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 This paper presents a novel single-stage microinverter topology using only 

two-power switches. The number of components count are directly 

proportional to the power losses, weight, cost and complexity of the design. 

Nowadays, conventional Microinverter without transformer having minimum 

of six power switches, while only three power switches involved in a 

Microinverter structure with the presence of a transformer. Thus, this paper 

proposed a novel Microinverter topology with only two-power switches to 

convert DC-voltage from Photovoltaic (PV) module to an AC-output. Modes 

of operation and current flow during each cycle are being explained. 

Variation of modulation index, irradiance and temperature of the PV module, 

the switching frequency and harmonic content of the proposed Microinverter 

are being analysed. A simulated model of Microinverter topology, employed 

only two power switches with a standard Unipolar Sinusoidal Pulse Width 

Modulation (SPWM) having 0.85% harmonic percentage; able to inject 

current to the load; have been successfully built and demonstrated through 

simulation based on MATLAB/Simulink, thus provide theoretical validation 

for further research. 
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1. INTRODUCTION  

Microinverter is popular among industrial and research field due to its great advantages in terms of 

compact design, lesser number of components involved, and efficiency-factor compared to other structure of 

Photovoltaic (PV) system [1-9]. Therefore, the background study on PV application (Centralized, String, and 

Microinverter) reveals that the Microinverter becomes the trend for the next generation of system 

development [1 ,4, 5, 10]. 

There are two classification of power conversion process in Microinverter; Two-stage or Single-

stage. Classical Microinverter adopted two-stage of power conversion which has been broadly used in the PV 

system [1, 11-13]. Two-stage Microinverter usually deal with power interface challenge between unstable 

DC-voltage source to stable high DC-voltage value before transforming into AC-voltage output [2, 5, 14]. 

Furthermore, two-stage Microinverter contains large number of components count [2, 15, 16], in order to 

realize converter and inverter power conversion stage which includes semiconductor devices, inductor, 

capacitor, and/or diode. Higher components count leads to higher switching losses and 

production/maintenance cost [16-18]. In addition, some of the converter and inductor topology may comprise 
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transformer [2, 6, 7, 19-22] to step-up the voltage value. Consequently, the Microinverter structure become 

bulky. The best is to have minimum stage of power conversion, hence Single-stage Microinverter topology, 

for ease in module integration. Thus, its strong to say that inverter topology is a major area of interest to 

employed less number of components. These number of components inside the topology are significantly 

affected the switching losses, the overall size, control stratergy of the power switches, and manufacturing 

cost of the Microinverter.  

Single-stage Microinver can be categorized based on galvanic isolation [23]; Transformer-based 

inverter or Transformer-less inverter. Early years of Single-stage Microinverter history, the topology were 

build with the present of transformer. Microinverter with classical-Flyback topology [7] with 3-power 

switches in 1998 in conjuction with the line-frequency transformer for circuit isolation purposes. Later in 

2015, an auxiliary circuit were added to the Flyback-topology that allows the switch and diode at the primary 

side of the transformer could be turn on using soft-switching operation. In 2014, Attanasio et. al [2] allows 

for AC-waveform to be generated by the using of 4-power switches and the existing of a line-transformer 

after the filter components for protection plan. However, Aganza-Torres et. al in 2014 [19] implemented 10-

power switches to overcome the bigger value of decoupling capacitor. Later in 2016 [2], 6-power switches 

with series of resonant tank were proposed for Zero Voltage Switching (ZVS) thus minimized the switching 

loss. A Half-bridge Microinverter topology utilizing 4-power switches were proposed by V. Berzan et. al in 

2016 [20] employed an alternating current source (SAC) to generated AC-waveform with soft switching 

technique.  

