Identification of harmonic source location in power distribution network

Mohd Hatta Jopr1, Aleksandr Skamyin2, Mustafa Manap1, Tole Sutikno3, Mohd Riduan Mohd Shariff4, Aleksey Belsky5

1Faculty of Electrical and Electronic Engineering Technology, Universiti Teknical Malaysia Melaka, Melaka, Malaysia
2Department of Electric Power and Electromechanics, Saint Petersburg Mining University, Saint Petersburg, Russia
3Department of Electrical Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
4Electrical Section, Engineering Department, Malaysian Refining Company Sdn. Bhd., Malaka, Malaysia
5Electromechanical Department, Saint Petersburg Mining University, Saint Petersburg, Russia

Article Info

ABSTRACT

This paper presents the experimental set-up of identification of harmonic source location in the power distribution network using time-frequency analysis, known as S-transform (ST) at the point of common coupling (PCC). S-transform offers high frequency resolution in analyzing the low frequency component and able to represent signal parameters in time-frequency representation (TFR) such as TFR impedance (Z_{TFR}). The proposed method is based on IEEE Std. 1459-2010, ST, and the significant relationship of spectral impedances components (Z_s) that been extracted from the Z_{TFR}, consist of the fundamental impedance (Z_1) and harmonic impedance (Z_h). This experiment was conducted out on an IEEE 4-bus test feeder with a harmonic producing load in numerous different scenarios. The experimental was tested and verified for three consecutive months. The findings of this study reveal that the proposed method provides 100 percent correct identification of harmonic source location.

Keywords:
Harmonic source location
Spectral impedance
S-transform
Time-frequency distribution
Time-frequency representation impedance

Corresponding Author:
Mustafa Manap
Faculty of Electrical and Electronic Engineering Technology, Universiti Teknical Malaysia Melaka
Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Malaka, Malaysia
Email: mustafa@utem.edu.my

1. INTRODUCTION

Due to the rise of harmonic-producing loads, harmonic distortion has become one of the primary power quality concerns [1], [2]. Harmonic distortion, which causes voltage and current waveforms to be distorted and contain various harmonic orders, is one of the most common types of disturbances [3]–[6]. The power system is impacted by the disturbances; therefore, monitoring is required to limit the impacts, which may include equipment failures due to overheating, reduced transformer life expectancy due to deterioration of insulation levels, nuisance tripping, and increased equipment power losses [7]–[10]. Moreover, harmonics can cause overheating and damage to end-user equipment, as well as have unfavorable effects on the power system. As a result, it is critical for a power system operator to understand the system’s harmonic behavior [11]–[13]. As mentioned in [14]–[18], harmonic sources, on the other hand, have complicated properties such as nonlinearity and abrupt variations that are difficult to forecast using standard methods the foremost common circumstance that needs harmonic source location is to settle the disputes over who is responsible for harmonic distortions, whether it comes upstream or downstream of the point of common coupling (PCC) [19]–[21].
The power direction method is the most popular method of identifying harmonic sources [22]–[24]. Next, the critical impedance method based on reactive power [25], [26] also offers a certain level of accuracy. Some basic assumptions are required for the approaches listed above, such as prior knowledge of source impedance [11], [27]–[29]. In contrast of active power flow direction, the reactive power methods provide always correct claims with regards to the dominant equivalent harmonic source. These approaches, however, is unable to establish the harmonic contribution of each side [30]–[34]. Other methods, such as fluctuation and regression methods, require that the major harmonic source be on the customer side and that the background harmonic voltage required to be stable [35]–[39]. Furthermore, approaches based on the detection of total harmonic distortion are insensitive to changes in the phase angle of the harmonic source, making it impossible to precisely establish the source of harmonic distortion [40]–[42]. According to [43], current techniques have been used to identify the harmonic contributions of the customer and the utility in order to detect the harmonic source. Based on the reference impedance as in [34], [44]–[47], a harmonic vector approach has been suggested to determine the utility and customer's harmonic contributions at the PCC. This method allowed for the calculation of harmonic contributions without determining customer impedance, and also improved the findings in resonance situations. The independent component analysis (ICA) methods were utilized in recent research [47]–[50], which need the impedance on the customer's side to be higher than the one on the utility side. However, when the network contains filters or capacitors on the customer side, this is impractical [7], [51].

