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 This paper presents a novel Stator Current based Model Reference Adaptive 

System (SC_MRAS) speed observer for high-performance Six Phases 

Induction Motor (SPIM) drives using linear neural network. The article aim 

is intended to improve performance of an SC_MRAS observer, which were 

presented in the literature. In this proposed scheme, the measured stator 

current components are used as the reference model of the MRAS observer 

to avoid the use of a pure integrator and reduce the influence of motor 

parameter variation. The adaptive model uses a two-layer Neural Network 

(NN) to estimate the stator current, which has been trained online by means 

of a Least Squares (LS) algorithm instead of uses a nonlinear Back 

Propagation Network (BPN) algorithm to reduce the complexity and 

computational burden, it also help to improve some disadvantages cause by 

the inherent nonlinearity of  the BPN algorithm as local minima, two 

heuristically chosen parameters, initialization, and convergence problems, 

paralysis of the neural network. The adaptive model of the proposed scheme 

is employed in prediction mode, not in simulation mode as is usually the case 

in the literature, this made the proposed observer operate better accuracy and 

stability. In the proposed observer, stator and rotor resistance values are 

estimated online, these values thereafter were updated for  the current 

observer and rotor flux identifier to enhance the accuracy, robustness and 

insensitivity to parameters variation for the proposed observer. The proposed 

LS SC_MRAS observer has been verified thought the simulation and 

compared with the BPN MRAS observer. The simulation results have proven 

that  the speed is estimated a consequent quicker convergence, do not need 

the estimated speed filter, lower estimation errors both in transient and steady 

state operation, better behavior in low and zero speed operation. 
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1. INTRODUCTION 

In recent decades, the sensorless vector controlled SPIM drives are being vigorously developed for 

high performance industrial drive systems. The main advantages of  the sensorless SPIM drives are higher 

torque density, greater efficiency, reduced torque pulsations, fault tolerance, and reduction in the required 

rating per inverter leg [1] and its reliable working characteristics and high failure tolerance. On the other 

hand, the sensorless drive have high reliability and mechanical robustness, save cost. The different 

techniques for the speed sensorless control of induction motors have been proposed. They usually are divided 

into two categories, the fundamental model based observers and anisotropies model based observers. Model-
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based estimation strategies include open-loop observers [2], sliding-mode observers [3], Extended Kalman 

Filter [4], Backstepping [5], model reference adaptive systems (MRAS) [6] and artificial intelligence (AI) 

[7]. Recent research also used predictive current control for sensorless IM drives [8]. Sensorless drives have 

been successfully applied in medium and high speed regions [9],[10], but low and zero speed operation is 

still a large challenge. In order to overcome these problems a high frequency voltage or current carrier were 

injected, needed to excite the saliency itself [11]. This method works well at low and near zero speed region. 

However, their major disadvantages are computational complexity, the need of external hardware for signal 

injection and the adverse effect of injecting signal on the machine performance. Due to its simplicity and ease 

of implementation the model based methods and especially MRAS based methods are, until now, the most 

widely used.The main problems associated with the low speed operation of model-based sensorless drives are 

related to machine parameter sensitivity, stator voltage and current acquisition, and flux pure integration 

problems [12]-[15]. Numerous MRAS have been proposed. Among them, the rotor flux MRAS first 

introduced by Schauder [16], Flux Backstepping Observer [17], both suffer from DC drift problems 

associated with pure integration and sensitivity to stator resistance variation, especially in the low speed 

region.  In order to improve the performance of observer overcome the effect by sensitivity to stator 

resistance variation, online adaptation of the stator resistance [18],  the pure integration problems, Extended 

Kalman Filter (EKF), a modified torque based on MRAS schemes have proposed in [19],[20], respectively. 

Although [19],[20] have shown that these approaches significantly improve the performance of the RF-

MRAS at low speed, these scheme remain the effected by the sensitivity to parameter variations. An 

improved rotor flux estimation to eliminate the pure integration problems and the effect of sensitivity to 

parameter variations for a Torque MRAS is proposed in [21]. Simulation and experimental results are shown 

the sensorless control drive operating at low and zero speeds, with both motoring and regenerative operations 

considered. The performance of the observer in low speed regenerating region and the performance of the 

transient and steady state were significantly improved at very low and zero rotor speeds. Analysis of the 

effect of parameter variation on the scheme performance has shown improved robustness against stator and 

rotor resistance variation over a wider range of load torques compared to results previously published for the 

conventional scheme. However, the estimated error increase at very low (3.14 rad/s) and zero speed range is 

recorded. The performance of the speed estimation in low speed regenerating region and the performance of 

the transient and steady state is not really satisfied.   

