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 Sliding Discrete Fourier Transform (SDFT) is very efficient regarding 
computational load and it possesses a very fast phase angle detection with 
excellent harmonic rejection at nominal frequency. However, at off-nominal 
frequency, SDFT generates errors in both magnitude and phase angle due to 
spectral leakage. This paper introduces a workaround for Fourier Transform 
to handle this disability under off-nominal frequency while avoiding 
variable-rate sampling. Sliding Fourier Transform (SFT) is used as a phase 
detector for a phase-locked loop whose output frequency is used to drive the 
SFT. The paper revisits the mathematics of Fourier Transform (FT) in a 
three-phase setting via a time-domain approach to show a newly proposed 
filtering technique for the double-frequency oscillation just by summing the 
FT sine/cosine filter outputs of the three individual phases. Also, the analysis 
aims to determine and correct the phase and magnitude errors under off-
nominal frequency operation. The proposed technique (SFT-PLL) is tested in 
real time on dSPACE DS1202 DSP using voltage vectors that are pre-
generated to simulate the most adverse grid conditions. The testing scenarios 
compare the performance of the SFT-PLL with that of the Decoupled 
Stationary Reference Frame PLL (dαβPLL). The results prove that SFT-PLL 
is superior to dαβPLL.
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1. INTRODUCTION  

Fuel cells and other Renewable Energy Sources (RES), such as PV systems and Wind Energy 
Converters (WECS), use inverters to inject the captured energy into the utility grid [1]. The successful 
integration of these sources to the electrical grid is still having a lot of issues and technical challenges [1]. 
One of the most critical issues of these integrations is the synchronization of the grid-side converter (GSC) to 
the electrical grid [2]. The synchronization of the GSC to the electrical grid can be defined as the process of 
minimizing the difference in phase angle, frequency and voltage between the GSC output and the utility grid 
waveform [3]. This synchronization process has to be realized before the connection between the RES or the 
GSC and the utility grid takes place, then it is to be maintained after the connection is established.  

In [4], the ideal synchronization technique must instantly respond to any grid changes, efficiently 
track the phase angle of the electrical grid, competently detect any variation in the grid frequency and 
competently eliminate harmonic components and disturbance from the fundamental waveform. There are lots 
of methods used for tracking the phase angle of the grid voltage such as zero-crossing detection method 
(ZCD), Space Vector (SV) method, Kalman filter, phase-locked loop methods (PLL) and Discrete Fourier 
Transform (DFT). The problem is none of these methods completely satisfies the full requirements of an 
ideal synchronization technique  
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Zero-Crossing Detection (ZCD) is the simplest angle synchronization method. The zero-crossing 
point is detected twice every single cycle and the interval between each two successive crossings is measured 
to any desired resolution. This method is very simple but it can be used only if the input signal is a stable 
sinusoidal signal as it is very sensitive to harmonics and noise which can cause multiple contiguous  
zero crossings [5]. 

Phase locked loop is a well-established technique and there are a lot of implementations of PLL 
synchronization. Each implementation differs from the other from the point of view of simplicity, immunity 
to disturbance, robustness in case of grid faults, fast convergence to the grid angle, and how it deals with 
disturbances. Synchronous Frame PLL (SF-PLL) technique is widely used in three-phase grid-connected 
power converters for its simple implementation, fast and accurate estimation of the phase angle of the grid 
[6]. Under ideal grid conditions, without any disturbances or harmonics, this technique exhibits fast-tracking. 
However, it is not a good solution in the presence of unbalanced grid voltages [7]. 

Real and imaginary power phase-locked loop (PQ-PLL) is a robust digital PLL algorithm based on 
the instantaneous real and imaginary power. This algorithm is introduced to maintain synchronization in 
presence of harmonics and negative sequence unbalances. Another algorithm which can deal with unbalanced 
grid voltages is the Double Synchronous Frame PLL (DSF-PLL). It is a very suitable solution for grid-
connected converters that operate in unstable frequency grid and unbalanced conditions [8]. 

