>V_{c2}</td>
</tr>
<tr>
<td>$↓$ (decrease)</td>
<td>$- (unchange)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vectors</td>
<td>(000)</td>
<td>(100)</td>
<td>(110)</td>
<td>(111)</td>
<td>(221)</td>
<td>(211)</td>
<td>(111)</td>
<td></td>
</tr>
<tr>
<td>On-time</td>
<td>$t_o/4$</td>
<td>$t_o/2$</td>
<td>$t_o/2$</td>
<td>$t_o/4$</td>
<td>$t_o/4$</td>
<td>$t_o/2$</td>
<td>$t_o/2$</td>
<td>$t_o/4$</td>
</tr>
</tbody>
</table>

$T_o = t_o + t_o + t_o$

Figure 2. Switching vectors in sequence based on 2-level modulation for balancing strategy

3. PROPOSED BALANCING CONTROL STRATEGY

Based on the investigation of effects on variation of capacitor voltages for every switching state possibility, appropriate ON duration and selection of switching state will be formulated using a look-up table and carrier based controller. The proposed control structure can be illustrated as shown in Figure 3. The switching frequency of inverter will be determined by the carrier frequency [21]. It should be noted that the carrier frequency is set at a constant and high frequency to establish high control bandwidth. In so doing, the controller can be performed without the use of proportional integral (PI) controller, as utilized in [22].

As opposed to the SVM approach, the proposed method does not require estimator to calculate the reference d- and q-axis reference space voltage vector which leads to complex control algorithms. The principle of balancing control strategy of the proposed method can be explained by Figure 4. From this figure, the controllable quantities are compared to their reference to produce the errors which are then regulated by their respective carriers.

The controllable quantity that has quick response is compared to the carrier which has twice frequency than that of the controllable quantity that has lower response. It can be shown that the controllable that has lower response as well as smaller control bandwidth, its vector is directly changed due to the application of voltage vector, as given in (2).

$$\Delta \bar{\phi}_s = (\bar{v}_s - \beta (\bar{i}_s)) \cdot \Delta t$$ \hspace{1cm} (2)

where $\beta (\bar{i}_s)$ is the ohmic drop.

While, the controllable quantity that has quick response as well as high control bandwidth, its magnitude is directly affected by the $\Delta \bar{\phi}_s$, as defined in (3), this yields.

$$\delta_c = \bar{\phi}_s \cdot k(\bar{i}_s) \cdot \sin (\theta_{\phi} - \theta_{kr})$$ \hspace{1cm} (3)

where k is the first order function that has a low pass filtering action. By applying high carrier frequency and appropriate switching vectors, it is believed that the rate of change of δ_c does not exceed the absolute slope of carrier. It is therefore, the variation of capacitor voltages can be restricted around one half of DC voltage.

As it can be seen from the Figure 4, the errors of the controllable quantities are regulated within the carrier at high control bandwidth to establish appropriate selection of switching states and ON duration. It can be noticed that, the time taken to apply short amplitude of vector to increase (or decrease) the ψ_s over one sampling period (T_s) will be equally divided into two; one for selecting (211) (or (110)) and another one
for selecting (100) (or (221)). In so doing, the voltage of both capacitors can be balanced without using voltage sensors, as employed in [12].

![Control structure of the proposed method](image1)

Figure 3. Control structure of the proposed method

![Proposed selection of switching state for balancing of capacitor voltages and constant switching frequency](image2)

Figure 4. Proposed selection of switching state for balancing of capacitor voltages and constant switching frequency

4. DIRECT TORQUE CONTROL OF INDUCTION MOTOR DRIVES

Direct torque control (DTC) is a well-established technology for high power drive inverter introduce by Takahashi and Noguchi in 1896 [23] and this method is based directly on the torque (4) of the machine is being as [5]. Lot of technical paper have shown the great performance of DTC scheme using multilevel inverter [24]-[28]

\[T_e = \frac{3}{2} p \frac{L_m}{L_{d+l-r}} |\varphi_s| \cdot |\varphi_r| \sin \theta_{sr} \]

(4)

Figure 5 show the structure of the direct torque control (DTC) for induction motor working with 3 level NPC inverter with multicarrier switching modulation strategy for high bandwidth potential balancing control. The system consists of an induction motor, 3-level NPC multilevel inverter, look-up table, voltage calculation, d-q current calculation sector detection, and proposed control structure. Three level NPC inverter as detail in Figure 6 was early introduced by Alias et al. in [25]. The inverter consists of a DC source, 12 switches IGBT, two capacitor and six diodes. Mapping of the voltage vectors produced by the three level NPC inverter shown in Figure 7. Based on their amplitude, the voltage vector can be categorized into four type of vector which are long, medium, short and zero voltage vector. Table 1 shows the type of vector, switching state and magnitude for each voltage vector type.
Table 1. Type of voltage vector and magnitude of three-level NPC