Transformer-based topology is one of major concerned in Single-stage Microinverter due to the 

larger space contributed by the transformer, hence a transformer-less structure arrangement was introduced to 

overcome the concern. Y. Fang and X. Ma in 2010 [24] proposed a coupled-inductor to a 4-power swicthes 

double-boost topology to solve the voltage gain issue in Microinverter. However, a complex DSP controller 

were implemented when a simpler digital controller can be used for Microinverter under 300W application 

[25]. Another technique for single-stage Microinverter was using Hysteresis Controller; having current and 

voltage controller proposed by D. Petreus et. al in 2013 [1]. The Hysteresis Controller were implemented into 

5-power switches of dual buck-boost Microinverter topology. In 2018, a Boost PWM Inverter [26] with total 

of 4-switches with a flying capacitor to eliminate the leakage current. However, a minimum of 7-level 

microinverter topology were build in order to reach 400V DC voltage before undergone the inverter process.  

Considering the above aspects, this paper presents a novel Single-stage transformer-less 

Microinverter topology using only 2-power switches which is straightforwardly implemented with single PV 

module usually targeted for the residential application with less than 1kW. The proposed Microinverter 

topology only use single active power devices during each cycle. The trend of the expected power delivered 

by the PV-module, the trend of output current and harmonic content with respect to modulation index and 

switching frequency were analyzed. Overall, the proposed Single-stage Microinverter topology using 2-

power switches producing as low as 0.85% harmonic content which successfully built and demonstrated 

through simulation based on MATLAB/Simulink, thus provide theoretical validation for further research. 

 

 

2. PROPOSED MICROINVERTER TOPOLOGY  

The proposed topology is constructed based on the idea of positive AC-cycle is activated by single 

power switch while the other negative AC-cycle is activated by another single power switch. The uniqueness 

of this topology underlies in the fact that a sine wave is generated by only using 2-power switches and using 

single PV module. This can be achieved by supplying only one power source which then charging and 

discharging the two-parallel capacitors and filtering-inductor connected across point-A and point-B of the 

circuit topology, as illustrated in Figure 1. The power switches; S1 and S2, having 50% of the duty cycle.  

 

2.1 Photovoltaic (PV) module 

Photovoltaic module (PV) is a dominant feature for Microinverter topology design. PV module 

absorb irradiance from solar energy and turns into electricity. Normally, one PV module has 60-cell per 

module or up to 120-cells in the same area. Number of cells inside single PV module will determine the 

module efficiency. Determine the PV module could be the very first step in designing the PV system 

application. Trina Solar Framed 72-cell 330W Module [27] was chosen for this paper and its datasheet is 

shown in Table 1; during STC (Irradiance 1000𝑀 𝑤2⁄ , 𝑇𝑐𝑒𝑙𝑙  25℃) and during NOCT (Irradiance 800𝑀 𝑤2⁄ , 

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 20℃). The expected electrical power; 𝑃𝑅𝑂𝐶 generated from the PV module when placed outside (on 

top of the roof), with specific irradiance, G can be determined by (1) – (6) [28]; where 𝑘𝑑𝑖𝑟𝑡 and 𝑘𝑎𝑔𝑒 are 2% 

and 1 respectively for a new PV module. While the derating factors are;  𝑘𝑝𝑜𝑤𝑒𝑟_𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is total de-rating 

factors related to power, 𝑘𝑚𝑚_𝑝 is de-rating factor due to module mismatch power, 𝑘𝑡𝑒𝑚_𝑝 is de-rating factor 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 11, No. 2, June 2020 :  792 – 800 

794 

of power due to cell temperature, 𝑘𝑑𝑖𝑟𝑡 is de-rating factor due to dirt, and 𝑘𝑎𝑔𝑒 is de-rating factor of power 

due to ageing. All these de-rating factor must me in decimal point.  
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Figure 1: Proposed topology with two parallel-capacitor. 

 

 

Table 1: Photovoltaic Module datasheet during 

STC and NOCT [27] 
Model Trina Solar Framed 72-cell 330W module 

During STC (Irradiance 1000𝑀 𝑤2⁄ , 𝑇𝑐𝑒𝑙𝑙 25℃) 

Peak Power, 𝑃𝑀𝑃 (W) during STC (𝑃𝑆𝑇𝐶) 330W 

Maximum Power Voltage, 𝑉𝑀𝑃 (V) 37.4V 

Maximum Power Current, 𝐼𝑀𝑃 (A) 8.83A 

Open Circuit Voltage, 𝑉𝑂𝐶  (V) 45.8V 

Short Circuit Current, 𝐼𝑆𝐶  (A) 9.28A 

Module Efficiency, 𝜂 (%) 17% 

During NOCT (Irradiance 800𝑀 𝑤2⁄ , 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡  20℃) 