Another approach, the stator current MRAS scheme has been introduced in [22]-[23]. [23] presents 

a stator current based MRAS speed observer using NN, which is an evolution of [22]. In this proposed 

scheme, to avoid the effect of a pure integrator and reduce influence of motor parameter variations, the 

measured stator current components are used as the reference model. The adaptive model of the proposed 

observer in [23] uses a two-layer NN  with a BPN algorithm to estimate the rotor speed, an off-line trained 

multilayer feed-forward neural network is proposed as a rotor flux observer. The simulation and experimental 

results have proven that the significantly improvement operation performance in low and zero speed ranges,  

the lowest speed limit 25 rpm (2.6 rad/s) was reported. The results in [23] also demonstrate that the proposed 

observer can handle the parameter variation problem with a good level of robustness, sensorless performance 

with a 50% variation in resistances at low speed, 25% load. Although [23] can overcome the main problems 

associated with the low zero and speed operation, however, due to [23] the use of the nonlinear BPN 

algorithm to training a neural network causes some problem as local minima, paralysis of the neural network,  

need of two heuristically chosen parameters, initialization problems, and convergence problems. These make 

the performance of observer in [23] is not really as expected. The speed estimation error and oscillation 

phenomenon at low and zero increase. Other side, the adaptive model in [23] is used in simulation mode, 

which means that its outputs are fed back recursively, this also make  reduce the accuracy and stability of the 

responses of observer. Finally, the use of two neural networks: the first is online trained for stator current 

estimation and the second is off-line trained for rotor flux estimation made increase the complexity and 

computational burden require high about hardware and time handle the data. This impose a large 

disadvantage of MRAS [23]. 

This paper proposes a novel SC_MRAS scheme. In the proposed LS_SC_MRAS observer, the 

reference model uses the stator current components to free  of pure integration problems and insensitive to 

motor parameter variations.  The new points in this SC_MRAS scheme are,  first:  Adaptive Model uses a 

two layer linear neural network, which is trained online by a linear LS algorithm, this  algorithm requires the 

less computation effort and overcome some drawbacks, which cause by its inherent nonlinearity as in 

literature published before [23]. This significantly improves the performance of the proposed observer. 

Second: the adaptive model based on NN is implemented in the prediction mode.  This improvement  ensures 

the proposed observer operate better accuracy and stability. Third: the rotor flux, which is needed for the 

stator current estimation of the adaptive model, is identifier by the Voltage Model (VM) with the stator 

resistance value is estimated online to enhance the performance of the proposed LS_SC_MRAS observer,  in 
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addition, using VM will avoid the instability in the regenerating mode. In this proposed, rotor resistance 

value also has been estimated based on its variation proportional to that one of  stator resistance, then the 

estimated resistance values were updated for the current observer to estimate the current exactly more. 

Finally, the modified Euler integration has been used in the adaptive model to solve the instability problems 

due to the discretization of the rotor equations of the machine enhance the performance of observer. The 

theoretical analysis is validated by simulation tests of the sensorless SPIM drive system under different 

operating conditions. Simulation results are given to compare the performance of the proposed observer with 

recent proposed observer [17],[20]-[23]. The comparison data have proven that the proposed LS_SC_MRAS 

observer are quicker convergence in speed estimation, better dynamic performances; lower estimation errors 

both in transient and steady-state operation. The terms of accuracy of the LS_SC_MRAS observers is quite 

high and it is robustness against motor parameter variations.  From the comparison data have proven that the 

proposed NNVM_SC_MRAS observer is much better solution those known from the literature [17], [20], 

[21],[23] especially, at low and zero speed range. 

The paper is organized into five sections. In Section 2, the basic theory of the model of the SPIM 

and the SPIM drive are presented. Section 3 introduces the proposed LS_ SC MRAS observer. Simulation 

and discuss are presented in Section 4. Finally, the concluding is provided in Section 5. 

 

 

2. MODEL VECTOR CONTROL OF SPIM DRIVES 

2.1. Model vector control of SPIM drives 

The system under study consists of an SPIM fed by a six-phase VSI (voltage Source Inverter) and a 

DC link. A detailed scheme of the drive is provided in Figure 1. This SPIM is a continuous system that can 

be described by a set of differential equations. The model of the system can be simplified by means of the 

vector space decomposition (VSD). By applying this technique, the original six-dimensional space of the 

machine is transformed into three two-dimensional orthogonal subspaces in the stationary reference fame (D-

Q), (x-y) and (zl -z2). This transformation is obtained by means of 6 x 6 transformation matrix equation (1). 

 

 (1) 

 

In that, an amplitude invariant criterion was used. From the motor model obtained by using the VSD 

approach, the following conclusions should be emphasized: 

1. The electromechanical energy conversion variables are mapped to the (D-Q) subspace. The non-

electromechanical energy conversion variables can be found in other subspaces. 

2.  The current components in the (x-y) subspace do not contribute to the air gap flux so they should be 

controlled to be as small as possible. 

3.  The voltage vectors in the (zl -z2) are zero due to the separated neutrals configuration of the machine. 

A VSI has a discrete nature, actually, it has a total number of 
62 64 different switching states 

defined by six switching functions corresponding to the six inverter legs [Sa,Sx,Sb,Sy,Sc,Sz], where Si є 

{0,1}.  On the other hand, a transformation matrix must be used to represent the stationary reference fame 

(D-Q) in the dynamic reference (d - q). This matrix is given: 

 

 (2) 
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Figure 1.  A general scheme of an SPIM drive 

 

 

 
 

Figure 2. Switching states in (D-Q) and (x-y) subspaces for a SP VSI 

 

 

The different switching states and the voltage of the DC link define the phase voltages which can in 

turn be mapped to the (D-Q) - (x-y) space according to the Vector space decomposition VSD approach. 

