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 With the proliferation of numerous soft computing (SC)–based maximum 
power point tracking (MPPT) algorithms for photovoltaic (PV) systems, 
determining which algorithm performs better than others is becoming 
increasingly difficult. This is primarily due to the absence of standardized 
methods to benchmark their performances using consistent and systematic 
procedures. Moreover, the module technology, power ratings, and 
environmental conditions reported by numerous publications all differ. Based 
on these concerns, this paper presents a critical evaluation of the five most 
important and recent SC-based MPPTs, namely, genetic algorithm (GA), 
cuckoo search (CS), particle swarm optimization (PSO), differential 
evolution (DE), and evolutionary programming (EP). To perform a fair 
comparison, the initialization, selection, and stopping criteria for all methods 
are fixed in similar conditions. Thus, the performance is determined by its 
respective reproduction process. Simulation tests are performed using the 
MATLAB/SIMULINK environment. The performance of each algorithm is 
compared and evaluated based on its speed of convergence, accuracy, 
complexity, and success rate. The results indicate that EP appears to be the 
most promising and encouraging SC algorithm to be used in MPPT for a PV 
system under the multimodal partial shading condition. 
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1. INTRODUCTION 

Maximum power point tracking (MPPT) is a control algorithm embedded inside a DC–DC power 
converter to extract the maximum power from a photovoltaic (PV) array. The objective is to ensure that the 
power to be extracted always matches the peak value of the power-voltage (P-V) characteristic curve under 
varying solar irradiation (G) and temperature (T). The idea of the tracking is to lock the converter operating 
voltage and current to the maximum power point (MPP) of the PV array. The MPP, when in a normal 
uniform irradiance condition, exhibits a unique peak of the P-V curve. The tracking has to be accomplished 
rapidly to ensure that the power is not lost during the changes in G and T. In addition, the MPPT must be able 
to correctly locate the MPP during the occurrence of partial shading—a condition in which a portion of the 
PV array is shaded while other parts remain uniformly irradiated. During partial shading, the P-V curve 
exhibits multiple peaks, thus transforming the problem from single modal to multimodal, that is, with 
multiple maxima points. Thus, the problem becomes much more complicated as the MPPT algorithm needs 
to continuously track the continuous variations of several peaks that changes with G and T. 

Despite a large number of conventional MPPT algorithms published in literature [1]-[5], only 
several methods are widely implemented, namely, the perturb and observe (P&O), incremental conductance 
(IC), and hill climbing (HC) methods. These algorithms are based on checking the slope of the curve 
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periodically to ensure that the peak is detected (when the slope is zero). Generally, it operates satisfactorily 
under the uniform irradiance condition, that is, when the P-V curve has a unique peak. However, during 
partial shading, the algorithm cannot locate the correct MPP because the problem has transformed to a 
multimodal, and it cannot differentiate between the local and global peaks. This is inevitable because the 
nature of these algorithms is based on the peak detection principle, that is, when it locates a perceived 
maximum point, it locks itself within the vicinity of that point. If the peak is local, substantial loss of PV 
power results. To address this problem, a soft computing (SC) MPPT is proposed. Since the SC algorithm 
searches for all the peaks over the entire P-V curve, finding the global MPP is very likely. The authors in  
[1]-[3], [5]-[16] have done extensive reviews on the application of SC for MPPT; these include fuzzy logic 
controller (FLC), artificial neural network (ANN), particle swarm optimization (PSO), genetic algorithm 
(GA), differential evolution (DE), ant colony optimization (ACO), Bayesian fusion (BF), cuckoo search 
(CS), and chaotic search (ChS). 

With the proliferation of SC-based MPPT techniques (and their variations), determining which 
algorithm is more effective than others is difficult as no proper evaluation to criticall—primarily because of 
the fact that no two methods are compared fairly, nor are they verified independently. This is because in most 
published works, the module technology, experimental setup, power ratings, and environment conditions 
(particularly the variations in G and T) in which the PV system setup was subjected to are all different. In 
addition, the partial shading experiments that have been carried out are never unique. This raises questions on 
the legitimacy of the claims as different shading patterns result y assess their performances exists. The 
authors’ claims on the superiority of their own techniques are unjustifiable in different MPPT efficiencies.  