Sinusoidal signal integrator PLL algorithm (SSI-PLL) has the advantage of operating well under 
unbalanced and distorted grid [8]. Another advantage of this algorithm is that it can be used for the single-
phase system with a small modification. Enhanced phase-locked loop (EPLL) is a frequency-adaptive 
nonlinear technique. EPLL shows a high degree of robustness to the harmonic, noise, and unbalanced grid 
[9]. This algorithm can be used for single phase applications. Quadrature PLL (QPLL) is based on estimating 
the in-phase and the quadrature phase value of the fundamental component of the input voltage signal. This 
method is a good solution for distributed generation [10]. Predictive Phase-Locked Loop (PPLL) is a 
complex synchronization method. However, PPLL has a wide-range synchronization capability and the 
synchronization information can be taken out within two voltage cycles under the worst case. Stationary 
Frame PLL (αβPLL) in [11], Decoupled Double Synchronous Reference Frame PLL (ddsrfPLL) and 
Decoupled Stationary Reference Frame (dαβPLL) techniques have the widest use in industry. The limitation 
of the αβPLL is its disability to track the grid angle in the case of unbalanced faults. The ddsrfPLL technique 
overcomes this limitation by decoupling the negative and the positive sequence of the grid voltage but the 
severe drawback of this technique is the high overshoot in the estimated grid angle when the fault occurs. 
The dαβPLL overcomes this drawback but it spends more than two cycles to track the grid frequency in case 
of frequency change. 

Discrete Fourier transform method (DFT) is one of the earliest methods used for phase angle 
estimation. This method provides a high degree of immunity against harmonics [12]. Sliding Discrete Fourier 
Transform (SDFT) is an improved version of the DFT in which optimized use of computation power and 
reduced latency are provided by using a recursive formulation of the DFT algorithm. However, if the time 
window of the SDFT is not identical with the grid period, a phase shift occurs between the estimated angle 
and the actual grid angle. In [12] some strategies have been reported to compensate for this phase error such 
as the use of time-varying Fourier coefficients and polynomial regression analysis. In fact, these strategies 
are rendered with noticeable complexity. Other fixing methods for the SDFT drawback are presented in [13]. 
However, the presented methods involve the use of a PI controller and a Numerically Controlled Oscillator 
(NCO). The method adopts a variable sampling rate of the grid voltage controlled by the NCO. Variable rate 
sampling adds difficulty to embedding the SDFT algorithm in the main application DSP controller which 
normally runs at fixed execution rate. Although the two proposed methods in [13] are simpler than those of 
[10], both methods compensate the phase error on a cycle-by-cycle basis, which is rather a slow process. The 
undesirable features of the SDFT in the case of off-nominal frequency are not only limited to the phase error 
which is a function of the frequency deviation but also includes a high-frequency oscillation observable in the 
magnitude and phase angle estimates. This high-frequency oscillation is referred to in the literature as 
double-frequency ripple and some post-processing for frequency and phase angle estimates in the off-
nominal operation mode are proposed. The post-processing can be done either by simple digital averaging 
filter or by resampling filter which is relatively more complex in implementation. 

From the previous survey, it appears that there is still some room for improvement in the phase 
angle tracking issue especially in the case of variable and off-nominal grid frequency accompanied by high 
harmonic content and/or in unbalanced three-phase systems. This paper revisits the FT concept through a 
time-domain analysis to further analyze the undesirable features associated with the off-nominal grid 
frequency. An efficient and natural filtering method for the double-frequency oscillations is devised. The 
laws relating the phase and magnitude errors to the frequency difference are derived. The formulation of the 
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FT in a sliding mode is explained. Experimental testing is used to confirm the validity of the  
proposed techniques. 

This paper is organized as follows: the mathematical analysis for determining the phase and 
magnitude errors under off-nominal frequency condition is presented in section 2. The recursive 
implementation is explained in section 3. The structure of the proposed SFT-PLL is explained in section 4. 
The method used for experimental testing and the test results in real-time on a DSP prototyping platform 
(DS1202 by dSPACETM) are presented in sections 4 and 5, respectively. Section 6 presents the conclusions of 
this paper.  
 
 
2. MATHEMATICAL ANALYSIS 

The grid voltages are represented by a balanced set of three-phase sinusoidal voltage 𝑉௚ with a 
frequency 𝑓௚ (Hz) and with a peak value E (Volt), thus 𝑉௚ is given by:  

 
𝑉௚௔ ൌ 𝐸 sin൫2𝜋𝑓௚𝑡 ൅ 𝜃଴൯, 

𝑉௚௕ ൌ 𝐸 sin ቀ2𝜋𝑓௚𝑡 െ ଶగ

ଷ
൅ 𝜃଴ቁ        (1) 

𝑉௚௖ ൌ 𝐸 sin൫2𝜋𝑓௚𝑡 ൅ 2𝜋/3 ൅ 𝜃଴൯ 
 
where 𝜃଴ is the initial phase shift (rad) of the voltage 𝑉௚௔, this phase shift depends on the random instant at 
which the measurement is started (t=0). For the sake of this analysis 𝑓௚ will be assumed constant. 

