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 Unquestionably, the classic CPI controller dominates the industry and has the 
advantage of being simple and easy to implement. Because its setting 
remains intuitive and more practical. On the other hand, these disadvantages 
lie in the fact that most of them reach a compromise in terms of speed of 
response and stability. Even worse, such an approach becomes insufficient at 
the increasingly demanding speeds demanded by the industry. In this context 
the NLPI controller is currently presented as an alternative. With its simple 
tuning method and robustness to process parameter variations, it stands out 
as a valuable addition to the toolbox of control engineering specialists. This 
paper aims to provide a simulation-based study using a MAS controlled by 
IFOC, comparing the PI controller system to the NLPI controller system. The 
results will be in favor of the last one. 
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1. INTRODUCTION 

Currently, the NLPI controller currently presents itself as an alternative to both conventional CPI 
methods and modern model-based approaches to solving control problems subject to high variations and 
dynamics. The nonlinearities that occur at high speeds, means that the use of the CPI controller to control the 
speed of the asynchronous machine "MAS" is often characterized by an overrun in tracking mode and a bad 
rejection of load disturbance [1-3]. 

This is mainly due to the fact that controller gains cannot be granted to simultaneously resolve 
overflow and load disturbance rejection problems, as the overload removal setting will result in a bad charge 
rejection. The disruption of the load on the one hand and live on that on the other hand. However, the 
situation becomes more and more complicated for high speeds. It is from here that other types of control, 
otherwise technologically designed like the NLPI "non-linear PI", have to be used to manage par excellence 
and simultaneously the constraints relating to the overrun and to charge disturbance rejection [4-8]. 

The NLPI controller has therefore emerged as an alternative that combines easy applicability of 
conventional PI control methods with the power of modern model-based approaches. The NLPI controller 
foundation deals with real disturbances and modeling uncertainties together, so that only a very coarse 
process model is needed to design a control loop, making the NLPI controller an attractive choice for 
practitioners and promises good robustness against process variations. These current applications range from 
power electronics, motion control and superconducting radio frequency cavities to voltage and temperature 
control [8, 9]. 
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2. CONTROL TECHNIQUES 
2.1. CPI Controller 

Figure 1 illustrates the block diagram of MAS control by a CPI. 
 

 
 

Figure 1. Control of MAS by CPI 
 
 

Obviously, the CPI controller makes it possible to correct within a suitable time the difference that 
exists between a setpoint (speed, temperature, pressure, position) and its associated measurement return, by 
increasing or decreasing the output of the MAS and this, by the intermediate of two main parameters called 
gains (Proportional gain and Integral gain), which can accelerate, delay and stabilize this correction. The 
regulation function can be embodied in the form of a black box that can be represented by a comparator with 
2 inputs (setpoint and return), the result of this comparator controls the output of the MAS [9, 11-15]. 

 However, if the value of the feedback value is greater than the value of the setpoint, the difference 
is positive and the CPI controller will slow down the motor. Conversely, if the value of the measurement 
feedback is lower than the value of the setpoint, the difference is negative and the CPI controller will make 
sure to accelerate the motor. The response time of the system is adjustable via two gain parameters. In our 
case, the cruise control is used to determine the reference torque, in order to maintain the corresponding 
speed. The velocity dynamics is given by the following mechanical equation: 

 

𝐹 𝑠
.

      (1) 

 
For this purpose, the simplified block diagram of the control system based on a controller CPI is 

given in Figure 2. 
 

 
 

Figure 2. Block diagram of speed control by a CPI 
 

Then, the closed loop transfer function is written as follows: 
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The characteristic equation 𝜌 𝑠  is: 
 

 (3) 
By imposing two complex poles conjugated 𝑠 , 𝜌 . 1 ∓ 𝑗  in closed loop and by identification, 

one obtains the parameters of the controller PI: 
 

𝑘
. .

   

𝑘
. .

         
    (4) 

 
2.2. NLPI Controller 

For the control of the MAS by NLPI, we adopt the same device illustrated by Figure 1, except 
change of the CPI controller by another NLPI. In addition, we also use NLPI regulators for current regulation 
of the IFOC command. 

At speeds reaching higher and higher thresholds, in an industrial environment where the transient 
mode is characterized by a strong non-linearity, it is even more judicious to call on the NLPI controller, in 
order to improve the quality of control even more. By guaranteeing impeccable speed control, we say that 
NLPI control is considered one of the most efficient and simple methods for industrial applications [10], [11], 
[14]-[17]. This control can be expressed for any control structure of the following form: 

 

𝑢 𝑡 𝑘 . 𝑒 𝑡 𝑘 . 𝑒 𝜏 𝑑𝜏            5  

Where are control gains 𝑘 .  𝑒𝑡 𝑘 .  varying over time, depending on the state of the system, the 
signal of the command and e (t) the error. 