With regard to these concerns, this paper aims to provide a standardized procedure to critically 
evaluate the performances of various SC MPPT techniques. Three well-established methods are considered, 
namely, PSO, GA, and DE, along with two recently proposed algorithms, cuckoo search (CS) and 
evolutionary programming (EP). Although there exist several comparative studies among GA, DE, and PSO, 
they only offer general reviews without any evaluation on their respective performances. Each algorithm is 
assessed in terms of accuracy, speed, complexity, and success rate of convergence. Two statistical 
procedures—namely, the mean absolute error (MAE) and standard deviation (STD)—are used for 
benchmarking. In addition, the relative complexity of the algorithm is determined by measuring the average 
CPU time taken for each iteration. The proposed evaluation will assist the researchers and practitioners in 
selecting the best algorithm to design their MPPT applications. 
 
 
2. OVERVIEW OF SC-BASED MPPT 

Soft computing (SC) is a collection of flexible, adaptable, and intelligent problem-solving methods 
to exploit the tolerance for imprecision to achieve tractability, robustness, and low-cost solutions [17]. In 
general, SC can be classified into two broad categories, single-point and population-based search. For the 
former, the algorithm scans the solutions in the whole search space of the problem (in the case for the PV 
system, the search space is the entire P-V curve) using one agent at a time. On the other hand, for the 
population-based search type, the algorithm operates on several agents (in parallel) within the search space. 
The latter is unique because these simple agents cooperate and interact with one another to accomplish 
complex tasks. To date, the reported SC-based MPPT algorithms used to solve partial shading problems are 
shown in Figure 1. Some of the important features of these methods have been described briefly in the 
introduction. In this paper, only population-based algorithms will be discussed given their superiority in 
solving multimodal optimization problems. 
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Figure 1. Reported SC-based MPPT algorithms used to solve partial shading problem 
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2.1.  Generalized processes  
The way in which the population-based SC optimizes the solution can be generalized into three 

major processes, namely, initialization, reproduction, and selection. In the initialization step, the initial parent 
for the population size with n candidates is generated. In reproduction, the offspring are created from the 
selected parents through a uniquely formulated equation, according to the SC type. Finally, the selection 
stage is the discriminatory process to choose the individuals to survive for the next generation. The 
reproduction and selection processes are repeated iteratively until a prespecified stopping criterion is met. 

 
2.2.  Initialization 

In the context of MPPT, the term population is referred to the power converter’s (normally DC–DC) 
duty cycle (D), while the optimal solution is the maximum PV array’s output power (PPV). A small 
population size leads to poor solutions; on the other hand, a large population increases the computation time. 
Hence, a trade-off is needed to achieve credible solutions with a reasonable number of iterations. Various 
methods to choose population size are recommended in [18, 19]; in this study, the population size was set to 
5 because it was found (by trial and error) to produce the best results. In most cases, the values attached to 
the initial population (Dinitial) are generated randomly. However, randomness produces different results on 
successive runs, even if those runs were initialized identically. To eliminate this uncertainty, the controlled 
initialization method is preferred. For n population, the initialization with uniformly distributed elements 
within the interval 0  D  1 is given by the following: 

 

1
1n

n
.....

1n

2

1n

1
Dinitial 






        (1) 

 
So at the beginning of the search, five different values of D with accordance to (1) are used to find 

the best value of PPV. 
 