The Fourier transform is based on applying two orthogonal filters, namely a sine filter and a cosine 
filter on the input signal. The point here is that we set the phase sequence and the phase shift between the 
sine/cosine filters in a way that serve additional filtering purpose as will be seen later on. Therefore, the three 
grid voltages will be processed using two sets of balanced three-phase signals 𝑉௖௫ and 𝑉௖௬ having the same 
phase sequence as the grid voltage, running at a pre-known nominal grid frequency 𝑓௡ (Hz) and having a 
unity peak value. For the sake of this analysis 𝑓௡ will be assumed constant [14].  
The first set of signals 𝑉௖௫ is given by sine functions and is called the sine or direct set: 
 

𝑉௖௔௫ ൌ sinሺ2𝜋𝑓௡𝑡ሻ, 

𝑉௖௕௫ ൌ sin ൬2𝜋𝑓௡𝑡 െ
2𝜋
3

൰  

 𝑉௖௖௫ ൌ sinሺ2𝜋𝑓௡𝑡 ൅ 2𝜋/3ሻ 

(2) 

 
The second set of voltages 𝑉௖௬ is given by cosine functions and is called the cosine or quadratic set: 
 

𝑉௖௔௬ ൌ cosሺ2𝜋𝑓௡𝑡ሻ, 

𝑉௖௕௬ ൌ cos ൬2𝜋𝑓௡𝑡 െ
2𝜋
3

൰  

𝑉௖௖௬ ൌ cosሺ2𝜋𝑓௡𝑡 ൅ 2𝜋/3ሻ 

(3) 

 
The Fourier transform requires performing the following integrations to get the angle 𝜃଴: 
 

𝑥௜ ൌ
1
𝑇௡

න 𝑣௖௜௫. 𝑣௚௜𝑑𝑡

௧ା ೙்

௧

 (4) 

  

𝑦௜ ൌ
1
𝑇௡

න 𝑣௖௜௬. 𝑣௚௜𝑑𝑡

௧ା ೙்

௧

 (5) 

 
(4) and (5) are compact forms for the three-phase where the subscript 𝑖 ൌ a, b, c and 𝑇௡ ൌ 1/𝑓௡. For 

any positive and non-zero value of 𝑓௡, two cases are considered for calculating these integrals, the first case is 
𝑓௚ ് 𝑓௡ (off-nominal frequency case) which is the generic case and the second case 𝑓௚ ൌ 𝑓௡ (nominal 
frequency case) which is a special case of the first case. 
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2.1. The first case: 𝒇𝒈 ് 𝒇𝒏 (off-nominal frequency case) 

For ห𝑓௚ െ 𝑓௡ห ൏  𝑓௡ , and using suitable trigonometric identities it can be proven that 𝑥௜ in (4) (let us 
call it the direct component) and 𝑦௜ in (5) (let us call it the quadratic component) are functions of time and 
frequencies 𝑓௚ , 𝑓௡ that are given as follows: 
For phase a: 
            

𝑥௔ሺ𝑡ሻ ൌ 𝑘ଵ cosሾ𝜔஽𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଵሿ െ 𝑘ଶcosሾ𝜔்𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଶሿ     (6) 
  

𝑦௔ሺ𝑡ሻ ൌ 𝑘ଵ sinሾ𝜔஽𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଵሿ ൅ 𝑘ଶsinሾ𝜔்𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଶሿ     (7) 
 
For phase b: 
 

𝑥௕ሺ𝑡ሻ ൌ 𝑘ଵ cosሾ𝜔஽𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଵሿ െ 𝑘ଶcosሾ𝜔்𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଶ ൅ 2𝑝𝑖/3ሿ   (8) 
  

𝑦௕ሺ𝑡ሻ ൌ 𝑘ଵ sinሾ𝜔஽𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଵሿ ൅ 𝑘ଶsinሾ𝜔்𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଶ ൅ 2𝑝𝑖/3ሿ  (9) 
 
And for phase c: 
 

𝑥௖ሺ𝑡ሻ ൌ 𝑘ଵ cosሾ𝜔஽𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଵሿ െ 𝑘ଶcosሾ𝜔்𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଶ െ 2𝑝𝑖/3ሿ  (10) 
  

𝑦௖ሺ𝑡ሻ ൌ 𝑘ଵ sinሾ𝜔஽𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଵሿ ൅ 𝑘ଶsinሾ𝜔்𝑡 ൅ 𝜃଴ ൅ ∆𝜃ଶ െ 2𝑝𝑖/3ሿ (11) 
 
where 
 

𝜔஽ ൌ  2𝜋൫𝑓௚ െ 𝑓௡൯   (12) 
  