Short-time fourier transform (STFT) and Stockwell transform or S-transform (ST), are the most common time–frequency domain transforms employed in harmonic signal detection approaches [52]–[58]. As explained in [59]–[62], STFT on the one hand, has some disadvantages such as, this transform is window-dependent and has a fixed resolution based on the window size. Furthermore, because the STFT is an Fourier transform (FT) based technique, it may have issues with the picket-fence effect [63], [64]. ST, on the other hand, because it is a multiresolution spectrum analysis technique, does not have these issues [65]–[68]. As a result, ST appears to be a potential transform for power system protection [27]. Because it incorporates information in both the temporal and frequency domains, the ST has shown to be effective in harmonic signal identification approaches [69]. Thus, this paper proposes an experimental setup based on IEEE Std.1459-2010 and ST due to identify the harmonic source location.

2. METHOD
2.1. Proposed method

The identification of harmonic source location is divided into five steps, as indicated in Figure 1. The signals are first measured for both voltage and current at the PCC of the network system. Second, four specific instances were explored for recognising harmonic sources on IEEE 4-bus test feeders [44]. The time-frequency representation (TFR) analysis was done on the PCC's voltage and current measurements in the third step (\(V_{PCC}\) and \(I_{PCC}\)). This analysis yielded the impedance TFR (\(Z_{TFR}\)), which was then used to calculate the impedance spectral (\(Z_h\)) components by calculating the values of the \(Z_{TFR}\) components. Finally, the significant association between the fundamental impedance (\(Z_1\)) and harmonic impedance (\(Z_h\)) components of impedance spectrum (\(Z_h\)) components was observed and employed for harmonic source detection. In this experiment, a harmonic generating load was chosen with an amplitude modulation index (\(m_a\)) of 1.0, a frequency modulation index (\(m_f\)) of 90, and an input frequency (\(f_i\)) of 50 Hz [70]–[73].

![Figure 1. The implementation of the harmonic source identification method](Image)
The IEEE 4-bus test feeder is chosen and illustrated in Figures 2 and 3 in order to detect the harmonic source location in the power distribution network in consideration of upstream and downstream of the PCC. Where N is a non-harmonic source which is the resistor load and H is the harmonic producing load. In order to test and evaluate the proposed method, an experimental setup was built up in an advanced digital signal processing (ADSP) research facility, as illustrated in Figure 4.

Figure 2. An upstream-downstream for case 1

Figure 3. Case 2, 3, and 4

Figure 4. Experimental setup of the proposed system

2.2. S-transform

The S-transform (ST) is hybrid of wavelet transform (WT) and the STFT, which inherits the advantages of both in signal processing [74], [75]. In the transformation process, ST uses a moving and scalable localising Gaussian window in particular. ST can be defined as shown in:

\[
ST(t, f) = \int_{-\infty}^{\infty} x(t) \frac{|f|}{\sqrt{2\pi}} e^{-\frac{(t-t_0)^2}{2}} e^{-j2\pi ft} dt
\]

(1)

\[
\sigma(f) = \frac{1}{|f|}; g(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-t^2}{2\sigma^2}}
\]

(2)

where \(x(t)\) is the signal, \(t\) is the time, \(f\) is the frequency, \(g(t)\) is the scalable Gaussian window, and \(\sigma(t)\) is a parameter that controls the position of the Gaussian window.

2.2.1. Signal parameters

The TFR is used to determine the signal parameters of power quality. Furthermore, the instantaneous value is used in the analysis to obtain real-time parameters [76].