2.3.  Reproduction 
Reproduction is the most crucial step as it differentiates the ability of the algorithm to produce the 

next population generation. The first selected population is called the parent (Dinitial); the second and 
subsequent population (after going through the reproduction) is called the offspring (DNew). Swarm-based 
algorithms (PSO, ACO, and CS) are based on the social behavior of insects or animal. They utilize specific 
reproduction operators such as particle velocity (for PSO) and Lévy flight (for CS) to create DNew. On the 
other hand, evolutionary-based algorithms (EP, DE, and GA) generate DNew through natural genetics 
evolution. They use genetic operators such as crossover (also called recombination) and mutation. The 
crossover exchanges some parts of two individuals, while the mutation operator changes the value of the 
randomly chosen individual. 

 
2.4.  Selection 

Selection is the process to discriminate (isolate) the best individuals for the next generation (DNew). 
It is based on the fulfillment of criteria set by the fitness function. The selection should be chosen such that it 
converges to the global optimum solution (i.e., PPV_Best) without having to sacrifice too much convergence 
speed. There exist selection schemes proposed in literature; the most common are roulette wheel, tournament, 
ranking, and steady state selection. A comprehensive analysis of all these schemes has been reported in  
[20], [21]. In this work, the ranking selection scheme is chosen given its simplicity and, at the same time, 
yields good results. The basic equation for this scheme is given by the following: 

 

DNew= ൜
DNew 𝑖𝑓 𝑓ሺDNewሻ ൒ 𝑓ሺDOldሻ
DOld 𝑒𝑙𝑠𝑒

       (2) 

 
2.5.  Stopping criterion 

The stopping criterion is the terminating condition that halts the algorithm. It occurs when one or 
more prescribed conditions are met. The most commonly used stopping criteria are the following: 
a. Generation Number — A threshold value is set. The algorithm stops the iteration after carrying out a 

certain number of iterations. 
b. Best Fitness Threshold — This stops the iteration when the maximum value of objective function 

(PPV_Best) is less than the set value (PPV_Specified). 
c. Population Convergence — This stops the iteration when the difference between the maximum and 

minimum values of all individuals (DNew) in the population is less than the prescribed tolerance. 
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d. Fitness Convergence — This stops the iteration when the difference between the maximum and minimum 
values of objective function (PPV) for all individuals (DNew) is less than the prescribed tolerance. 

In this study, the fitness convergence, that is, the PV power (PPV), is chosen as the stopping criterion 
because it gives better results than the others. This tells the algorithm to stop searching for the optimum 
solution (PPV_Best) when the fitness of all individuals are quite close to one another, that is, within the range of 
1 W. Smaller tolerances result in greater simulation accuracy but, in general, lower convergence speed. 

 
 

3. SELECTED SC ALGORITHMS 
Each selected SC algorithm has its own reproduction operator parameter: crossover constant (CR) 

and mutation rate (F) for GA and DE, search step ( or β) for CS and EP, and acceleration constants (C1 and 
C2) for PSO. The main consequence of the operator is the step size; if the step size is large, the search is 
rapid, but the targeted global peak may be missed. On the other hand, if the step size is too small, the search 
would be very long; most probably, the irradiance has changed to a new value before the global peak is 
successfully tracked. In practice, trial-and-error tuning determines the parameters’ values that yield the best 
optimized results (PPV_Best). The optimization is performed before the execution of the algorithm, and these 
values are fixed throughout the run. However, choosing the right parameter is often time-consuming; the 
normal procedure is to set the parameter value and then observe the results. Furthermore, because random 
functions exist in the reproduction formula, the search result of each method varies at each iteration. To 
address this, the simulation was run with 100 trials, and the results are averaged. The best values of the 
reproduction parameters for each algorithm are tabulated in Tables 1-5. For consistency, each SC algorithm 
is implemented based on the proposed benchmark methodology as discussed in the previous section. 
 