𝜔் ൌ  2𝜋൫𝑓௚ ൅ 𝑓௡൯  (13) 

 

∆𝜃ଵ ൌ  
𝜔஽

2𝑓௡
   (14) 

  

𝑘ଵ ൌ
 E sin ሺ∆𝜃ଵሻ

2∆𝜃ଵ
   (15) 

  

∆𝜃ଶ ൌ  
𝜔்

2𝑓௡
   (16) 

  

𝑘ଶ ൌ
 E sin ሺ∆𝜃ଶሻ

2∆𝜃ଶ
   (17) 

 
 

 

 
 

Figure 1. Waveforms of 𝑥௜ሺ𝑡ሻ, 𝑥௧ሺ𝑡ሻ, 𝑦௜ሺ𝑡ሻ, 𝑦௧ሺ𝑡ሻ: 𝐸 ൌ 1 V , 𝑓௚ ൌ 60 Hz, 𝑓௡ ൌ 50 Hz and 𝜃଴ ൌ  െπ 2⁄  
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It can be noticed that both of the direct and quadratic component 𝑥௜ and 𝑦௜ for the three-phases (𝑖 ൌ
a, b, cሻ as shown in (6) to (11) are composed of two sinusoidal terms. One of them is larger in magnitude and 
its frequency ሺ𝜔஽ሻ is the difference between the grid actual and nominal (or filter) frequency (if the two 
frequencies become equal, then it is a DC value as will be shown in (6), (7) of the second case). The other 
has a much smaller magnitude and its frequency ሺ𝜔்ሻ is the sum of the grid actual and nominal frequency (if 
the two frequencies become equal, then it vanishes as the magnitude becomes zero as will be confirmed in 
the second case). Referring to the second term in the right hand side of each of (6), (8) and (10), it is evident 
that the three terms constitute a balanced three-phase set in cosine notation whose sum is zero. Thanks to the 
proper selection of the sine and cosine filter phase angles. Referring to the second term in the right hand side 
of each of (7), (9) and (11), the three terms also constitute a balanced three-phase set in sine notation whose 
sum is zero. Here it becomes clear the usefulness of the summing process combined with the proper selection 
of the FT filter phase angles. The summing process thus results in filtering the double-frequency oscillations 
without any additional or post-filtering. Some representative values (𝐸 ൌ 1, 𝑓௚ ൌ 60 Hz, 𝑓௡ ൌ 50 Hz and 
𝜃଴ ൌ െ π/2ሻ are used to plot  

Figure 1 where the waveforms of 𝑥௜ and 𝑦௜ are plotted in the left subplot and the right subplot 
respectively against time to illustrate the double-frequency ripple, the sums 𝑥௧ and 𝑦௧ are also plotted in the 
two subplots to show the smooth sinusoidal variations as the three higher frequency oscillations running at 
(𝑓௚ ൅ 𝑓௡ሻ cancel each other. Therefore, the sum of the direct 𝑥௧ and the quadratic components 𝑦௧ for the three 
individual phases, are given by (18) and (19), respectively: 

           

x୲ ൌ ෍ x୧ ൌ 3 kଵcosሾωୈt ൅ θ଴ ൅ ∆θଵሿ
ୡ

୧ୀୟ

 (18) 

  

y୲ ൌ ෍ y୧ ൌ 3 kଵsinሾωୈt ൅ θ଴ ൅ ∆θଵሿ
ୡ

୧ୀୟ

 (19) 

 
Dividing (19) by (18) yields:  
 

y୲

x୲ 
ൌ  tanሾωୈt ൅ θ଴ ൅ ∆θଵሿ  (20) 

 
Therefore: 
 

2π൫f୥ െ f୬൯t ൅ θ଴ ൅ ∆θଵ ൌ tanିଵ ൬
y୲

x୲
൰  (21) 

 
The phase angle 𝜃௔ of the grid voltage 𝑉௚௔ that is equal to 2𝜋𝑓௚𝑡 ൅ 𝜃଴ from (1) is then given by 

rearranging (21) as follows: 
 

θୟ ൌ 2πf୥t ൅ θ଴ ൌ tanିଵ ൬
y୲

x୲
൰ ൅ 2πf୬t െ ∆θଵ  (22) 

 
Substituting from (14) into (22) yields, 
 

θୟ ൌ tanିଵ ቀ
୷౪

୶౪ 
ቁ ൅  2πf୬t െ

஠൫୤ౝି୤౤൯

୤౤
 (23) 

 