 

2.2. Model of SPIM                                                                                                                                               

In this part a six phase induction motor, which contains two sets of three phase winding spatially 

shifed by 30 electrical degrees with isolated neutral points (as depicted in Figure 1), is modeled.  Stator and 

rotor voltage equation for this model is as follows:  

 

 
 (3) 

 

where: respectively, [V], [I], [R], [L] and [M] are voltage, current, resistant, self and mutual inductance 

vectors.  As these equations implies, the electromechanical conversion, only takes place in the D-Q subspace 

and the other subspaces just produce losses. So the torque equation can be written as follows: 

 

 (4) 

 

 (5) 

 

where: respectively, Ji, ωr, Bi, Tm, TL, P are inertia coefficient, angular speed, fiction factor, the 

electromagnetic torque that generated by the motor, load torque, number of poles and stator flux linkage at 

the related subspace. 

 

 

3. LS NN_SC_MRAS SPEED OBSERVER 

3.1. PI_SC_ MRAS observer  

In the classical rotor flux MRAS speed observer, the reference model, usually expressed as a 

Voltage Model (VM), represents the stator equation and can be written as following: 
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𝑑Ѱ̂𝑟𝐷

𝑑𝑡
=

𝑥𝑟

𝑥𝑚
(𝑣𝑠𝐷 − 𝑟𝑠𝑖𝑠𝐷 − σ𝑇𝑛x𝑠𝑝𝑖𝑠𝐷)  

𝑑Ѱ̂𝑟𝑄

𝑑𝑡
=

𝑥𝑟

𝑥𝑚
(𝑣𝑠𝑄 − 𝑟𝑠𝑖𝑠𝑄 − σ𝑇𝑛x𝑠𝑝𝑖𝑠𝑄) (6) 

 

where: rs: stator resistances, xs = xm + xsσ; xr = xm + xrσ; xm:   respectively stator, rotor reactances and 

magnetizing, xσs, xσr: stator and rotor leakage reactances, p=d/dt; Tn = 1/2πfsn, σ = 1- xm2 /xs xr, fsn:  

nominal frequency. The adaptive model, usually represented by the Current Model (CM), describes the rotor 

equation where the rotor flux components are expressed in terms of stator current components and the rotor 

speed.  

 
dѰ̂𝑟𝑄

𝑑𝑡
= [

𝑟𝑟

𝑥𝑟
(𝑥𝑚𝑖𝑠𝐷 − Ѱ𝑟𝐷 ) − ω̂Ѱ𝑟𝑄] 𝑇𝑛  

dѰ̂𝑟𝑄

𝑑𝑡
= [

𝑟𝑟

𝑥𝑟
(𝑥𝑚𝑖𝑠𝑄 − Ѱ𝑟𝑄  ) + ω̂Ѱ𝑟𝐷] 𝑇𝑛 (7) 

 

Looking at the formula (6), it is easy to find the presence of  rs and rotor flux, These make the 

traditional RF_MRAS observer suffered by pure integration problems, which being able to cause dc drift and 

initial condition problems, and insensitive to motor parameter variations. In order to overcome these 

problems another approach, the stator current MRAS scheme has been proposed, the stator current 

components is used as a reference model.  The stator current estimator is adjustable model. The estimated 

stator current components are compared with their measured values, and the signal eis is used in the 

adaptation mechanism (9) to generate the rotor speed. In this observer, the mathematical model of the stator 

current observer can be calculated from the combined voltage and current  models and is described by the 

following equation: 

 

𝑇𝑛
d�̂�𝑠𝐷

𝑑𝑡
=

1

𝑥𝑠𝜎
[u𝑟𝐷 − 𝑟𝑠𝑖𝑠𝐷 − 

𝑥𝑚

𝑥𝑟
(  𝑟𝑟

𝑥𝑚

𝑥𝑟
 𝑖𝑠𝐷    −

𝑟𝑟

𝑥𝑟
Ѱ𝑟𝐷 − ωѰ𝑟𝑄)]  

𝑇𝑛
d�̂�𝑠𝑄

𝑑𝑡
=

1

𝑥𝑠𝜎
[u𝑟𝑄 − 𝑟𝑠𝑖𝑠𝑄 − 

𝑥𝑚

𝑥𝑟
(  𝑟𝑟

𝑥𝑚

𝑥𝑟
 𝑖𝑠𝑄    −

𝑟𝑟

𝑥𝑟
Ѱ𝑟𝑄 + ωѰ𝑟𝐷)] (8) 

 

The adjustable model (8) requires information about the rotor flux. This is calculated on the basis of 

voltage model (VM) (6) or current model (CM) (7). In the PI_SC_MRAS observer, the used adaptation 

algorithm is based on the error between estimated and measured stator current developed in [24] (basing on 

the minimization of the Lyapunov function) 

 

ω̂𝑟 =  Kp(e𝑖𝐷Ѱ𝑟𝑄 − e𝑖𝑄Ѱ𝑟𝐷) +  KI  ∫(e𝑖𝐷Ѱ𝑟𝑄 − e𝑖𝑄Ѱ𝑟𝐷) dt (9) 

 

where eisD = isD − iesD, eisQ = isQ − iesQ is the error between estimated and measured stator current. The 

obtained rotor speed value is used in the stator current estimator as changeable parameter, as shown in the 

Figure 3. 