Maximum Power, 𝑃𝑀𝑃 (W) during NOCT 245W 

Maximum Power Voltage, 𝑉𝑀𝑃 (V) 34.6V 

Maximum Power Current, 𝐼𝑀𝑃 (A) 7.08A 

Open Circuit Voltage, 𝑉𝑂𝐶  (V) 42.4V 

Short Circuit Current, 𝐼𝑆𝐶  (A) 7.49A 
 

 
𝑃𝑅𝑂𝐶 =  𝑃𝑆𝑇𝐶  𝑥 𝑘𝑝𝑜𝑤𝑒𝑟_𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (1) 

𝑘𝑝𝑜𝑤𝑒𝑟_𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑘𝑚𝑚_𝑝 𝑥 𝑘𝑡𝑒𝑚_𝑝 𝑥 𝑘𝑔 𝑥 𝑘𝑑𝑖𝑟𝑡 𝑥 𝑘𝑎𝑔𝑒 (2) 

𝑘𝑚𝑚_𝑝 = 1 − 𝑝𝑜𝑤𝑒𝑟 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (3) 

𝑘𝑡𝑒𝑚_𝑝 = 1 + [(
𝛼

100%
) 𝑥 (𝑇𝑐𝑒𝑙𝑙 −  𝑇𝑆𝑇𝐶)] (4) 

𝑘𝑔 = 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒
1000⁄  (5) 

𝑇𝑐𝑒𝑙𝑙 =  𝑇𝑎𝑚𝑏 + [(
𝑁𝑂𝐶𝑇 − 20℃

800 𝑀 𝑤2⁄
)] 𝑥 𝐺 

 

(6) 

𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = 𝐼𝑚𝑠𝑖𝑛(𝑤𝑡) (7) 

𝑉𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = 𝑉𝑚𝑠𝑖𝑛(𝑤𝑡) (8) 

𝑃𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 =  𝑉𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑥 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 =  𝑉𝑚𝐼𝑚𝑠𝑖𝑛2(𝑤𝑡)  (9) 

𝑃𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = 0.5𝐼𝑚𝑉𝑚 - 0.5𝐼𝑚𝑉𝑚𝑐𝑜𝑠(2𝑤𝑡) (10) 
 

 

 

2.2 Principle of operation 

When the switch at position-1 (referring to Figure 1) is in high state, the parallel-capacitor in gets 

connected to the input supply and charge-mood ON thus positive voltage is observed at the output. 

Subsequently, as the switch in position-2 turns high, the parallel-capacitor tends to discharge and hence a 

negative voltage is observed at the output. The above positions are being repeated at high switching 

frequency to maintain a constant voltage across the load. Principle of illustrating the charging and 

discharging the parallel-capacitor are being marks by blue-dotted and red-dotted line respectively. 

Conclusively, switch S1 charges the parallel-capacitor while switch S2 discharges it thereby. From the power 

perspective, the output current, voltage, and power equation of the output waveforms can be referred in the 

(10) [29]. Where; 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 is the inverter output current, 𝑉𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 is the inverter output load voltage, while 

𝑃𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 is the inverter output power. Inverter output power in (9) can be transformed into (10) by using 

Mathematical transformation. In (10), 2𝜔 can be substituted with 𝜔 = 2𝜋𝑓; where 𝑓 is the grid frequency of 

50Hz.  

 

2.3 Control and modulation strategy 

The proposed Microinverter modulation is handled using a standard unipolar Sinusoidal Pulse 

Width Modulation (SPWM), as shown in Figure 2. The unipolar SPWM normally requires two sinusoidal 

waves which are of same magnitude and frequency but 180° out of phase as depicted in Figure 2a. The two 

modulating waves are compared with a common triangular carrier wave generating two gating signals for 

switch S1 and S2 respectively. Here, switch S1 is modulated in reference to the positive sinusoidal to 

generate the positive grid cycle and switch S2 is modulated with negative sinusoidal reference (with 𝜋 phase) 

Position-1 

Position-2 
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to create the negative half of the grid cycle. Hence, only one switch carries the inverter’s current, 𝐼𝑖𝑛𝑣 during 

the positive as well as the negative cycle. The charging of the parallel-capacitor is achieved through switch 

S1 during positive cycle. These two switches experience high frequency switching during both the positive 

and negative cycle, thereby ensuring voltage control over the capacitors. The switching sequence for a single-

phase construction is shown in Table 2. 