Recalling that 𝑓௚ is constant, then 
∆୤ౝ

∆୲
ൌ 0 and ∆𝜃ଵ is constant. 𝜃଴ is also constant. Therefore, the 

time derivatives of both ∆𝜃ଵand 𝜃଴ are typically zeros. Consequently, the value of 𝑓௚ can be calculated by 
taking time derivative of both sides of (22) as follows: 

 

f୥ ൌ
1

2π
.

d
dt

ሺtanିଵ ൬
y୲

x୲ 
൰ሻ ൅ f୬ (24) 

 
Once 𝑓௚ is estimated, ∆𝜃ଵis determined and consequently 𝜃௔can be estimated from (22). To estimate 

the magnitude E, it can be found from (15), (18) and (19) that: 



Int J Pow Elec & Dri Syst ISSN: 2088-8694  
 

Frequency adaptive sliding fourier transform for synchronizing VSI to the grid (Osama M. Arafa) 

1039

 

E ൌ
2
3

.
∆θଵ

sin ሺ∆θଵሻ
. ඥx୲

ଶ ൅ y୲
ଶమ  (25) 

 

The term 
∆ఏభ

௦௜௡ ሺ∆ఏభሻ
 can be called the magnitude correction factor and the term 

ଶ

ଷ
ඥ𝑥௧

ଶ ൅ 𝑦௧
ଶమ  can be 

called the uncompensated magnitude.  
 

2.2. Second case: 𝒇𝒈 ൌ 𝒇𝒏 (nominal frequency case) 
By using suitable trigonometric identities, it can be proven that 𝑥௜ and y୧ are independent of time 

and are given as follows: 
 

𝑥௔ ൌ 𝑥௕ ൌ 𝑥௖ ൌ
𝐸 cosሺ𝜃଴ሻ

2
 (26) 

  

𝑦௔ ൌ 𝑦௕ ൌ 𝑦௖ ൌ
𝐸 sinሺ𝜃଴ሻ

2
 (27) 

 
Therefore, the summing for x and y components of the three-phase are given by (28) and (29), respectively: 
 

𝑥௧ ൌ  ෍ 𝑥௜ ൌ

௖

௜ୀ௔

3 E cosሺ𝜃଴ሻ
2

 (28) 

  

𝑦௧ ൌ  ෍ 𝑦௜ ൌ

௖

௜ୀ௔

3E sinሺ𝜃଴ሻ

2
 (29) 

 
Now dividing both sides in (29) by their respective sides in (28) yields: 
 

𝑦௧

𝑥௧ 
ൌ  

sinሺ𝜃଴ሻ

cosሺ𝜃଴ሻ
 ൌ tanሺ𝜃଴ሻ (30) 

  

𝜃଴ ൌ 𝑡𝑎𝑛ିଵ ൬
𝑦௧

𝑥௧ 
൰ (31) 

 
Recalling the equality of 𝑓௡and 𝑓௚, the phase angle 𝜃௔ of grid voltage 𝑉௚௔ is then given by (32): 
 

𝜃௔ ൌ 2𝜋𝑓௚𝑡 ൅ 𝜃଴ ൌ 2𝜋𝑓௡𝑡 ൅ 𝑡𝑎𝑛ିଵ ൬
𝑦௧

𝑥௧
൰ (32) 

 
According to (23), the last term in the right-hand side of (23) vanishes when 𝑓௚ ൌ 𝑓௡ thus leading to 

(32) and confirms that the nominal frequency case is a special case of the off-nominal frequency case. 
Therefore, it is obvious that (23) can be generalized for both nominal and off-nominal frequency cases. Thus, 
phase angle tracking is a seamless process when the actual frequency shifts from nominal to off-nominal 
mode and vice versa during actual operation.  
The magnitude E can simply obtained from (28) and (29) as follows: 
 

𝐸 ൌ
2
3

. ඥ𝑥௧
ଶ ൅ 𝑦௧

ଶమ  (33) 

 

Knowing that: lim
∆஘భ→଴

∆஘భ

ୱ୧୬ ሺ∆஘భሻ
ൌ 1, the (25) becomes the same as (33) and it turns as stated earlier that 

the nominal frequency case is a special case of the off-nominal generic case. Therefore (25) can be a valid 
expression for both cases. Thus, the magnitude tracking is also a seamless process should the actual grid 
frequency shifts from off-nominal to nominal mode of operation and vice versa. 