<table>
<thead>
<tr>
<th>Type of voltage vector</th>
<th>Switching State</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long amplitude</td>
<td>220, 200, 202, 002, 022, 020</td>
<td>(2V_d/3)</td>
</tr>
<tr>
<td>Medium amplitude</td>
<td>120, 210, 201, 102, 012, 021</td>
<td>(V_d/\sqrt{3})</td>
</tr>
<tr>
<td>Short amplitude</td>
<td>221, 211, 212, 112, 122, 121, 110, 100, 101, 011, 010</td>
<td>(V_d/3)</td>
</tr>
<tr>
<td>Zero amplitude</td>
<td>222, 111, 000</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5. DTC for induction motor working with 3 level NPC inverter with multicarrier switching modulation strategy

Figure 6. 3-level NPC multilevel inverter

Figure 7. Voltage vector of Three level NPC inverter
5. SIMULATION RESULTS

To investigate the effectiveness of the proposed method, the multi-carrier switching modulation strategy for 3-level NPC multilevel inverter has been developed in MATLAB/Simulink environment. Table 2 shows the parameters for the induction motor. In this experiment, the value of torque reference is set at 1.5 at initial condition, then rise to 2 after 1 second as shown in Figure 8.

From the simulation result, the proposed method shows that the estimated torque can follow the reference value while capacitor voltage VC1 and VC2 still regulate at half of Vdc at 120 volt. Figure 9 show carrier waveform compared to the torque error T_{err}, it can be observing that the T_{err} regulate between the carrier so that the torque estimation regulates between the torque reference. In the Figure 10, current waveform I_a show it increase corresponding to the increase of torque while the flux still remain regulate at the initial value as shown in Figure 11.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator resistance, R_s</td>
<td>6.1 Ω</td>
</tr>
<tr>
<td>Rotor resistance, R_r</td>
<td>6.2298 Ω</td>
</tr>
<tr>
<td>Stator self-inductance, L_s</td>
<td>0.47979 H</td>
</tr>
<tr>
<td>Rotor self-inductance, L_r</td>
<td>0.47979 H</td>
</tr>
<tr>
<td>Mutual inductance, L_m</td>
<td>0.4634 H</td>
</tr>
<tr>
<td>Number of pole pairs, P</td>
<td>2</td>
</tr>
<tr>
<td>DC Voltage</td>
<td>240 V</td>
</tr>
</tbody>
</table>

Table 2. Induction motor parameters

Figure 8. Torque response

Figure 9. Carrier waveforms compare with torque error, T_{err}
6. CONCLUSION

In this paper, a simple control for induction motor performed by DTC fed by multi-carrier switching modulation to overcome the imbalance capacitor voltage problem of NPC. The proposed controlled strategy preserved the basic structure of the DTC and apply the multi-carrier switching modulation for switching frequency control and eliminate using the capacitor voltage sensor. MATLAB/Simulink result show, the proposed method is proved to overcome the capacitor imbalanced voltages. In steady state time, the capacitor voltage ripples are restricted to the acceptable value with torque in dynamic conditions.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support provided by the Ministry of Higher Education, Malaysia (MOHE), and Universiti Teknikal Malaysia Melaka (UTeM).

REFERENCES

Multi-carrier switching strategy for high-bandwidth potential balancing control of ... (Zuraidi Md Tahir)

BIOGRAPHIES OF AUTHORS

Z. M. Tahir received the B.Eng. degrees from Universiti Teknologi Malaysia, Johor Bahru, Malaysia, in 2002 and M.Eng. degrees from Universiti Tun Hussein Onn, Malaysia, in 2013. He is currently pursuing Ph.D. under Power Electronics and Drives Research Group (PEDG) in the Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia. His research interests include Power Electronics and Motor Drive Systems.

A. Jidin received the B.Eng. degrees, M.Eng. degrees and Ph.D. degree in Power Electronics and Drives from Universiti Teknologi Malaysia, Johor Bahru, Malaysia, in 2002, 2004, and 2011, respectively. He is currently an academician in Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia. He is also an active researcher in Power Electronics and Drives Research Group (PEDG) that established under the same faculty. His research interests include Power Electronics, Motor Drive Systems, Field-Programmable Gate Array, and DSP Applications.

M. L. M. Jamil received B.Eng. degree from the Universiti Teknologi MARA, Shah Alam, Malaysia, in 2000, M.Sc. degree from University of Newcastle upon Tyne, U.K., in 2003, and Ph.D. degree from The University of Sheffield, Sheffield, U.K., in 2011, all in Electrical Engineering. He is currently an academician in Faculty of Electrical Engineering, University Teknikal Malaysia Melaka, Melaka, Malaysia. He is also an active researcher in Power Electronics and Drives Research Group (PEDG) that established under the same faculty. His research interests include the Design, Control, and Analysis of Permanent-Magnet Machines.