3.1.  Genetic algorithm (GA) 

GA is an optimization algorithm inspired by natural genetic evolution and selection. To produce a 
new offspring, GA uses two main genetic operators, namely, crossover and mutation. The reproduction 
operator of the GA algorithm used in this paper can be described as follows [22]-[24]: 
a. Select two candidates from the parent population (Parent1 and Parent2) at random; they must be 

mutually different from each other. 
b. Apply a single-point crossover and mutation operator to yield an offspring population according to the 

following: 
 

Offspring1=α∙Parent1+൫1-α൯∙Parent
2

Offspring2=൫1-α൯∙Parent
1
+α∙Parent2

Offspring3-5=±β+Parent3-5               

  (3) 

 

where  is the crossover rate and  is the mutation rate. The values of the GA reproduction parameters used 
in this study are tabulated in Table 1. 
 
 

Table 1. GA parameters 
Parameters Values 

Population size, NP 5 
Crossover rate,  [± 0.8] 
Mutation rate,  [± 0.05] 

Maximum generations, Gmax 25 
 
 

3.2.  Particle swarm optimization (PSO) 
PSO attempts to mimic the social behavior of flocking birds when searching for food. In PSO, each 

individual of the potential solution, called a particle, flies around in a multidimensional search space, looking 
for the optimal solution based on its own and its neighbors’ experiences. The reproduction operator of the 
PSO algorithm used in this paper can be described as follows [25]-[29]: 
a. Determine the particle’s best known position, Pbest, and the population’s best known position, Gbest. 
b. Calculate the parent velocity to yield an offspring population according to the following: 
 

Veli+1=K∙ൣVeli+C1∙rand൫Pbesti-Parenti൯+C2∙rand൫Gbesti-Parenti൯൧
Offspringi+1=Parenti+Veli+1                                                        

     (4) 

 
where K is the inertia weight and C1 and C2 is the acceleration constant. The PSO parameters used in this 
study are tabulated in Table 2. 
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Table 2. PSO parameters 
Parameters Values

Population Size, NP 5 
Acceleration Constants, C1=C2 1.5 
Inertia weight, W 0.5 
Maximum Generations, Gmax 25 

 
 

3.3.  Differential evolution (DE) 
DE is a simple evolutionary algorithm using similar operator-like GAs such as crossover and 

mutation. The main difference is that GA relies primarily on crossover, while DE relies on mutation 
operation. DE creates an offspring by combining the parent individual and several other individuals of the 
same population. In this paper, the “DE/rand-to-best/1/bin” scheme has been selected because of its good 
performance for the case under study. DE’s reproduction operator can be described as follows  
10], [30], [31]: 
a. Select the population’s best known individual, Gbest. 
b. Select two candidates from the parent population (Parent1 and Parent2) at random; they must be 

mutually different from each other. 
c. Apply mutation and crossover operators to produce the trial individual and offspring according to the 

following: 
 

Triali=Parenti + F·൫Gbest‐Parenti൯ + F·൫Parent1‐Parent2൯

Offspringi= ൜
Triali, if rand < CR
Parenti, otherwise

                                        
      (5) 

 
where F is the mutation rate and CR is the mutation rate. The DE parameters used in this study are tabulated 
in Table 3. 

 
 

Table 3. DE parameters 
Parameters Values

Population Size, NP 5 
Crossover Rate, CR 0.9 
Mutation Rate, F 0.7 
Maximum Generations, Gmax 25 

 
 
3.4.  Cuckoo search (CS) 

CS is inspired by the obligate brood parasitism of some species of a bird family called cuckoo in 
combination with the Lévy flight behavior of some birds and fruit flies. The concept of CS is similar to PSO 
(using particles), but the step sizes in CS are characterized by the random walk based on Lévy flight. 
Mathematically, Lévy flight has movement lengths chosen from a probability distribution with a power-law 
tail, 𝐿𝑒𝑣𝑦ሺሻ ~ 𝑥ିሺ13ሻ, where x is the step length and  is the variance. The reproduction operator of 
the CS algorithm can be described as follows [12], [32]-[34]: 
a. Select the population’s best known individual, Gbest. 
b. Apply a Lévy flights operator to yield an offspring population according to the following: 

 

i= β·൫α·randn/absሺrandnሻ൯
1

1.5·(Parenti‐Gbest)

Offspringi=Parenti+i· iሺ0,1ሻ
      (6) 

 
where  is the Lévy coefficient and  is the scaling factor. The CS parameters used in this study are tabulated 
in Table 4. 