- Instantaneous root-mean square voltage

The root-mean square (RMS) voltage of signal \((V_{rms}(t))\) can be obtained from the sampled waveform, and written as [77], [78].
\[V_{\text{rms}}(t) = \sqrt{\int_0^f P_x(t, f) df} \]

- Instantaneous root-mean square fundamental voltage

The instantaneous RMS fundamental voltage \(V_{\text{rms}}(t) \) can be computed as [79],

\[V_{1\text{rms}}(t) = \sqrt{2 \int_{f_{lo}}^{f_{hi}} P_x(t, f) df} \]

\[f_{hi} = f_0 + 25 \text{ Hz}; \quad f_{lo} = f_0 - 25 \text{ Hz} \]

where \(P_x \) is the power spectrum obtained from the TFR of signal and \(f_0 \) is the fundamental frequency corresponding to the power system frequency.

2.2.2. Impedance time-frequency representation analysis

The impedance TFR \(Z_{\text{TFR}} \) offered useful information about the frequency response of the system, as well as harmonic points and possible issues caused by harmonic distortions. The desired current harmonic data and the difference in voltage harmonic data at the location of interest have to be measured in order to determine the impedance TFR. The \(Z_{\text{TFR}} \) at each harmonic frequency was calculated using this data, and the results were shown [80]. The \(Z_{\text{TFR}} \) equation can be expressed as,

\[Z_{\text{TFR}} = \frac{S_v(t,f)}{S_i(t,f)} \]

where \(S_v(t,f) \) signifies the TFR of voltage and \(S_i(t,f) \) signifies the TFR of current.

2.2.3. Spectral impedance

The spectral impedance \(Z_s \) comprises the fundamental impedance \(Z_1 \) and harmonic impedance \(Z_h \) that is obtained from \(Z_{\text{TFR}} \) [81]. The fundamental impedance \(Z_1 \) was an impedance at 50 Hz, which was the frequency of the power source. In the meantime, harmonic impedance \(Z_h \) was a harmonic impedance with an order of harmonics.

3. RESULTS AND DISCUSSION

The implementation of the proposed technique initially done by measuring the voltage and current signals at PCC with consideration of 4 specific cases as discussed in 2.1. The linear time-frequency distribution method namely S-transform is applied in the analysis. The location of harmonic sources can be distinguished by analyzing the significant relationship between \(Z_1 \) and \(Z_h \), accordingly.

3.1. Case 1: no harmonic source

Only the linear loads were placed upstream and downstream of the PCC in case 1. The voltage signal in the time domain, as well as its voltage TFR, are shown in Figures 5(a) and (b). The maximum voltage was 342.5 V, while the maximum current was 66.5 A. Meanwhile, Figures 5 (c) and (d) illustrate the TFR of voltage and current signals derived from S-transform analysis. The higher the magnitude, the redder the colour bar, the lower the magnitude, and the bluer the colour bar. There were no other components in the signals and the largest magnitude was only seen at 50 Hz. The results showed that there were no harmonic components in the signal. The \(Z_1 \) existed at 50 Hz with a resistance of 4.8 ohm and no harmonic components in the signal, as shown in Figure 5 (d). Thus, in case 1, the significant relationship between \(Z_1 \) and \(Z_h \) in the power system network at no harmonic producing load can be expressed as,

\[Z_{1} \neq 0 \text{ ohm} \]

\[Z_{h} = 0 \text{ ohm} \]

where for harmonic component, \(h \) is any positive integer, whereas for interharmonic, \(h \) is any positive non-integer.
Figure 5. Case 1 (a) voltage signal in time domain, (b) current signal in time-domain, (c) TFR impedance using S-transform, and (d) spectral impedance

3.2. Case 2: harmonic source located at point of common coupling’s downstream

The linear load is positioned upstream of the PCC in case 2, while the harmonic load is located downstream. The TFR of voltage and current signals derived from the S-transform analysis is shown in Figure 6(a) and (b). It can be seen that the harmonic and interharmonic components exist between 200 and 1000 Hz, whereas the fundamental components of voltage and current have the maximum magnitudes at 50 Hz. The Z_{TFR} is calculated using (5) in Figure 6(c), and the figure demonstrates that impedance components occur at frequencies of 50 Hz, 275 Hz, 375 Hz, 600 Hz, 700 Hz, and 900 Hz, respectively. The Z_{S} is then derived by calculating the parameters of the Z_{TFR}, as shown in Figure 6(d).