 

 

SPIM

Adaptive Model

vsD

    CM 

-
+

εω

vsQ

Reference Model

isQ

DVM

Rotor flux identifier

-
+

-
+

PI 
controler

isD

Q

isD
isQ

εISD

εISQ

Adaptation Mechanism

 
 

Figure 3. PI _SC_ MRAS speed observer 
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3.2. S NN_SC_ MRAS observer 

3.2.1   Structure of the LS_SC_ MRAS Observer 

In this scheme, the measured stator current components are also used as the reference model of the 

MRAS observer to avoid the use of a pure integrator and reduce influence of motor parameter variation as in 

[22]-[23]. The adaptive model is a two-layer linear NN to estimate the stator current has been trained online 

by means of a least-squares algorithm. This adaptive model is described by the combined voltage- and 

current  models in the stator reference frame (8). Equation (8), Then they been divided by Tn, be re written in 

the following as: 

 

�̇� = AX + Bu (10) 

 

where 

 

�̇� = [

disD

dt
disQ

dt

] ;  A = [
− (1 +

xm
2

xr
2 )

rs

xsσ

−(1 +
xm
2

xr
2 )

rs

xsσ

] ; B = [

1

xsσ
0

0
1

xsσ

1

xsσ

rrxm

xr
2

1

xsσ

xmωr

xr

−
1

xsσ

xmωr

xr

1

xsσ

rrxm

xr
2

] ;  X = [
isD
isQ

] ; u =

[
 
 
 
vsD

vsQ

Ψ̂rD

Ψ̂rQ]
 
 
 

  

 

Its corresponding discrete model is, therefore, given by: 

 

X̂(k) = e[A]TsX(k − 1) + (eATs − I)A−1Bu(k − 1) (11) 

 

e
A T

s : is generally computed by truncating its power series ex pansion, i.e., 

 

eATs = I +
ATs

1!
+

A2Ts

2!
+ ⋯ +

AnTs

n!
 (12) 

 

If n=1, the simple forward Euler method is obtained, which gives the following finite difference equation 

[15]-[17]. 

 

îsD(k) = w1 îsD(k − 1) + w2vsD(k − 1) + w3Ψ̂rD(k − 1) + w4Ψ̂rQ(k − 1)

îsQ(k) = w1 îsQ(k − 1) + w2vsQ(k − 1) + w3Ψ̂rQ(k − 1) − w4Ψ̂rD(k − 1)
 (13) 

 

where marks the variables estimated with the adaptive model and is the current time sample. A neural 

network can reproduce these equations, where are the weights of the neural networks defined as: 

 

2
s s s m

1

s s r r

Tr TL
w =1- - ;

σL σL L T

s
2

s

T
w = ;

σL

^

rs m s m
3 4

s r s r

TL TL ω
w = ;w =

σL T σL L  (14)

 

 

where: îs(k)the current variables estimated with the adaptive model and k is the current time sample, Ts is 

the sampling time for the stator current observer. The ANN has, thus, four inputs and two outputs [22]–[23].  

In the ANN, the weights w1, w2 and w3 are kept constant to their values computed offline while only w4 is 

adopted online. These equations are the same as those obtained in [23]. In the scheme is presented in [23], the 

adaptive model is characterized by the feedback of delayed estimated stator current components to the input 

of the neural network, which means that the adaptive model employed is in simulation mode. Moreover, the 

adaptive model is tuned online (training) by means of a BPN algorithm, however, nonlinear in its nature with 

the consequent drawbacks (local minima, heuristics in the choice of the network parameters, paralysis, 

convergence problems).  

In this LS_SC_MRAS observer proposed, the adaptive model based on the ADALINE has been 

improved, A linear least-square algorithm, which is more suitable than a nonlinear one, like the BPN, is used 

to reduce the computation effort and overcome some drawbacks, which cause by its inherent nonlinearity. 

Furthermore, the employment of the adaptive model in prediction mode leads to a quicker convergence of the 

algorithm, a higher bandwidth of the speed control loop, a better behavior at zero-speed, lower speed 

estimation errors both in transient and steady state conditions.  

An integration method more efficient than that used in (15) is the so called modified Euler 

integration, which also takes into consideration the values of the variables in two previous time steps [25]. 