 
 

Table 4. CS parameters 
Parameters Values

Population Size, NP 5 
Levy coefficient,   0.7 
Scaling factor,  0.01 
Maximum Generations, Gmax 25 
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3.5.  Evolutionary programming (EP) 
EP is a search algorithm designed to simulated evolution that iteratively generates increasingly 

appropriate solutions. It was first proposed as an alternative approach to classic artificial intelligence (AI) in 
computers. EP has the advantage of using a mutation-only reproduction operator and can easily be designed 
for adapting the parameters of the mutation operator during the reproduction process. In this paper, classical 
EP, which uses a Gaussian distribution function for updating the offspring, has been selected because of its 
ease of use and provides comparatively good results. The reproduction operator of the EP algorithm can be 
described as follows [35-39]: 

Apply mutation operator to yield an offspring population according to the following: 
 

i=β∙(PPVi
/PPVmax

)

Offspringi=Parenti+i∙ iሺ0,1ሻ        (7) 

 
where  is the scaling factor. All EP parameters used in this study are tabulated in Table 5. 

 
 

Table 5. EP parameters 
Parameters Values

Population Size, NP 5 
Scaling factor, β 0.01 
Mutation Technique Gaussian[± ] 
Maximum Generations, Gmax 25 

 
 

4. BENCHMARKING METHODOLOGY FOR SC-BASED MPPT 
To evaluate the performances of different SC MPPT algorithms fairly, a standardized evaluation 

process is required. Unfortunately, this process is absent in previous literature; thus, the performances of the 
MPPT algorithms are not verified independently. Moreover, the module technology, power ratings, and 
environment conditions in which the experiments were set up are all different. In addition, the partial shading 
experiments carried out are never unique. This raises questions on the legitimacy of the claims as different 
shading patterns result in different MPPT efficiencies. With these concerns, this paper attempts to propose a 
methodology to benchmark the SC MPPT algorithms based on a simple flow diagram shown in Figure 2. 
Because of their recent popularity, five different algorithms are chosen, namely, differential evolution (DE), 
evolutionary programming (EP), cuckoo search (CS), particle swarm optimization (PSO), and genetic 
algorithm (GA). 
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Flight, Particle Velocity )
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Figure 2. The benchmark methodology for population-based SC algorithms 
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4.1.  Problem formulation 
For consistency, the initialization, selection, and stopping criteria are fixed at the same conditions as 

discussed in the previous section. Thus, the performance of each algorithm is tested based on its own unique 
metaphor in the reproduction stage. Furthermore, benchmarking the performance of MPPT using the normal 
irradiance (uniform) condition is not adequate as the resulting P-V curve is single modal (i.e., with only one 
unique peak), and with such a simple condition, all MPPTs are able to converge to the peak very quickly. As 
a result, clearly differentiating the performances of the algorithm is difficult.  

A more challenging situation is to subject the PV system to partial shading condition. The 
phenomena are due to the shadows from clouds, neighboring buildings, trees, chimneys, towers, etc., where 
certain parts of the PV array are shaded while others receive uniform irradiance. During partial shading, the 
shaded modules experience a large amount of rush currents, resulting in excessive heat (hot spot) that may 
cause permanent damage. To relieve the stress on the shaded modules, bypass diodes are fitted across them 
[15]. However, multiple peaks in the P-V curve are then created. Consequently, the problem is transformed 
from single modal to multimodal. This condition poses a serious challenge to any MPPT technique because 
of the difficulty to distinguish the global from the local peaks. 