Now it is clear that by proper selection of the phase sequence and phase shift of the waveforms used 
for sine and cosine filters of the FT and applying the summing procedure we get a very effective filtering for 
the double-frequency oscillation characterizing the FT in off-nominal frequency case. Figure 2 illustrates the 
schematic diagram of the proposed FT implementation based on (1) through (33). In the leftmost block, the 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 10, No. 2, June 2019 :  1034 – 1048 

1040

sine and cosine filters are applied to the three-phase voltage, and the summing procedure is applied to get 𝑥௧ 
and 𝑦௧. The uncompensated phase angle given by (21) is estimated in the leftmost block as well. The 𝑓௚ is 
estimated according to (24) in the intermediate block. Using the estimated 𝑓௚, the phase angle correction term 
∆𝜃ଵ can be estimated in the rightmost block. Subtracting the correction term from the uncompensated phase 
angle as per (23) results in the true phase angle of the grid voltage 𝑉௚௔. The magnitude correction factor can 
be easily calculated also from (25) in the bottom block and finally the compensated magnitude can  
be estimated.  

 
 

 
 

Figure 2. Schematic diagram of the proposed FT implementation for three-phase system  
 
 

3. SLIDING FT IMPLEMENTATION (SFT) 
The sliding integrations from t to 𝑡 ൅ 𝑇௡ as mentioned in (4) and (5) can be carried out numerically 

in a discrete sampled system. The method applied for obtaining and updating the numerical integration over 
one cycle upon picking each fresh sample of xi (or yi) is to insert a delaying buffer of length 𝑇௡ after the 
discrete time integrator [15]. Thus, integration over 𝑇௡ is updated every new sample of xi and it is 
implemented as shown schematically in Figure . In this implementation, the buffer is initialized with zeroes 
and it takes 𝑇௡ /𝑇௦ samples to be filled incrementally with valid readings as 𝑇௦ is equal to the sampling period. 
Based on this, the detected grid angle and frequency needs one complete cycle (𝑇௡) to converge to their 
actual values for all 𝑓௚ ് 𝑓௡. It can be shown that for 𝑓௚ ൌ 𝑓௡ the detection is almost instantaneous. 

 
 

 
 

Figure 3. Updating Numerical integration over one 𝑇௡ cycle upon each new sample of 𝑥 
 
 

4. THE PROPOSED SFT-PLL  
The implementation of SFT shown in Figure 2 works very fine and gives fast and accurate results in 

the nominal and off-nominal frequency cases as long as the input voltages are free from harmonic distortion 
Once the input frequency shifts from nominal value while harmonics are existing the estimated phase angle, 
the estimated magnitude and the estimated frequency all suffer from oscillations due to spectral leakage and 
the SFT loses its excellent harmonic rejection and becomes unpractical. This is shown using numerical 
simulation in Figure 4. Figure 4 (a) illustrates that the input voltage is distorted with harmonics starting from 
t=0.1 sec to t=0.45 sec and the frequency is stepped up then down by 10 Hz at t=0.15 and t=0.35 sec 
respectively. Figure 4 (b) and (c) show that the SFT rejects the harmonics after exacty one power cycle and 
gives accurate frequency and phase angle estimation when it works at nominal frequency (50 Hz) i.e. from 
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t=0.05 sec to t=0.15 sec and from t=0.35 sec to t=0.5 sec. However, during the off-nominal period from 
t=0.15 sec to t=0.35 sec, the existence of harmonics characterizes the estimation of both frequency and phase 
angle by a sustained error. 

 
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
Figure 4. (a) Voltage of phase a (other phases omitted for clarity), (b) estimated frequency by SFT (c) error in 

phase angle estimation by SFT 
 
 
To overcome this deficit, and considering the ability of the FT to detect the phase difference θ0 

between the angle of the sine/cosine filters and the angle of the input voltage as shown by (23), the SFT can 
be used as a phase detector in a standard phase locked loop. To do this, the SFT time window (or number of 
processed samples) should be continuously and properly adjusted to enforce nominal-frequency operation a n 
and hence maintain its excellent harmonic rejection. This is schematically shown in Figure 5 and Figure 6. 
Note that the shaded rectangles in phase b and c in Figure 5 are similar in construction to that of phase a. The 
phase-locked loop PID controller in Figure 6 sets the loop frequency so as to eliminate the phase difference 
∆𝜃. The frequency 𝑓௚

෡  and the phase angle 𝜃௚෢ estimated by the PLL are fed back to the variable window width 
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SFT to calculate the sine and cosine filters whose outputs are used to explore the phase difference ∆𝜃. The 
PLL therefore adjusts the frequency of the SFT such that when it locks, the SFT works at the actual grid 
frequency. In this case, the filter frequency 𝑓௡ shifts to 𝑓௚ and the operation mode shifts from off-nominal to 
nominal and ∆𝜃 vanishes. This arrangement provides fast phase difference detection while maintaining the 
SFT well-known excellent harmonic rejection. Figure 5 and Figure 6 together illustrate the structure of the 
proposed SFT-PLL technique. 