The action of the NLPI controller represented by the Figure 3: 
 
 

 
 

Figure 3. 𝑓𝑎𝑙 𝑒, 𝛼, 𝛿  function characteristics 
 
 
This control action is given by: 
 
𝑢 𝑘 𝑓𝑎𝑙 𝑒, 𝛼 , 𝛿 𝑘 𝑓𝑎𝑙 𝑒𝑑𝑡, 𝛼 𝛿     (6) 
 
With: 
 

𝑓𝑎𝑙 𝑒, 𝛼, 𝛿 
|𝑒|∝𝑠𝑖𝑔𝑛 𝑒     |𝑒| 𝛿, 𝛿 0  

      |𝑒| 𝛿                               (7) 

 



Int J Pow Elec & Dri Syst ISSN: 2088-8694  
 

Comparative study between the NLPI controller and the CPI controller (Touhami Mohammed) 

1181

Where is a nonlinear function; and are respectively the proportional and 

integral gains of the NLPI controller; is the command signal; the parameters and are constant, 

empirically chosen in the range 0 to 1. When = = 1, the controller becomes a linear PI. is a constant, 
which can be empirically fixed to a small value. 

The NLPI is thus designed by adapting its response based on the performance of the closed-loop 
control system. When the error between the controlled and actual values of the controlled variable is large, 
the gain amplifies the error substantially to generate a large correction to quickly drive the system out of its 
way. On the other hand, when the error decreases, the gain is reduced automatically to avoid excessive 
oscillations and large overshoots in the response. Thanks to this automatic gain adjustment, the NLPI 
controller has both a high initial gain and a fast response, followed by a small gain to avoid oscillatory 
behavior [17-25]. 

 
 

3. SIMULATION RESULTS AND ANALYSIS  
A simulation series is performed for each of the two control cases described above, followed each 

time by a summary of the results and an in-depth analysis. All simulations take into account the dynamics of 
the torque, flux and current in the MAS subjected to the IFOC command. 

To evaluate the tuning performance, we simulated each control case with speed controller 
parameters calculated by a pole location ρω, a set speed ωr=150 rad/s, followed by an application and a 
charge removal (𝐶 10 𝑁. 𝑚) at times t=1.5s and t=2.5s, respectively. Then an application of a set point 
change at the moment t=4s. 

Table 1 below shows the control parameters for each case: 
 
 

Table 1. Parameters of control 
Controller Speed (rpm) 
CPI  

NLPI  =0.1,  =0.2, 
=0.7, =0.8, 

 
 =0.1,  =0.2, 
=0.7, =0.8, 

 
 =0.1,  =0.2, 

=0.7, =0.8, 
 

 
 

3.1. Behavior of speed 
The analysis of Figure 4 shows Behavior of the output speed y with respect to that of the input  

(CPI case), allows us to deduce: 
1. Registration of a transitional regime at start-up during 0,35 𝑠; 
2. During this phase the speed follows its reference value with an overrun of 1𝑂 𝑟𝑎𝑑/𝑠 𝑦

154 𝑟𝑎𝑑/𝑠 𝑒𝑡 𝜔   144 𝑟𝑎𝑑/𝑠  and this to 𝑡  0.13𝑠; 
3. At the application of a load, at approximately 𝑡 1.5𝑠, we record a downward peak of a 

value of  𝑦 = 142 rad / s; 
4. When lifting the load 𝑡 2,5𝑠 , this time we record a peak at the top of a value 𝑦

158 𝑟𝑎𝑑 𝑠⁄ . 
5. We then say that the speed decreases with the increase of the load and then increases with 

its decrease.  
6. At 𝑡 4𝑠, the direction of rotation of the MAS changes. 
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Figure 4. Behavior of the output speed y with respect to that of the input  (CPI case) 
 
 
Overall, therefore, we record a good reference tracking by that of the output and a good rejection of 

disturbances during the application of the load. 
 
 

 
 

Figure 5. Behavior of the output speed y with respect to that of the input  (NLPI case) 
 
 
The analysis of Figure 5, allows us to deduce: 

1. Registration of a transitional regime at start-up during 0,33 𝑠; 
2. During this phase the speed follows its reference value with an overrun of 5 𝑟𝑎𝑑/𝑠 𝑦

154 𝑟𝑎𝑑/𝑠 𝑒𝑡 𝜔   149 𝑟𝑎𝑑/𝑠  and this to 𝑡  0.13𝑠; 
3. At the application of a load, at approximately 𝑡 1.5𝑠, we record a downward peak of a 

value of  𝑦 =149,7 rad/s; 
4. When lifting the load 𝑡 2,5𝑠 , this time we record a peak at the top of a value 𝑦

150,2 𝑟𝑎𝑑 𝑠⁄ . 
5. We then say that the speed decreases with the increase of the load and then increases with 

its decrease.  
6. At 𝑡 4𝑠, the direction of rotation of the MAS changes. 