Table 1 summarises the Z_{S} characteristics shown in Figure 6(d). The Z_{1} value is always higher than any Z_{h} components, as can be seen. The relationship between the Z_{S} components can be used to identify the location of harmonic sources, according to the findings. As a result, in instance 2, the significant relationship between Z_{1} and Z_{h} at the condition of the harmonic source downstream of the PCC can be stated as,

$$Z_{1} \neq 0 \text{ ohm}$$

$$Z_{h} < Z_{1}$$

where for harmonic component, h is any positive integer whereas, for interharmonic, h is any positive non-integer.

<table>
<thead>
<tr>
<th>Spectral impedance</th>
<th>Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{1}</td>
<td>3.4</td>
</tr>
<tr>
<td>Z_{275}</td>
<td>2.5</td>
</tr>
<tr>
<td>Z_{375}</td>
<td>2.0</td>
</tr>
<tr>
<td>Z_{600}</td>
<td>2.1</td>
</tr>
<tr>
<td>Z_{700}</td>
<td>1.5</td>
</tr>
<tr>
<td>Z_{900}</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 1. The spectral impedance components for case 2
3.3. Case 3: harmonic sources located at point of common coupling’s upstream and downstream

The TFR of voltage and current signals derived from the S-transform analysis for case 3 is shown in Figures 7(a) and 7(b). It can be seen that the harmonic and interharmonic components occur in the frequency range of 200 Hz to 1000 Hz, whereas the fundamental components of voltage and current, respectively, have the maximum magnitudes at 50 Hz. The voltage and current waveforms can be seen to be distorted due to the harmonic load located upstream and downstream of the PCC. The Z_{TFR} is calculated using (5) in Figure 7(c), and the figure demonstrates that impedance components occur at frequencies of 50 Hz, 275 Hz, 375 Hz, 600 Hz, 700 Hz, and 900 Hz, respectively. The Z_{S} is then calculated by estimating the parameters of the Z_{TFR}, as shown in Figure 7(d).

Figure 7. Case 3 (a) voltage signal in TFR using S-transform, (b) current signal in TFR using S-transform, (c) TFR impedance using S-transform, and (d) spectral impedance
Table 2 summarises the ZS characteristics shown in Figure 7(d). The Z1 value is always lower than any Zh components, as can be shown. The relationship between the Zs components can be utilised to pinpoint the location of harmonic sources, according to the findings. As a result, in case 3, the significant relationship between Z1 and Zh at the condition of the harmonic source positioned upstream and downstream of the PCC may be expressed as shown in:

\[Z_1 < 0 \, \text{ohm} \tag{10} \]

\[Z_h > Z_1 \tag{11} \]

where for harmonic component, h is any positive integer whereas, for interharmonic, h is any positive non-integer.

<table>
<thead>
<tr>
<th>Spectral impedance</th>
<th>Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁₇₅</td>
<td>0.7</td>
</tr>
<tr>
<td>Z₁₇₇</td>
<td>1.6</td>
</tr>
<tr>
<td>Z₆₀₀</td>
<td>1.9</td>
</tr>
<tr>
<td>Z₇₀₀</td>
<td>1.4</td>
</tr>
<tr>
<td>Z₉₀₀</td>
<td>2.1</td>
</tr>
</tbody>
</table>

3.4. Case 4: harmonic source located at point of common coupling’s upstream

The harmonic load is positioned upstream of the PCC in case 4. Figures 8(a) and (b) illustrate the voltage and current signals acquired from S-transform analysis in the TFR. Between 200 Hz and 1000 Hz, the lowest-magnitude harmonic and interharmonic components are present, with the maximum component magnitude at 50 Hz. The Z_TFR is calculated using equation 5 in Figure 8(c), and the figure demonstrates that impedance components occur at frequencies of 50 Hz, 275 Hz, 375 Hz, 600 Hz, 700 Hz, and 900 Hz, respectively. The Zs is then calculated by estimating the parameters from the Z_TFR, as shown in Figure 8(d).

