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 A modular abstraction is presented to implement model predictive control 

(MPC) on a three phase two level voltage source inverter to control its output 

current. Traditional ways of coded implementation do not provide insights 

into the complex nature of MPC; hence a more intuitive, logical and flexible 

approach for hardware implementation is conceptualized in the form of 

signal flow graphs (SFGs) for estimation, prediction and optimization. 

Simulation results show good performance of the approach and easier code 

generation for real time implementation. RL load is assumed for the inverter 

and the importance of choosing load inductance and sampling time ratio is 

emphasized for better control performance. 
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1. INTRODUCTION  

Three phase two level voltage source inverters are widely used in power electronics applications 

especially in drive control [1], [2]. Controlling output current of such inverter topologies is also widely 

researched topic. Model predictive control (MPC) is emerging as the most promising digital control method 

in the field of power electronics and drive applications . It has extensively been studied for induction and 

synchronous motor drives, front end rectifiers, multilevel inverters, and DC-DC converters [3], [4]. MPC 

demand higher computational costs and its applications will rapidly increase in the field of power electronics 

with the advent of high speed microprocessors and digital signal processors. MPC provide numerous benefits 

over traditional control methods such as easier handling of system constraints, parameter variations and 

easier incorporation of control tasks in the optimization cost function [5]–[7]. Most of the control strategies 

treat converters to be linearized systems ignoring their highly nonlinear nature. MPC takes this factor into 

account.  

 A model based predictive control for VSI is presented and discussed in detail in [1]. A space vector 

(SV) representation is used to model and analyze the system. An RL load and a simple back EMF model is 

used to investigate the performance of the controller. Controller consists of three stages of implementation 

i.e. estimation of back EMF, prediction of future currents, and optimization of a cost function involving 

current error. The estimation and prediction is based on Euler’s forward approximation formula and 

prediction horizon of 1 is assumed.  

Most of the controller applications are implemented in the form of C codes, making the working and 

troubleshooting of the controller obscure and difficult. Instead of directly implementing the control scheme in 

the form of codes, a signal flow graph representation and automatic code generation of the controller is 
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suggested here for easier modifications, understanding and implementation. A module based SFG will make 

it also possible to adopt model referencing for incorporating prediction horizon greater than 1 by simply 

repeating the appropriate modules. Tustin discretization rule is adopted for better results and a prediction 

horizon equal to 2 is used. Moreover the role of a special resistance L/Ts is elaborated with simulation results 

as a gain factor.  

In the first section, mathematical model of inverter and load is presented. In section II, detailed 

discussion on the proposed MPC approach is given, followed by simulation results and conclusion in section 

III and IV respectively.  

 

 

2.  INVERTER AND LOAD MODEL 

The inverter and load model is adopted from [8].  The circuit diagram of the system is shown in 

Figure 1. 
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Figure 1. Three phase voltage source inverter with RL load 

 

 

A dc source feeds the inverter with a constant supply voltage
dc

V  . Switches of the inverter are 

operated in bipolar fashion i.e. no two switches in the same leg are turned ON or OFF simultaneously. 

Therefore the lower switches are represented with a complimentary symbol. Inverter is driving a three phase 

RL load with a sinusoidal back EMF _e back  . A space vector representation will be assumed throughout 

the discussion. Space vector for three phase quantities ,x y and z  is defined as: 
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The inverter voltage space vector can be defined as: 
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Where 
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bN b dc
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          (3) 

 

Based on (2) and (3) a table (Table 1) of inverter voltage vectors can be generated for each possible 

switching state. Note that 
0 7

0v v   lie on the origin. Voltage vectors are shown in Figure 2.  

The load equation in the form of space vectors can be written as [9]: 

_
di

v iR L e back
dt

            (4) 

Following vectors are assumed in (4): 
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3.  MODULAR MPC CONTROLLER 

The block diagram of the traditional way to implement MPC for current control is shown in Figure 

3. 
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Figure 2. Traditional implementation of MPC 

 

 

Table 1. Inverter Switching States and Resulting Voltage Vectors 

 
 
 
 

V1

V2

V6V5

V4

V3

 

V1

V2

V6V5

V4

V3

 
 

Figure 3. Voltage vectors 

 

Figure 3. Voltage Vector addition for prediction 

horizon N=2 
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For predicting currents, we can discretize (4) using Euler’s forward rule 
( ) ( 1) ( )

s

dy t y k y k

dt T

 
  to 

get the following approximation [10]: 

 

          1 | 1 _
o

o

Ri k k i k R v k e back k
R

           (6) 

 

Where  1 |i k k is the predicted value of current, one sampling step into the future 1k  and the 

prediction is made at time instant k .
o

s

LR
T

 is a special ratio and can be changed by changing the sampling 

time
s

T  [11]. Note that  v k can take 7 values depending upon the switching combination applied to the 

inverter. We will assume all the possible switching states to predict 7 values of the current and choose the 

best switching state which produces minimum current error.  