 
 

5. PV SYSTEM MODELING 
The two-diode PV cell model [40]-[42], depicted in Figure 3, is utilized for simulation. It is chosen 

because of its superior accuracy, particularly at a low irradiance level. The output current of the cell is given 
by the following: 

 
I=IPV-Io1 ቂexp ቀ

V+IRs

a1VT1
ቁ -1ቃ -Io2 ቂexp ቀ

V+IRs

a2VT2
ቁ -1ቃ - ൬

V+IRs

IRp
൰      (8) 

 
Where Io1 and Io2 are the reverse saturation currents of diodes 1 (D1) and 2 (D2), respectively, VT1 

and VT2 are the thermal voltages of the respective diodes, and a1 and a2 represent the diode ideality constants. 
The Io2 term in (9) compensates the recombination loss in the depletion region, as described in [41]. 

 
 

 
 

Figure 3. A Two-diode model of PV cell 
 

 
For a string with N number of modules in series (Ncell), (9) can be extended to the following: 
 
I ൌ I୔୚ െ I୭ଵ ቂexp ቀ

୚ା୍ୖ౩

ୟభ୚౐భ
ቁ െ 1ቃ െ I୭ଶ ቂexp ቀ

୚ା୍ୖ౩

ୟమ୚౐మ
ቁ െ 1ቃ െ ൬

୚ା୍ୖ౩ൈ୒ౙ౛ౢౢ

୍ୖ౦ൈ୒ౙ౛ౢౢ
൰    (9) 

 
The simulations model of the PV system was based on a MATLAB/Simulink simulator developed 

in [43]. The array is simulated using the BP MSX-60 module. Its specifications at the standard test conditions 
(STC) are shown in Table 6. 

 
 

Table 6. Electrical parameters of MSX-60 module at STC 
Parameters Values Parameters Values 

Maximum Power (Pmax) 60 W Temperature coefficient of Voc -(80±10) mV/0C 
Voltage at Pmax (Vmpp) 17.1 V Temperature coefficient of Isc -(0.065±0.015) % / 0C 
Current at Pmax (Impp) 3.5 A Temperature coefficient of power -(0.5±0.05) % / 0C 
Open circuit voltage (Voc) 21.1 V NOCT 47±2 0C 
Short circuit current (Isc) 3.8 A Operating Temperature 25 0C 
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For simplicity, only a stand-alone system with a DC–DC boost converter load is considered. The 
circuit is shown in Figure 4. It consists of five modules in a series, connected to the converter with the MPPT 
controller. The system need not be extended to a grid-tied one because the objective is to evaluate the 
performance of the MPPT, which is on the DC side. The optimum value of the circuit components used in 
this study are discussed in detail in [44]. The converter-switching frequency (s) is 20 kHz. Meanwhile, the 
inductor (L) is set to 1 mH, the filter capacitor (C1 and C2) value is 47 μF, and the load resistor (R) is 200 . 
All the MPPT algorithms are coded using the M-file. The input variables are G and T. 

 
 

 
 

Figure 4. The simulation model of stand-alone PV system 
 
 

The goal of the optimization is to track the MPP as fast as possible and with the highest consistency. 
In terms of objective function formulation, that goal can be described as the following: 

 









 


N

n
PVnPVn IVf

1

max         (10) 

 
The objective (fitness) function () is the output power of the PV, while N is the number of modules. 

Variables VPV and IPV are the PV array’s output voltage and current, respectively. During initialization, five 
different values of duty cycle (D1 to D5) are generated with accordance to (2). Each of these duty cycles will 
be sent to the PWM block to generate a PWM switching waveform to the MOSFET at a sampling rate of 0.1 
s [44]. Then the MPPT block will calculate the PV power based on the sensing PV array voltage (VPV) and 
current (IPV). The same process will be repeated for each iteration. 

 
 

6. RESULTS AND ANALYSIS 
In this study, the array in Figure 5 is partially shaded with five different values of irradiance 

patterns, as described in Table 7. Because of the operation of the bypass diode, the step waveform I-V curve 
shown in Figure 6 is created. Figure 7 shows the resulting P-V curve. Besides the global peak (MPP), the 
curve exhibits four other local peaks. The MPP voltage and current are located at 51.479 V and 2.181 A, 
respectively, while the maximum power (i.e., the final fitness value) to be achieved is 112.278 W.  