![Figure 8](image-url)

Figure 8. Case 4 (a) voltage signal in TFR using S-transform, (b) current signal in TFR using S-transform, (c) TFR impedance using S-transform, and (d) spectral impedance (Zs)
Identification of harmonic source location in power distribution network (Mohd Hatta Jopr)

Table 3 summarizes the Z_S characteristics shown in Figure 8(d). The Z_I value is the same for all Z_S components, as can be observed. At the condition of the harmonic source positioned upstream of the PCC, the significant relationship between Z_I and Z_S can be stated as,

$$Z_I \neq 0 \text{ ohm}$$ \hspace{1cm} (12)

$$Z_h = Z_I$$ \hspace{1cm} (13)

where for harmonic component, h is any positive integer whereas, for interharmonic, h is any positive non-integer.

Table 3. The spectral impedance components for case 4

<table>
<thead>
<tr>
<th>Spectral impedance</th>
<th>Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_I</td>
<td>3.3</td>
</tr>
<tr>
<td>Z_{375}</td>
<td>3.3</td>
</tr>
<tr>
<td>Z_{750}</td>
<td>3.3</td>
</tr>
<tr>
<td>Z_{600}</td>
<td>3.3</td>
</tr>
<tr>
<td>Z_{900}</td>
<td>3.3</td>
</tr>
<tr>
<td>Z_{1000}</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Furthermore, the proposed method was tried and verified on an experimental setup in October, November, and December 2021, with the harmonic producing load in the linear area (amplitude modulation index is $0 \leq ma \leq 1$ and inverter switching frequency range is between 2 kHz and 15 kHz) [82]. Surprisingly, as demonstrated in Figure 9, the proposed method offers 100 percent accurate harmonic source location detection. According to Table 4, the proposed method is 100 percent correct in each scenario, and the significant relationship of Z_S for harmonic source location identification is summarised as shown in:

![Figure 9. The correctness of the proposed method](image)

Table 4. Result of proposed method

<table>
<thead>
<tr>
<th>Z_I</th>
<th>Z_S</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_I \neq 0$ ohm</td>
<td>$Z_S = 0$</td>
<td>Case 1: No harmonic source</td>
</tr>
<tr>
<td>$Z_I \neq 0$ ohm</td>
<td>$Z_S < Z_I$</td>
<td>Case 2: Harmonic source located at PCC downstream</td>
</tr>
<tr>
<td>$Z_I \neq 0$ ohm</td>
<td>$Z_S > Z_I$</td>
<td>Case 3: Harmonic source located at upstream and downstream of PCC</td>
</tr>
<tr>
<td>$Z_I \neq 0$ ohm</td>
<td>$Z_S = Z_I$</td>
<td>Case 4: Harmonic source located at PCC downstream</td>
</tr>
</tbody>
</table>

4. CONCLUSION

Time-frequency distribution analysis namely S-transform has shown tremendous result in this analysis. The major contribution of this study is the discovery of a significant relationship between Z_S components that acquired from S-transform analysis in locating harmonic source location. As a result of the proposed method's results, the harmonic source site can be identified using the significant relationship of spectral impedances in a fast, cost-effective, and accurate manner.

ACKNOWLEDGEMENTS

This research is supported by the Advanced Digital Signal Processing Laboratory. Special thanks also to the Faculty of Electrical and Electronic Engineering Technology (FTKEE) of Universiti Teknikal
Malaysia Melaka (UTeM), Faculty of Electrical Engineering (FKE), UTeM, Center for Robotics and Industrial Automation (CeRIA) of UTeM and Ministry of Higher Education Malaysia (MOHE). Their support is gratefully acknowledged.

REFERENCES

G. N. Lopes, T. S. Menezes, G. G. Santos, L. H. P. C. Trondoli, and J. C. M. Vieira, “High Impedance Fault detection based on...