From (9), the following discrete time equations can be obtained, as shown in (15). Also, in this case, a neural 

network can reproduce these equations, where  and are the weights of the neural networks defined as (16). 
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^ ^ ^ ^ ^

sD (k) 1 sD(k-1) 2 sD(k-1) 3 4 5 sD (k-2) 6 sD (k-2) 7 8rD (k-1) rQ (k-1) rD (k-2) rQ (k-2)

^ ^ ^

sQ (k) 1 sQ (k-1) 2 sQ (k-1) 3 4 5 sQ (k-2) 6 sQ (k-2)rQ (k-1) rD(k-1)

i = w i + w u + w ψ + w ψ w i - w u - w ψ - w ψ

i = w i + w u + w ψ - w ψ + w i - w u



^ ^

7 8rQ (k-2) rD (k-2)- w ψ + w ψ
 (15) 

 
2 2

s sm m m m
1 2 3 4 r 5

s r s r s r s r r s s r s r

m m
6 7 8 r

s r s r r s

3TR 3TR3TL 3TL 3TL TL3T
w =1- - ; w = ;w = ; w = ω ;w = + ; 

2σL 2σL L T 2σL 2σL L T 2σL L 2σL 2σL L T

TL TLT
w = ; w = ; w = ω

2σL 2σL L T 2σL L
 (16)

 

 

Rearranging (15), the matrix equation is obtained in prediction mode; see (17). This matrix equation 

can be solved by any least square technique.  

 
^ ^

m m
rQ (k-1) rQ (k-2)

r s r s

r(k-1)^ ^
m m

rD (k-1) rD(k-2)

r s r s

3TL TL
ψ ψ

2σL L 2σL L
ω

3TL TL
ψ ψ

2σL L 2σL L

 
 

  
 
  
   

^ ^ ^

sQ (k) 1 sQ (k-1) 2 sQ (k-1) 3 5 sQ (k-2) 6 sQ (k-2) 7rQ (k-1) rQ (k-2)

^ ^ ^

sQ (k) 1 sQ (k-1) 2 sQ (k-1) 3 5 sQ (k-2) 6 sQ (k-2) 7rQ (k-1) rQ (k-2)

i - w i - w u - w ψ -  w i + w u + w ψ

i - w i - w u - w ψ - w i + w u + w ψ

 
 
 
    (17)

 

 

Matrix equation (17) can be written: Ax ≈ b. This is a classical matrix equation of the type, where A 

is called a “data matrix”, b is called an“observation vector,” and ωr is the scalar unknown. In this application 

a classical LS algorithm in a recursive form has been employed; This algorithm is described in detail in 

[25],[26]. Figure 4 shows the block diagram of the LS_SC_ MRAS speed observer. In literature there exist 

three Least-Squares techniques, i.e. the Ordinary Least-Squares (OLS), the Total Least-Squares (TLS) and 

the Data Least-Squares (DLS) which arise when errors are respectively present only in b or both in A and in 

b or only in A.  The LS technique solves for this problem by calculating the value of ωr which minimises the 

sum of squares of the distances among the elements (ai, bi), with i = 1, . . . ,m, and the line itself. OLS 

minimises the sum of squares of the distances in the b direction (error only in the observation vector). TLS 

minimises the sum of squares in the direction orthogonal to the line (for this reason TLS is also called 

orthogonal regression) while DLS minimises the sum of squares in the A direction (errors only in the data 

matrix). In this paper, authors focus on analysing OLS algorithm. 

 
^ ^

m m
rQ (k-1) rQ (k-2)

r s r s1

^ ^
2 m m

rD (k-1) rD(k-2)

r s r s

3TL TL
ψ ψ

2σL L 2σL LA
A

A 3TL TL
ψ ψ

2σL L 2σL L

 
            

   
 

^ ^ ^

sQ (k) 1 sQ (k-1) 2 sQ (k-1) 3 5 sQ (k-2) 6 sQ (k-2) 7rQ (k-1) rQ (k-2)1

^ ^ ^
2

sQ (k) 1 sQ (k-1) 2 sQ (k-1) 3 5 sQ (k-2) 6 sQ (k-2) 7rQ (k-1) rQ (k-2)

i - w i - w u - w ψ -  w i + w u + w ψb
b

b
i - w i - w u - w ψ - w i + w u + w ψ
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Figure 4.   LS_ SC_ MRAS speed observer 

 

 

3.2.2. Rotor Speed Estimation Algorithm 

Ax ~ b is the linear regression problem under hand. All LS problems have been generalized by using 

a parameterized formulation (generalized LS) of an error function whose minimization yields the 

corresponding solution. This error is given by: 

 

𝐄(X) =
(Ax−b)T(Ax−b)

1−𝜉+𝜉𝑋𝑇𝑋
 (18) 

 

where T represents the transpose and 𝜉 is equal to 0.5 for TLS, 1 for DLS and 0 for OLS. Using OLS 

algorithm, this error is given by: 

 

𝐄OLS = (Ax − b)T(Ax − b) (19) 

 

where:  

 

(Ax − b) = ε = [
εisD

εisQ
] = [

isD(k) − îsD(k)

isQ(k) − îsQ(k)
] (20) 

 

This error can be minimized with a gradient descent method: 

 

𝜔𝑟(𝑘 + 1) = 𝜔𝑟(𝑘) − 𝜂 𝛾(𝑘)𝑎(𝑘) (21) 

 

where: 

 

𝛾(𝑘) = 𝑎(𝑘)𝑇𝑥(𝑘) − 𝑏(𝑘) (22) 

 

where 𝜂 is the learning rate, a(k) is the row of A fed at instant k, and b(k) is the corresponding observation. 