The performance of each SC-based MPPT algorithm is evaluated based on several criteria, namely, 
speed, accuracy, complexity, and success rate of convergence. The overall results of each performance 
criterion are tabulated in Table 8. Also, the ranking of each criteria is indicated by subscript (in bracket) 
number in Table 8. 
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Figure 5. Five PV modules connected in series under partial shaded condition given in Table 7 

 
 

Table 7. Irradiance for shading patern 
Module A (GA) B (GB) C (GC) D (GD) E (GE) 
Irradiance  

( G = 1.0 = 1000 W/m2 ) 
0.2 0.4 0.6 0.8 1.0 
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Figure 6. P-V & I-V characteristics under partial shaded condition given in Table 7 
 
 

6.1.  Speed of convergence 
The speed of convergence is the number of iterations required by the algorithm to reach the final 

fitness value. Because of their stochastic nature, the algorithms produce different results at each run. This can 
be observed by the variation in the trajectories produced by every run, as shown in Figures 7–11. Therefore, 
taking a conclusion from a single run would not be a fair representation of the algorithm’s performance. To 
overcome this ambiguity, each MPPT method is executed for 100 runs, and the results are averaged as in 
Figure 12. The iteration limit at each run is set at 15 since most of the methods converge to the solution in 
less than this prescribed value.  

As can be seen, EP is the fastest algorithm to reach MPP (PPVmax) convergence. In average, it 
requires 6 iterations. Moreover, its convergence trajectories are less scattered as compared to others; GA 
requires 8, while CS, PSO, and DE converge to MPP after 10 iterations. The rapid convergence of EP is due 
to the simple Gaussian distributed random numbers in generating an offspring, as described by (8). The 
random numbers are generated by the controlled scaling factor (i). As the iteration increases and the tracked 
power approaches MPP, i will decrease as shown in Figure 13. As a result, the step size will decrease and 
thus prevent unnecessary searching within the area where the global MPP does not exist. 
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Figure 7. Convergence trajectory of tracked best 
fitness (MPP) for GA 

Figure 8. Convergence trajectory of tracked best 
fitness (MPP) for CS 
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Figure 9. Convergence trajectory of tracked best 
fitness (MPP) for PSO 

Figure 10. Convergence trajectory of tracked best 
fitness (MPP) for DE 
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Figure 11. Convergence trajectory of tracked best 
fitness (MPP) for EP 

Figure 12. Averaged convergence trajectory of 
tracked best fitness (MPP) for ALL algorithms 
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Figure 13. Gaussian distribution (i decreases as the number of iterations increases) 
 
 

6.2.  Accuracy 
Figure 14 shows the distribution of tracked fitness (MPP) for all algorithms for 100 runs. The 

accuracy is defined as the closeness of the tracked value to the maximum fitness value (i.e., the global MPP). 
To evaluate the accuracy, two statistical analyses—namely, mean absolute error (MAE) and standard 
deviation (STD)—were performed. MAE is an average value of the absolute error used to measure the 
closeness of the predictions to the expected outcomes. It is computed using the following: 

 
MAE ൌ

ଵ

୬
∑ |err୧|

୬
୧ୀଵ ൌ

ଵ

୬
∑ ห୧ െ y୧ห

୬
୧ୀଵ         (11) 

 

where i is the prediction value and yi the expected value. Meanwhile, STD is a measure of variability or 
diversity; it shows how much variation or dispersion exists from the average (mean or expected value). The 
standard deviation is given by the formula: 

 

STDൌට∑ ൫
i
 -μ൯

2

n

n
iൌ1          (12) 

 

where i represents each value in the population,  is the mean value of the population, and n is the number 
of values in the population. The results are tabulated in Table 8. The most accurate algorithm is EP; it 
exhibits the lowest MAE (0.052) and STD (0.111). The tracked MPPs are very close to the global MPP with 
the minimum value of a tracked MPP of 111.707 W. The least accurate algorithm is GA, which has the 
highest MAE (1.302) and STD (1.910); the tracked MPPs are scattered, away from the global MPP. 
 