 
Overall, therefore, this time we record a better reference tracking by that of the output and a better 

rejection of disturbances during the application of the load and this compared to the control case at CPI. 
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3.2. Behavior of current  
Figure 6 shows current behavior 𝐼  𝑎𝑛𝑑 𝐼  (CPI case). 
 
 

 
 

Figure 6. Current behavior 𝐼  𝑎𝑛𝑑 𝐼  (CPI case) 
 
 
From the analysis figure 6 we can deduce: 

a) Current 𝑰𝒅𝒔: 
In general, during the entire period between 0 and 4s, the current 𝐼  stabilizes at about 3.9 A. 

b) Current 𝑰𝒒𝒔: 
i. The rise time between 0 to 0.13 s has a peak of about 30 A. 

ii. Throughout the interval from t = 1.5s to t = 2.5s a rise (with bumps at the ends) of about 6A. 
iii. At t = 4s a signal fluctuation indicates the change in the rotation of the MAS. 

Figure 7 shows current behavior 𝐼  𝑎𝑛𝑑 𝐼  (NLPI case) 
 
 

 
 

Figure 7. Current behavior 𝐼  𝑎𝑛𝑑 𝐼  (NLPI case) 
 
 
From the analysis figure 6 we can deduce: 

a) Current 𝐼 : 
In general, during the entire period between 0 and 4s, the current 𝑰𝒅𝒔 stabilizes at about 3.1 A. 

b) Current 𝐼 : 
i. The rise time between 0 to 0.13s records a peak of about 38 A. 

ii. Throughout the interval from t = 1.5s to t = 2.5s a virtually rectangular rise (without end 
fluctuations) of about 6A. 

iii. At t = 4s a signal fluctuation indicates the change in the rotation of the MAS. 
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3.3. Flux behavior 
Figure 8 shows flux behavior ∅  𝑎𝑛𝑑 ∅  (CPI case). 
 
 

 
 

Figure 8. Flux behavior ∅  𝑎𝑛𝑑 ∅  (CPI case) 
 
 
Figure 8 shows that the fluxes and consequently the electromagnetic torque are maintained at their 

desired values. Obviously, we record: 
i. After a short transient departure, the two flows have fluctuations (ripples) at startup: 

1. ∅  
1.6 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑛é𝑔𝑎𝑡𝑖𝑣𝑒  

 

2. ∅  
0.7 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒      

0.3 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑛é𝑔𝑎𝑡𝑖𝑣𝑒  
 

ii. Very slight fluctuations at the moment of the lifting of the load at t = 2.5s; 
iii. Slight fluctuations at the time of change of MAS rotation at t = 4s; 
iv. During all the time, we can confirm the flow of the rotor knows only the reference flow (∅ = 1 and 

∅ = 0) and is therefore independent of speed and torque variations. This implies a good 
decoupling. 
Figure 9 shows Flux behavior ∅  and ∅  (NLPI case). 
 
 

 
 

Figure 9. Flux behavior ∅  and ∅  (NLPI case) 
 
 
Figure 9 shows that the fluxes and consequently the electromagnetic torque are maintained at their 

desired values. Obviously, we record: 
i. After a short transient departure, the two flows have fluctuations (ripples) at startup: 
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1. ∅  
1.7 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑛é𝑔𝑎𝑡𝑖𝑣𝑒  

 

2. ∅  
1.7 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0 𝑊𝑏 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑛𝑐𝑒 𝑛é𝑔𝑎𝑡𝑖𝑣𝑒  

 

ii. Slight fluctuations at the time of change of MAS rotation at t = 4s; 
iii. During all the time, we can confirm the flow of the rotor knows only the reference flow (∅ = 1 and 

∅ = 0) and is therefore independent of speed and torque variations. 
This implies a significantly improved decoupling compared to that of the CPI case. 
 
 

4. CONCLUSION  
Obviously, the constant development of research based on reflective and creative thinking for the 

continuous improvement of a speed controller putting an end to the constraints of the transient mode, led us 
to the NLPI. a controller thus ensuring a very good monitoring and an excellent rejection of disturbance is 
indeed the most effective way to ensure a better-quality treatment. The results of the simulations relating to a 
MAS commanded by IFOC and controlled by an NLPI controller are significantly improved, compared to the 
other ones of the CPI controller, that it is in terms of monitoring the speed of reference 𝜔  by that of the 
output y, the rejection of disturbance or even behavior of the currents 𝐼  𝑎𝑛𝑑 𝐼  and flux behavior 
∅  𝑎𝑛𝑑 ∅  involving decoupling improvement. We will end by saying that the main importance of NLPI 
controllers lies in their robustness and performance against variations. 
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