For better performance, we will assume prediction horizon equal to 2. Therefore, at time instant 

2k  the current can be predicted to be: 

 

          2 | 1 1 | 1 _ 1
o

o

Ri k k i k k R v k e back k
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            (7) 

 

Since back EMF is slow varying, therefore we can safely assume    _ 1 _e back k e back k  . 

Putting (6) into (7) with  1
1

o

Rc
R

   and 
2 o

c R  and simplifying: 

 

            
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The underlined part in (8) is significant since it represents the voltage vector addition to predict 

current two instants into the future. Each vector from 
0

v  to 
6

v is added to the scaled version of entire vector 

space. Ignoring 
0

v addition, we can anticipate 36 sums. This situation is shown for 
1

v addition in fig. 4. Note 

that c1 is less than 1, therefore the added vectors are smaller in lengths. In the same way we can get all the 

sums and evaluate (8) for different vectors. Number of sums can further be reduced by considering the fact 

that 
o

R  is larger than R which will give
1

1c  . 

For better estimation of back EMF, we will use Tustin’s Bilinear Transformation [12] i.e. 
1

1

2 1

1
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z
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T z


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. Applying Laplace transform on (4) will result in: 

 

_V RI sLI E back            (9) 

 

After discretization: 

 

     1 1 1
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  
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1
z


represents unit delay and the system is assumed relaxed. Based on equation (6) and equation (10) 

the implementation block diagrams are shown in Figure 5 and Figure 6. These block diagrams can be 

separately implemented for real and imaginary parts of the system or multiplexed as a vector.  
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Figure 4. Back EMF estimation module 

 

Figure 5. Current Prediction 

 

 

We can repeat the prediction module twice to get the predictions  2 |i k k and the process can be 

extended to further predictions easily. However, the number of computations will increase 
2

N times. There 

are various techniques available to reduce these calculations.  

After prediction and estimation, we have to choose the best switching state to be applied at the next 

sampling interval based on the following cost function.  
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Here, the currents are referred to the stationary   frame. Assuming that we choose 1N  , from 

fig. 6, we see that there are 7 predictions for current at time instant 1k  , hence 7 values of cost function in 

(11) can be obtained by the implementation shown in Figure 7. The diagram uses basic building blocks 

available in most simulation software for code generation. After the calculation of 7 error values between 

future reference current and 7 predicted currents, their absolute value is computed. Next block finds the 

minimum absolute error ( _g opt ). To find the voltage vector which produces this minimum error, we 

compare _g opt  with all the other values. Only one comparison produces 1 which is multiplied with the 

index values to determine optimal state _state opt  to be applied at next sampling interval. For prediction 

horizon greater than 1, this module can easily be replicated as required. The overall implementation block 

diagram is shown in Figure 8. 
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Figure 6. Selection of optimal switching states 

 

Figure 7. Implementation Block Diagram 
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4.  SIMULATION RESULTS 

The proposed modular approach is implemented in Matlab/Simulink for 10 , 8L mH R   . Peak 

amplitude of back EMF is assumed to be 120V and frequency of 50 Hz while DC source of 450V is 

considered. Figure 9 shows the simulation results of output currents for a sinusoidal reference of amplitude 

12A and frequency 50 Hz, for two different values of sampling time i.e. 100 s  and 20 s . Since decreasing 

the value of sampling time will require a higher switching frequency, it will significantly increase the quality 

of the output currents at the same time giving a boost to the computational demands. Practically, it becomes 

computationally heavier to use smaller values of sampling time. Therefore a compromise is made while 

choosing the sampling time for less distorted current waveforms.  

 

 

  
 

Figure 8. Effect of sampling time on output current 

 

Figure 9. Effect of L/Ts ratio on output currents 

 

 

 
Figure 10. Optimal states and cost function for different values of sampling time 

 

 

Figure 10, on the other hand shows the effect of the ratio L/Ts on the current waveforms. Only 

single phase current is showed to explain the effect. If the ratio is kept higher i.e. 
s

T  smaller, current 

waveforms are less distorted. If we decrease the ratio by increasing
s

T , the current THD increases and 

distortions occur. If this ratio becomes equal to R, current predictions are purely made on the basis of 

estimated back EMF and voltage vectors. For better results, this ratio should be kept around 100 to 200.  

Finally Figure 11 gives the plots of the optimal costs and optimal states calculated by the MPC 

controller for a limited frame of time. There is no significant effect of sampling time on the optimal states 
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chosen for the inverter, however optimal costs are significantly reduced when smaller sampling times are 

used.  

 

5.  CONCLUSION 

A modular way to interpret and implement model predictive control (MPC) for a three phase two 

level inverter is investigated. The basic stages involved in MPC implementation are broken down to simple 

modules based on SFGs and fundamental building block found in all digital control implementation and 

simulation software. The approach provides more intuition, flexibility and ease of code generation and 

modification of the MPC hardware implementation. This approach can be easily extended to incorporate 

higher prediction horizons and complex discretization methods for estimation. Future work may involve the 

extension of the approach to other applications such as drive control, increasing the prediction horizon by 

using vector representation and reduction of effective switching states through state transition diagrams.  
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