 

 
 

Figure 14. Distribution of tracked fitness under 100 runs for, GA, CS, PSO, DE, and EP 
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Table 8. Summary of analysis results 
 

 
SC 

Fitness (Output Power, W) Performance Criteria 
 

Min 
 

Max 
 

Meanu 
Accuracy Success 

Rate (%) 
Convergence 

Speed 
(Average of 

Iterations 
No.) 

Complexity 
(Average of  

CPU 
Time (ms)) 

Mean 
Absolute 

Error, MAE 

Standard 
Deviation, 

STD 

GA 104.345 112.278 110.976 1.302 (5) 1.910 (5) 97 (2) 8 (2) 0.252 (3) 
CS 104.935 112.278 112.048 0.230 (3) 0.803 (3) 96 (3) 10 (3) 0.297 (5) 
PSO 104.345 112.278 111.861 0.417 (4) 1.358 (4) 94 (4) 10 (3) 0.210 (2) 
DE 111.053 112.278 112.196 0.082 (2) 0.189 (2) 96 (3) 10 (3) 0.276 (4) 
EP 111.707 112.278 112.226 0.052 (1) 0.111 (1) 100 (1) 6 (1) 0.182 (1) 
* The performance ranking is indicated by superscript numbers 

 
 

6.3.  Complexity 
The complexity of each algorithm is determined by measuring the average CPU time required to 

complete each iteration. To do so, the tic/toc function provided in MATLAB was used. A high average CPU 
time implies that the formulation of the algorithm is long and complicated. An algorithm with low CPU time 
will allow a fast and low-cost hardware implementation because the MPPT sampling time can be lowered. 
The average CPU time taken to process each algorithm is plotted in Figure 15. As seen, the least time is EP; 
it consumes an average processing time of 0.182 ms. This proves that (8) is a simple and less complicated 
formulation in generating offspring. The highest is CS, which requires an average time  
of 0.297 ms. 

 
 

 
 

Figure 15. Distribution of CPU time under 100 runs for GA, CS, PSO, DE, and EP 
 
 

6.4.  Success Rate 
The success rate is defined as the number of runs that successfully reach the MPP with 1 W 

tolerance, which represent less than a 1% ripple of the PV power. The corresponding best fitness trajectory 
for all algorithms over 100 runs is shown in Figure 13. The most successful algorithm to track MPPT is EP; it 
consistently obtained a success rate of 100%. This shows that the success rate is high when the search area is 
controlled to focus toward global MPP as in (8). The nearest rival, GA, exhibits 97% success, followed by 
CS with 96%, DE with also 96%, and PSO with 94%. 
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7. CONCLUSION 
Critical evaluations of five different SC-based MPPT algorithms—namely, genetic algorithm (GA), 

cuckoo search (CS), particle swarm optimization (PSO), differential evolution (DE), and evolutionary 
programming (EP)—have been presented for global MPP tracking, which works in conjunction with a boost 
DC–DC converter. Furthermore, a standardized benchmarking procedure to critically evaluate the 
performance of various SC MPPT algorithms has been proposed. In general, EP appears to be the most 
promising and encouraging algorithm to be used in MPPT for a PV system under partial shading conditions. 
EP dominates and ranks first for all performance criteria study in this paper. However, the potential of other 
algorithms cannot be denied because their performances can be further enhanced through better parameters 
tuning. In addition, the reproduction step of each algorithm has a high potential for improvement using a 
hybrid algorithm. Also, different algorithms may work well on some optimization problems but may not 
work well on others. Therefore, this article will provide a set of guidelines or benchmarks on how to evaluate 
the performances of different algorithms fairly. 
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