 

 

Table 2: Switching states of the proposed Microinverter 
State  S1 S2 Vload 

Zero state 0 0 0 

Positive state 1 0 Vin/2 

Negative state 0 1 - Vin/2 

Zero state 1 1 ~0 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 2: Unipolar SPWM for the proposed microinverter topology: (a) Sinusoidal & triangle references, (b) 

Positive satte S1, (c) Negative S2, (d) Zero state S1 S2 

 

 

2.4 Modes of operation 

To satisfy the power conversion process, two modes of operation have been derived for this 

topology. The switching sequence for a single-phase construction is shown in Table 2 and Figure 3 show the 

equivalent circuit of the proposed microinverter topology during switching states.  
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Figure 3: Equivalent circuit of the proposed microinverter topology during switching states: (a) Positive state, 

(b) Negative state, and (c) Zero state 
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2.4.1. Positive state 

The positive modulating signal is subjected for comparison to a reference triangular waveform in 

order to generate the required pulse for switch S1. Thus, creating a gate pulse for switch S1 during this state 

while switch S2 remain OFF for the complete positive cycle. This ensures the parallel-capacitor charging in 

this stage. High frequency switching helps to reduce the size of the capacitors. The gate pulse for switch S1 

and the flow of current during this state are represented in Figure 2b and Figure 3a respectively.    

 

2.4.2. Negative state 

The negative modulating signal with a phase angle of 180º is subjected for comparison to a 

reference triangular waveform in order to generate the required pulse for switch S2. Thus, creating a gate 

pulse for switch S2 during this state while switch S1 remain OFF for the complete negative cycle. The gate 

pulse for switch S2 and the flow of current during this state are represented in Figure 2c and Figure 3b 

respectively. 

 

2.4.3. Zero state  

There are two zero-state conditions for this topology. First zero-state condition is created by turning 

OFF both switches. At this moment, there is no output coming out from the microinverter. Both output 

current, 𝐼𝑖𝑛𝑣 and load voltage, 𝑉𝑙𝑜𝑎𝑑 are equal to zero. Second zero-state condition happens when both 

switches are active at the same time. At this moment, both output current, 𝐼𝑖𝑛𝑣 and load voltage, 𝑉𝑙𝑜𝑎𝑑 are 

cancelling each other from positive and negative state, therefore produced nearly zero output, as shown in 

Figure 3c. Bare in minds that, zero-state conditions for this topology only occur at very short time during the 

transitions between negative and positive state. The gate pulse and the flow of current during zero state are 

represented in Figure 2d and Figure 3c respectively. 

 

 

3. SIMULATION RESULTS 

Numerical simulation of the proposed Microinverter is conducted to verify the performance of the 

topology. Simulation was performed by using MATLAB/Simulink, in a detailed model. To demonstrate the 

circuit principle, the PV module from Trina Solar Framed 72-cell Module is used. The parameters and 

components realised for MATLAB/Simulink simulation are listed in Table 3.  

 

3.1. Trend of 𝑰𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓 and THD with respect to Fs 

The switching frequency, 𝑓𝑠 were varied from 5kHz, 10kHz, 25kHz and 50kHz, in order to analyse 

the impacts on the output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 and harmonic content, THD of the proposed Single-stage 

Microinverter.  The irradiance and temperature of the PV module were fixed according to STC condition 

(Irradiance 1000𝑀 𝑤2⁄ , 𝑇𝑐𝑒𝑙𝑙  25℃). The modulation index was fixed, Ma = 1. 