BIOGRAPHIES OF AUTHORS

Mohd Hatta Jopri received his B.Eng. from Universiti Teknologi Malaysia (UTM), M.Eng. in Electrical Power Engineering from Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Germany, and Ph.D. degree from Universiti Teknikal Malaysia Melaka (UTeM), respectively. Since 2005, he is an academic and research staff at UTeM. He is registered with Malaysia Board of Technologist (MBOT), Board of Engineers Malaysia (BEM) and a member of International Association of Engineers (IAENG). His research interests include power electronics and drive, power quality analysis, signal processing, machine learning, and data science. He can be contacted at email: hatta@utem.edu.my.
Identification of harmonic source location in power distribution network (Mohd Hatta Jopri)

Aleksandr Skamyin was born in Volkhov, Russia on 1986. He received his B.Eng and Ph.D. degree in electrical engineering from Saint-Petersburg Mining University (Russian Federation) in 2007 and 2011, respectively. From 2011 till 2015 he was the assistant in National Mineral Resources University (Mining University), Saint-Petersburg, Russian Federation. Since 2015, he is an associated professor in Saint-Petersburg Mining University (Russian Federation). His research interests include power quality, reactive power compensation in the presence of harmonics, and regulation of power consumption mode. He can be contacted at email: skamin_an@pers.spmi.ru.

Mustafa Manap was born in Kuala Lumpur, Malaysia on 1978. He received his B.Sc from Universiti Technologi Malaysia in 2000 and Msc. in Electrical Engineering from Universiti Teknikal Malaysia Melaka (UTeM) 2016. Since 2006, he has been an academia staff in the Universiti Teknikal Malaysia Melaka (UTeM). He registered with Malaysia Board of Technologist (MBOT), and a member of International Association of Engineers (IAENG). His research interests are power electronics and drive, instrumentation, and DSP application. He can be contacted at email: mustafa@utem.edu.my.

Tole Sutikno received B. Eng. and M. Eng. in electrical engineering from Universitas Diponegoro and Universitas Gajah Mada, Indonesia, in 1999 and 2004, respectively, and the Ph.D degree from Universiti Teknologi Malaysia in 2016. He is an Associate Professor with the Electrical Engineering Department, Universitas Ahmad Dahlan, and the leader of Embedded Systems & Power Electronics Research Group (ESPERG). He has published hundreds of research results in the form of scientific articles published in reputable international journals, international proceedings and books. In addition, he is active as an editor in several reputable international journals in the fields of electrical, computer and informatics engineering. His research interests include power electronics and electric motor control, industrial electronics and informatics, embedded systems and the internet of things (IoT), renewable energy and electrical energy storage systems, and digital control systems (control, robotics and sensors). He can be contacted at email: tole@ee.uad.ac.id.

Mohd Riduan Bin Mohd Shariff was born in Sungai Besar, Selangor in 1983. He received his B. Eng in Electrical & Electronic Engineering from Universiti Kebangsaan Malaysia (UKM) in 2006. He has 14 years of experience covering asset life study, engineering, procurement, construction, commissioning, and maintenance in the oil and gas industry environment. He was also certified as a professional engineer (Ir.) with a practising certificate In ELECTRICAL by the Board of Engineers Malaysia (BEM). He was currently pursuing his study in Ph.D industry with Universiti Tun Hussein Onn Malaysia (UTHM). His practical and research interest include infrared thermography technology, protection relay, and electromagnetic interference. He can be contacted at email: riduan_shariff@petronas.com.

Aleksey Belsky was born in Kingisepp, Russia in 1987. He received his B.Eng., M.Sc. and Ph.D. degree in electrical engineering from Saint-Petersburg Mining University (Russian Federation) in 2008, 2010 and 2013, respectively. From 2013 till 2017 he was the assistant in National Mineral Resources University (Mining University), Saint-Petersburg, Russian Federation. Since 2017, he is an associated professor in Saint-Petersburg Mining University (Russian Federation). His research interests include power quality, energy saving, power flow control, hybrid electrical complex, wind generator, and photovoltaic power station. He can be contacted at email: Belskiy-AA@pers.spmi.ru.