 

3.2.3. Rotor Flux Estimation and Stator Resistance Online Estimation Algorithm 

From (15) can been seen that, the adaptive model generates stator current estimation values based on 

rotor speed information, stator voltages and rotor flux.  In this proposed observer, the rotor flux values were 

generated base on equation (6) (VM).  

 
𝑑Ѱ̂𝑟𝐷

𝑑𝑡
=

𝑥𝑟

𝑥𝑚
(𝑣𝑠𝐷 − 𝑟𝑠𝑖𝑠𝐷 − σ𝑇𝑛x𝑠𝑝𝑖𝑠𝐷)  

𝑑Ѱ̂𝑟𝑄

𝑑𝑡
=

𝑥𝑟

𝑥𝑚
(𝑣𝑠𝑄 − 𝑟𝑠𝑖𝑠𝑄 − σ𝑇𝑛x𝑠𝑝𝑖𝑠𝑄) (23) 

 

These rotor flux components are identified from the control voltage and the measured stator current. 

Using this VM to identify rotor flux will overcome the instability problem in the regenerating mode of 
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operation, what appear using CM rotor flux identifier.  From (6), (15) and (16), is easy see that, the resistance 

parameters necessary for estimating the speed. However, during motor operation, these parameters will 

change with the increase of temperature, especially, at low speed. Therefore to the performance improvement 

of the observer, especially at low speed, the resistances online identification is necessary. 

In the proposed LS based adaptive speed observer the online rs estimation methodologies proposed 

in [27] have been used, summarized in the following. In particular Rs is estimated on the basis of the isD, isD 

measured and 

^ ^

sD sQ i , i estimated stator current components , by means of the following update law: 

 
^

^ ^ ^ ^
s

sD sD sQ sQ sD sQ 

dR
= - ((i -i ) i +(i -i ) i )

dt


 (24) 

 

where   is a properly chosen positive constant. where λ is a properly chosen positive constant. In this case, 

because it can not applied the same estimation scheme to rotor resistance estimation in sensorless drives, Rr 

has been estimated based on its variation proportional to that one of the Rs on the basis of the following law: 

 
^ ^

r srR = K R  (25)
 

 

where Kr is the ratio of the rated values of the stator and rotor resistances. 

The estimated resistance values were update for the current observer to estimate the current exactly more. 

 

 

4. SIMULINK AND DISCUSSION 

In order to verify and evaluate the performance of the SC_MRAS using NN observer a sensorless 

vector control of SPIM drive system, as shown in Figure 5 has been simulated at different speed ranges 

through Matlab simulation software, specially surveyed at low speed range. Tests in this section are 

conducted based on recommended benchmark tests [17],[20],[21],[23]. SPIM parameters: 1HP, 220V, 50 Hz, 

4 pole, 1450 rpm. Rs = 10.1, Rr = 9.8546, Ls = 0.833457 H, Lr = 0.830811 H, m = 0.783106H, Ji = 

0.0088 kg.m2. Rs is nominal value of stator resistance. 
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Figure 5. Sensorless vector control of SPIM drive using LS_SC_MRAS observer 

 

 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

New Version of Adaptive Speed Observer Based on Neural Network for SPIM (Ngoc Thuy Pham) 

1495 

 

4.1. Dynamic Performance 
In this first part, the dynamic performance of the drive and observer have been verified by the tests 

are conducted based on recommended Benchmark tests in [17]. Test 1 presents rapid transitions and 

operating areas at large and zero speeds, Test 2 consists of low and very low speed operation and reversal.  

In Test 1, the reference speed are imposed from zero increased to 155 rad/s at 0.2s and constant up 

to 1,5 s. Then, it is reduced to zero at 1,7 s, the reference speed is then maintained at standstill until 2,5 s. 

Then, between 2,5 s and 4,8 s, a quasi-symmetric velocity profile is imposed in the opposite rotational 

direction, defining a second area of critical operating at a rate of -155 rad/s between 4 s and 4,8 s. Finally, the 

machine speed is again increased to 155 rad/s, to be there maintained up to 6 s. Rated load is applied at 0.8s 

and rejected at 1.2s. The application and removal of a torque load at the moments 0,8s and 1,2s will also 

assess the impact of this type of disturbance. Then, 50% load is applied and rejected at 3,25s and 5,5s, 

respectively.  The results in Figure 6 show the speed responses, the speed estimation error, the stator current 

and torque during test 1. From these simulation results show that although surveyed with larger speed range 

compare to in [17], the estimation performance of LS_SC_MRAS observer is very good at high, low and 

zero speed and reversal.  The speed estimation error is the estimated speed perfectly follows the machine 

speed with good behavior in terms of tracking and disturbance rejection. Both the proposed scheme in [17] 

and LS_SC_MRAS scheme, the speed reversal is accomplished in less than 1s and that the torque response is 

instantaneous. The speed error is maximum at zero crossing and during the speed transient and it is about as 

much as 0.12 rad/s in LS_SC_MRAS observer, 0.5 rad/s in the proposed observer [17]. 