Figure 4 illustrates the trend between output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 and THD with respect to switching 

frequency, 𝑓𝑠. The switching frequency, 𝑓𝑠 affected the amplitude of the output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 as the 

switching frequency,𝑓𝑠 become higher, the amplitude of output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟  decreased since the charging 

and discharging times of the parallel-capacitor become significantly shorter with an increase in switching 

frequency, 𝑓𝑠 (change from 10kHz, 25kHz and 50kHz). The harmonic content, THD also decreases when the 

switching frequency, 𝑓𝑠 increases, since it requires less time to complete one cycle.  

 

 

Table 3: Proposed microinverter parameters 
Parameter Variable Value 

PV module  𝑃𝑚𝑝 330W 

DC link capacitor 𝐶𝑖𝑛 400µF 

Grid frequency 𝑓 50Hz 

Switching freqeuncy  𝑓𝑠 50kHz 

Parallel-capacitor 1 𝐶1 20µF 

Parallel-capacitor 2 𝐶2 20µF 

Inductor filter 𝐿𝑓 150mH 

Coupling inductor 𝐿𝑐 150mH 

Load  𝑅 , 𝐿 10Ω, 5mH 

Power switches 𝑆1 , 𝑆2 IGBTs 

Diodes 𝐷1, 𝐷2 - 
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Figure 4: Trend of output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 and THD percentage with respect to switching frequency, 𝑓𝑠 

 

 

3.2. Trend of 𝑰𝒊𝒏𝒗𝒆𝒓𝒕𝒆𝒓 and THD with respect to Ma 

The modulation index, Ma for both SPWM (∅ = 0 𝑎𝑛𝑑 180°) were varied with the same values 

from 0.1 until 1, to analyse the impacts on the output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 and harmonic content, THD of the 

proposed Single-stage Microinverter. The irradiance and temperature of the PV module were fixed according 

to STC condition (Irradiance 1000𝑀 𝑤2⁄ , 𝑇𝑐𝑒𝑙𝑙  25℃). The switching frequency, 𝑓𝑠 was chosen at 50kHz 

since it produced lower harmonic content from previous analysis.  

Figure 5 illustrates the trend of output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 and THD percentage represented by the red 

and blue line accordingly, with respect to modulation index, Ma. It is observed that as modulation index, Ma 

increased, the output voltage, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 also increased. When the modulation index, Ma increased, the time for 

the switches synthesized by SPWM to turn ON will also increase, resulting in much longer charging time. 

Therefore, the energy stored in the parallel-capacitor will increased. In the other hand, as modulation index, 

Ma increased, the harmonic percentage, THD will decreased from 5.28% to 0.85%, for modulation index, Ma 

0.1 until 0.7 accordingly. However, harmonic content, THD will increased from 1.08% to 2.07%, when the 

modulation index, Ma varied from 0.8 until 1 accordingly. The proposed Microinverter successfully followed 

the IEC 61727 standard for Single-stage Microinverter nominal power less than 10kW and 50Hz system that 

harmonic current’s content, THD must be less than 4%, represented by the dotted-black line in Figure 5. 

Thus, for controlling method in the future, the algorithm must be carefully pick out the modulation index that 

produces harmonic content below that dotted-black line of 4% THD standard.  

 

3.3. Trend of 𝑷𝑹𝑶𝑪 of the PV with respect to irradiance and ambient temperature 

The irradiance and ambient temperature values were varied to analyse the impact on the expected 

power produced by the PV module, 𝑃𝑅𝑂𝐶. The expected power delivered by the PV-module can be calculated 

by using (1). Figure 6 illustrates the trend of expected power delivered by PV-module, 𝑃𝑅𝑂𝐶 when the 

irradiance and ambient temperature were varied from 100𝑀 𝑤2⁄  to 1000𝑀 𝑤2⁄  and 27℃ until 45℃ 

accordingly. Both black-dotted lines indicate the maximum power during STC, 𝑃𝑆𝑇𝐶 and NOCT, 𝑃𝑁𝑂𝐶𝑇 with 

330W and 245W respectively.  