 
 

 
 

Figure 5. Schematic representation of the proposed variable window width SFT phase detector 
 
 

 
 

Figure 6. Phase-locked loop schematic representation 
 
 

5. EXPERIMENTAL TESTING METHODOLOGY & RESULTS  
The experimental testing rnsures the applicability of the proposed technique in real-time setting and 

under practical operating conditions that may violate some of the considered assumptions made during the 
mathematical analysis. The testing method depends on generating the voltage vectors that contains the target 
test characteristics (DC offset, harmonic distortion, magnitude, frequency or phase jump and unbalance of the 
three-phases) using offline MATLAB simulation. These voltage vectors are sampled at 64 sample per power 
cycle (0.02 sec) and recorded along with an array of corresponding timestamps. Also the true phase angle, the 
true frequency and the true magnitude which areused for generating them are sampled and recorded for sake 
of comparison and validation. Then these voltage vectors are played back in real-time at the same sampling 
rate using dSPACE ds1202 DSP D/A channels, read back via A/D channels and are used as inputs to the 
SFT-PLL. The output of the SFT-PLL are then recorded in MAT files, then compared with the true values 
that are pre-recorded to compute the errors. The same procedure is repeated with dαβPLL technique and the 
error in both cases are plotted on same axis to compare the performance of both techniques. The testing 
voltages are:  
a. 50 Hz balanced three-phase (peak E = 220 V) with the following testing scenarios: Harmonic distortion 

(composed of third, fifth, seventh and ninth harmonic components with 70%, 60%, 30% and 20% of the 
fundamental magnitude respectively) switched-on at t=1 sec and switched- off at t=1.5 sec. Phase jump 
of π/2 at t=2 sec, frequency step-up of 5 Hz at t=2.5 sec. Magnitude step- up of 0.2 E at t=3.5 sec. 
Adding DC offsets to balanced three-phase at t=4 sec, 0.1 E to phase A, -.05 E to phase B, -0.05 E to 
phase C. 
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b. Unbalanced three-phase input with knowing symmetrical components structure as follows: magnitude 
of positive sequence is 220 V and its angle is zero, magnitude of negative sequence is 60 V and its angle 
is -150 deg., magnitude of zero sequence is 20 V and its angle is 10 deg.  

In all of these tests, the error is computed as the difference between the true quantity and the 
estimated one. In the case of unbalanced three-phase, the true value for phase angle estimation error is the 
phase angle of phase A of the positive sequence.  

Harmonic distortion test: Figure 7 (a) shows the introduction of harmonics at t=1 sec. Figure 7 (b) 
and (c) show that dαβPLL gives continuous oscillation in estimation of both frequency (±20 Hz) and angle 
(±4 deg.) while SFT-PLL gives oscillation in estimated frequency (±1Hz) for only one power cycle. 
Oscillation in estimated angle continues for one power cycle and error settles to zero in four cycles.  

 
 

 
 

 (a) 
 

 
 

(b) 
 

 
 

(c) 
Figure 7 (a) Voltage of phase A, harmonics switched on at t=1 sec, (b) frequency estimation error, harmonics 

switched on at t=1 sec, (c) phase angle estimation error, harmonics switched on at t=1 sec 
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Phase jump test: In this test a π/2 phase jump at t=2 sec is done. Figure 8 (a) and (b) show that 
dαβPLL frequency error peak is 28.6 Hz. The frequency error settles to zero in more than 6 power cycles. 
Phase angle error settles to zero in more than 6 power cycles. SFT-PLL results in frequency error peak of 
13.5 Hz. The frequency error settles to zero in less than 5 power cycles. Phase angle error settles to zero 
within 5 power cycles. Hence, SFT-PLL gives superior performance. 

 
 

 
 

(a) 
 

 
 

(b) 
Figure 8 (a) frequency estimation error, π/2 phase jump at t=2 sec, (b) phase angle estimation error, π/2 phase 

jump at t=2 sec 
 
 
Frequency step change test: Figure 9 (a), and (b) show that for dαβPLL, the frequency estimation 

error settles to zero in more than 8 power cycles. Peak phase angle error is 8.2 deg. The error in phase angle 
settles to zero in more than 10 power cycles. For SFT-PLL, the frequency estimation error settles to zero in 5 
power cycles. Peak phase angle error is 12.8 deg. Error settles to zero in 5 power cycles. Therefore, SFT-PLL 
errors settle faster than those of dαβPLL. 