 

 

  

(a) 

 

 

 

(b) 

 

Figure 6.  The performance of LS SC_MRAS obsever during high speed reveral  

(a) Speed responses and error, respectively; (b) Stator current phase A and  torque respone 

 

 

Furthermore, a speed reversal from 15 rad/s to -8 rad/s and 8 rad/s, at 50%load has been performed 

for testing the dynamic performances of the drive using LS-SC_MRAS at low speed. Figure 7 shows the 

speed and torque response of LS_SC_MRAS drive is very quick and that after few oscillations it converges 

to the reference value. We observe very small oscillations during transients and very low orientation errors in 

the two critical areas of the proposed observer. 
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(a) 

 

   
(b) 

 

Figure 7.  The performance of LS SC_MRAS obsever during low speed reveral  

(a) Speed responses and error, respectively; (b) Stator current six phase and  torque response 

 

 

From two above tests, It can be seen that, during speed transients the dynamic performance of 

LS_SC_MRAS is better, the maximum overshoot and the speed estimation error obtained with the LS MRAS 

observer are lower than the corresponding one with the observer [17]. The torque response obtained with the 

LS MRAS observer is very smooth, while the corresponding one obtained with the the proposed observer in 

[17] is much affected by ripple (Figure 6(b), 7(b)). The performance of the proposed scheme is very stable 

and very good in wide speed range. 

The improvements in terms of dynamic performance achieved with the LS MRAS observer also 

have been verified by comparing the proposed of MRAS observers during speed reversals from 50 to - 50 

rad/s, 50%load in the transient mode to the proposed observer in [23]. Since the adaptive model of the BPN 

MRAS observer [23] is employed in simulation mode, the speed estimation convergence is slower than that 

obtained with the LS MRAS observer in prediction mode. In addition, the estimated speed is highly affected 

by the ripple and cannot be directly fed to the control system without any filtering. This is not the case for the 

LS MRAS observer in which, thanks to the employment of the adaptive model as a predictor, the estimated 

speed is directly fed back to the control system without any filtering.The simulation results in Figure 8 

demonstrate better transient and steady state performance compared to the observer in [23], the LS MRAS 

observer permits a faster speed response, the time during which the speed reversal is performed is lower in all 

tests and this time reduction is in percentage more significant during a reversal at low speed, e.g., 0.052s with 

the LS MRAS against 0.101s with the BPN MRAS. 
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(a) (b) 

 

Figure 8.  Estimated and measured speed and speed error and speed error during a speed reversal 

(a) BPN MRAS observer; (b) LS MRAS observer 

 

 

4.2. The performance of proposed observer in medium and low speed ranges:  
The performance of the proposed speed observer in the medium and low speed ranges was verified 

by providing different speed reference rates range from 100 rad/s to 30  rad/s and working with rated load. 

 This simulation was performed with two sets of observations using LS_SC_MRAS and 

BPN_SC_MRAS for comparison, evaluation the performance of both. The Figure 9 (a) and (b) shows the 

reference speed, estimated speed, actual speed and speed error of BPN_SC_MRAS observer [23] and 

LS_SC_MRAS, respectively. The simulation results clearly show that the estimation accuracy in the medium 

and low speed range is very good, with negligible estimation errors during steady state and very low 

instantaneous estimation errors during the speed transients. Similar results have been obtained with the BPN 

MRAS observer: they presented, as a difference, only a slightly higher instantaneous estimation error, as 

explained in Test 1. 

 

 

  

  
(a) (b) 

 

Figure 9. Speed responses and estimation error during a series of speed steps with rated load, 

(a) BPN MRAS observer; (b) LS MRAS observer 

 

 

4.3. The performance of proposed observer in very low speed ranges:  

In this three test, the performance of the speed estimation has been verified in the very low and zero 

speed ranges based on proposed benchmark tests [21] but applying 50%load. The drive has been given a 

speed reference step from 15 rad/s to zero then increase to 15 rad/s, 3 rad/s steps, 50% load applied at 2.5s 

and rejected at 15s. Figure 10 (a) and (b) show the speed responses of proposed SC_MRAS at no load and 

50% load, respectively. The results in Figure 10 show that no instability phenomena occur at low and zero 

speed range, the speed estimated error is not significantly. In contrast, with a proposed observer in [21] 

(Figure 6, Figure 7) shows instability phenomena, the estimated error increase at low and zero speed range.   
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(a) (b) 

 

Figure 10. The speed of the SPIM in  very low operation speed region using: (a) no load; (b) 50% load 

 

 

Another survey also is carried out to justify the effectiveness of the proposed method in the low and 

zero speed region by providing the sets of diffrrent speed reference ranges from 0 to 5 rad/s with each step 

the change is 1 rad/s working with 50% rated load.   In any case, better results in the estimation accuracy at 

low speeds are to be expected with both LS MRAS and BPN MRAS observers [23] because the SPIM itself 

is used as reference model so the SC_MRAS observer free free  from  stator resistance dependency and dc 

drift problems, this is help to improve the performance of the observer specially at low speeds. The steady-

state percent speed estimation error obtained with the LS_ SC_MRAS observer is better than that with the 

RF_ MRAS observer, where the reference model uses the VM, is dependent on the stator stator and the pure 

integration. The speed estimation error is improved slightly than BPN_SC_MRAS, as explained in Test 1. 