The blue and red lines represent the expected power, 𝑃𝑅𝑂𝐶 when ambient temperature and irradiance 

were fixed at 32℃ and 600𝑀 𝑤2⁄  accordingly. It is clearly show that, expected power delivered by the PV-

module, 𝑃𝑅𝑂𝐶 producing slightly change of power when the irradiance is fixed. The expected power 

efficiency during STC and NOCT are around about 60.61% and 81.63% at the PV-module when the 

irradiance is fixed at 600𝑀 𝑤2⁄ while the ambient temperature is varied from 27℃ until 45℃. However, 

expected power delivered by the PV-module, 𝑃𝑅𝑂𝐶 is directly affected by the irradiance value received by the 

PV module. Thus, it can be concluded that, irradiance give more impact toward expected power, 𝑃𝑅𝑂𝐶 

compared to the ambient temperature of the surrounding. If the Single-stage Microinverter is intended to 

produce power approximately or greater than power during NOCT condition, the 700𝑀 𝑤2⁄  irradiance must 

be achieved for higher expected power efficiency. The proposed Single-stage Microinverter with 700𝑀 𝑤2⁄  

and above irradiance can be useful during around 10.05am until 15.05pm, Malaysian hour based on the 

sample daily solar irradiance profile given in [23]. 
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Figure 5. Trend of output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 and 

THD percentage with respect to modulation index, 

Ma. 

 

 

 
 

Figure 6. Expected power delivered by the 

PV-module, 𝑃𝑅𝑂𝐶 with respect to Irradiance and 

Ambient temperature. 

 

 

4. COMPARISON BETWEEN PROPOSED MICROINVERTER TOPOLOGY AND OTHER 

TOPOLOGIES 

In this section, the proposed Single-stage Microinverter topology is compared with hybrid of 

classical inverter topologies explained in the Introduction section earlier, as shown in Table 4.  

Based on the Table 4, it is clearly showing that the proposed Single-stage Microinverter topology 

only have 2-power switches, and only single-power switch is active during each cycle. The number of power 

switches have bigger impact on the cost, size and weight of the Microinverter unit. All of this  

papers [1-9, 26] supported this relationship of number of switches versus cost/size of the inverter. 

F urthermore, based on the proposed Microinverter’s operation modes discuss earlier, only 1-power 

switch is active during that single current path during positive or negative state; which leads to reduce the 

power losses. Since the power losses come from the dynamic voltage and current of the switch during the 

turn-off and turn-on transients, thus the smaller number of power switches are required to produce an output 

voltage reflected to lesser power losses [11, 17, 18, 26]. The proposed Single-stage Microinverter topology 

were verified with different analysis to observe the trend of expected power, 𝑃𝑅𝑂𝐶 output current, 𝐼𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 

and harmonic content, THD.  

 

 

Table 4. Comparison of Single-stage Microinverter topologies 
Ref Microinverter Topology Power 

Switches 

Transformer Additional Components 

 Proposed Microinverter with Parallel-Capacitor 2 - 2 Capacitors, 2 Diodes 

[19] Full-bridge with push-pull & ripple-port converter 10 High-Frequency - 

[2] Full-bridge with frequency conversion circuit 6 High-Frequency 1 Inductor 

[20] Half-bridge with HF transformer 4 High-Frequency 2 Capacitors 

[7] Flyback auxiliary circuit 3 Low-Frequency 1 Capacitor, 3 Inductors, 3 Diodes 

[24] Coupled-inductor double-boost 4 - 4 Inductors 

[1] Dual buck-boost 5 - 1 Inductor, 2 Diodes 

[26] Boost PWM Inverter 4 - 1 Capacitor 

 

 

5. CONCLUSIONS 

This paper presents a Single-stage Microinverter inverter with a new topology, which use a parallel-

capacitor, transformer-less and integrating with only two (2)-power switches. A SPWM with two sinusoidal 

wave that 180º apart are realized to initiate the switching sequences. The operation, switching state and 

output current for the proposed topology have been discussed. From the simulations results, the proposed 

Single-stage Microinverter topology were successfully tested to perceive the trend of expected power 

delivered by the PV-module with respect to irradiance and ambient temperature, the trend of output current 

and THD with respect to modulation index and switching frequency. The proposed Single-stage 

Microinverter topology has several advantages over other inverter topologies in terms of (i) total count of 

active devices, and (ii) the number of switches in current path which is directly related to power losses. 
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