 
 

 
 

(a) 
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Figure 9 (a). Frequency estimation error, 5 Hz frequency step up at t=2.5 sec 

 
 

(b) 
Figure 9. (a) frequency estimation error, 5 Hz frequency step up at t=2.5 sec, (b) phase angle estimation error, 

5 Hz frequency step up at t=2.5 sec 
 
 

Magnitude step change test: In this test, a 20% step change in magnitude is done at t=3.5 sec. 
Figure 10 (a) and (b) show that dαβPLL results in decayed oscillation in frequency with a peak -0.75 Hz and 
lasting for 4 power cycles. Phase angle error of 1 deg. decays to zero in 4 power cycles. While for SFT-PLL 
there is no error at all in frequency or phase angle. SFT-PLL is thus more robust against magnitude 
disturbances than dαβPLL. 

 
 

 
 

(a)  
 

 
 

(b) 
Figure 10. (a) Frequency estimation error, 20% step up in magnitude at t=3.5 sec, (b) phase angle estimation 

error, 20% step up in magnitude at t=3.5 sec 
 
 
DC-offset test: In this test, the three phase voltages are affected with the prescribed DC offsets at 

t=4 sec. Figure 11 (a) and (b) show that dαβPLL results in continuous oscillation in frequency error of ±2.2 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 10, No. 2, June 2019 :  1034 – 1048 

1046

Hz and in phase angle error of ±2 deg. While for SFT-PLL the oscillation in frequency error and phase angle 
error has a smaller magnitude and noticeable only within two and four power cycles respectively. SFT-PLL 
is thus more robust against DC offset disturbance than dαβPLL. 

 
 

 
 

(a) 
 

 
 

(b) 
Figure 11. (a) Frequency estimation error, three-phase voltage with DC offset (Va+20, Vb-10, Vc-10), (b) 

phase angle estimation error, three-phase voltage with DC offset (Va+20, Vb-10, Vc-10) 
 
 
Unbalanced three-phase test: Figure 12 (a) shows the three-phase voltages with the prescribed 

unbalance. Figure12 (b) and (c) show that dαβPLL results in continuous oscillation in frequency error (-2.9 
Hz:+2.6 Hz) and in phase angle error of ±3 deg. For SFT-PLL, the decays to zero in 4 power cycles. While 
for SFT-PLL there no errors at all in estimating frequency and phase angle. SFT-PLL is thus is completely 
immune against unbalance disturbance while dαβPLL is not. Note that the reference phase angle in this case 
is the positive sequence phase angle. 

 
 

 
 

 (a) 
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(b) 
 

 
 

(c) 
Figure 12. (a) three-phase unbalanced set, (b) frequency error in case of three-phase unbalanced input (c) 

frequency error in case of three-phase unbalanced input 
 
 
6. CONCLUSION  

The mathematical analysis in time domain of the SFT of a single frequency three-phase set shows 
that by properly setting the phase angle used in the sine/cosine filters of the individual phases and then by 
summing the direct components and the quadratic components independently, the double-frequency 
oscillation is completely removed without post filters. The phase angle error and the magnitude error are also 
analyzed and their values are determined analytically. Therefore, any errors in the phase angle and magnitude 
can be corrected. However, due to spectral leakage, the SFT shows excellent harmonic rejection when 
working at nominal frequency while it shows inferior performance at off-nominal frequency mode of 
operation when the input has a high harmonic content. The benefits of the excellent harmonic rejection of 
SFT at nominal frequency mode of operation are preserved by timely adjusting the SFT frequency using a 
phase-locked loop. The proposed SFT-PLL has a fixed sampling rate which is consistent with the design of 
common digital controllers. The proposed SFT-PLL has been tested and validated using DSP in real time. A 
comparative study with one of the best performing PLL methods dαβPLL under different practical conditions 
has been presented. The comparison demonstrates that SFT-PLL can successfully handle unbalanced three-
phase input and computes the positive sequence phase angle while dαβPLL gives a sustained oscillatory error 
in this case. The SFT-PLL is very resistant to magnitude disturbances while dαβPLL is affected by such 
disturbances. Indeed, the SFT-PLL outperforms the dαβPLL in the presence of harmonic distortion or/and 
DC offset. In a very wide range of disturbances, the SFT-PLL error settles to zero faster than that of the 
dαβPLL. The excellent performance strongly suggests the SFT-PLL for synchronizing renewable energy 
sources with the utility grid under challenging grid conditions like fault-ride-through periods.  
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