These results in Figure 11 show that, with both speed observers,  the steady-state speed estimation error 

obtained with the LS MRAS observer is slightly lower than that with the BPN_SC_MRAS.  

 

 

  

  
(a) (b) 

 

Figure 11. The speed of the SPIM in  very low speed region using: (a) BPN SC_MRAS; (b) LS_SC_MRAS 

 

 

4.4. Sensitivity to Stator Resistance Variation:  

The purpose of this test is to verify the speed estimation performance of the proposed MRAS 

observers for motor parameter variation. The drive and observer have been verified based on recommended 

benchmark tests in [20] but extending survey additionally case the resistance values increase 50%. Figure 12 

shows the performance of the observer when Rs, Rr  variations (Rs, Rr is increased 30% and 50% at 1.5s and 

3.5s, respectively, load is applied at 2s. The reference speed is reduced from 20 rad/s to 12 rad/s to  7 rad/s to 

zero. The stable operation and oscillating speed performance of the LS SC_MRAS observer and proposed 

observer in [21] (Figure 9) obtained are quite good. As we know that the stator resistance variation with 

temperature, which can be up to 50%, is a very serious problem at low speed. Since the fundamental 
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component of the stator voltage becomes very low, the stator resistance drop becomes comparable to the 

applied voltage. Hence continuous adaptation of the stator resistance is required to maintain stable operation 

at low speed [20]. However, the performance of the observer with the Rs variation increased more than 20% 

and the lower speed operation ranges were not shown in [21].    

 

 

(a)  

(b)  

 

Figure 12.  (a) The LS_SC_ MRAS observer:  Reference, actual, estimated speed for load torque 

and Rs, Rr variations; (b) Load torque and Rs variations 

 

 

4.5. Load Perturbations 

In this test, the robustness of the speed estimation of the observer to a sudden torque perturbation 

has been surveyed. It was carried out to prove the behavior of the proposed scheme when load torque 

variations. For this test the rotor speed was kept constant at 7 rad/s with the torque applied +/- 50% rated 

torque. Figure 13(a) and (b) show the speed and torque responses of the SPIM drive. These results show that 

the speed responses of the drive using the proposed LS SC_MRAS observer occurs immediately when the 

torque steps are applied. Even during the speed transient that caused by the torque step, the estimated speed 

follows the real speed is very good. The simulation results show that the speed estimation convergence of the 

LS_SC_MRAS observer is faster than that obtained with the BPN SC_MRAS observer [23] thanks the 

improvements are developed. 

The behavior of the proposed scheme with rotor speed was kept by zero during test, the speed 

estimation performance for load disturbance rejection at +25% load in time 1.5s- 3s; -25% load in time 3s-

4.5s; and  6 s-7.5s;  75% load in 9s- 10.5. The proposed SC_MRAS scheme shows transient and steady state 

performance are very good. Figure 14 show the reference, measured, and estimated speed, these results show 

that the speed responses of the drive using the proposed NN SC_MRAS observer occurs immediately when 

the torque steps are given. The small oscillations occur when 75% load rejected, however, very low 

estimation errors of the proposed observer, even during the speed transient that caused by the torque step, the 

estimated speed follows the real speed is very good.     
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(a) (b) 

 

Figure  13. Load Perturbations test: (a.) the LS MRAS observer; (b) the BPN MRAS observer 

 

 

  
 

Figure  14. Load Perturbations test at zero speed, load torque various 

 

 

5. CONCLUSION 

This paper has presented a LS_ SC_MRAS speed observer for high performance SPIM drives using 

neural networks. It lead evoluting and improving the MRAS observer shown in [23]. The new SC_MRAS 

speed observer uses the CM discretized with the mopdified Euler integration method to solve the instability 

problems due to the discretization of the rotor equations of the machine. Then reagraning a linear neural 

network is used and trained online by means of an LS algorithm instead of a nonlinear BPN algorithm, which 

is heavier from the complexity and computational burden and its inherent nonlinearity also cause some  

disadvantages as local minima, two heuristically chosen parameters, initialization, and convergence 

problems, paralysis of the neural network. In the proposed observer, stator and rotor resistance values are 

estimated online, these values thereafter were updated for  the current observer and rotor flux identifier to 

enhance the accuracy, robustness and insensitivity to parameters variation for the proposed observer. In 

addition, the adaptive model based on NN is implement in prediction mode instead of simulation mode as in 

[23].  This ensures the proposed observer operate better accuracy and stability. The simulation results shown 

that the proposed observer are quicker convergence in speed estimation, better dynamic performances; lower 

estimation errors both in transient and steady state operation; better operation zeroand low speed region. 
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