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 In this paper, an implementation of a DC/DC buck converter for electric 

vehicles charging station and a DSP based closed-loop digital controller 

design are presented and analyzed. The aim of this work is to achieve an 

improved control strategy for a Li-ion battery charger implemented on a 

Real-time test platform. The test platform consists of a popular power pole 

board (MPCA75136) dedicated to studying the DC/DC converters, and a 

DSP development kit (TMS320F28379D) that is used to drive the DC/DC 

buck converter. The control strategy is based on a digital control system 

containing the closed-loop current controller followed by a pulse width 

modulation block, and on a real time state of charge estimation technique for 

a Li-ion battery. However, the overall control design is modeled on Simulink 

via block diagrams, and automatically generated code that is targeted into the 

DSP processor. Simulation and experimental results have shown the 

effectiveness of the proposed test bench and its external digital control 

strategy via a charging scenario for electric vehicles batteries. 
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1. INTRODUCTION 

The global environmental change research has encouraged the use of more efficient and energy 

optimization technologies in many sectors of daily life. Major energy consumptions are recently noticed in 

the transportation field, especially in the automobile industry [1]. Therefore, the need of more effective use of 

electric vehicles charging station (EVCS) is become increasingly competitive due to the improvement of the 

embedded information systems, and of the operation modes for electric vehicle (EV) battery charger in smart 

grids [2, 3]. Furthermore, the topologies of energy conversion devices had drawn much attention due to its 

various benefits, as the improved accuracy, stability and decreasing the energy losses during charging 

operations. Several such topologies of energy converters have been discussed and compared in [4-6]. The 

DC/DC buck converter offers a high energy efficiency and a large scale of output current compared to the 

other types of chargers, and it could possibly be used to interface the DC bus of the EVCS to the EV  

battery [7]. Each rated power provided by the battery chargers represents a specific charging mode; mode-1: 

slow charging (up to 3kW), mode-2: fast charging (providing power from 7kW to 22kW), mode-3: rapid 

charging (rapid AC chargers are rated at 43kW, while most Rapid DC terminals are at least 50kW) [8-10].  

Numerous control strategies for charging EV batteries have been reported in the literature [11]. The 

constant current-constant voltage (CC-CV) is by far the most familiar one, it consists of a constant current 

https://creativecommons.org/licenses/by-sa/4.0/
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charging protocol where the battery voltage increases up to a threshold level, followed by a constant voltage 

control mode hold until the current falls down to a low value. Thus, the simplicity of implementation of the 

CC-CV control has made it the most used charging protocol in the battery management system (BMS) 

applications [12]. This kind of protocols can shorten the charging time, with less damage of battery cycle life. 

Other protocols as in [13] have been proved to reduce charging times, and increased energy efficiency.  

The MPCA75136 power pole board (PPB) used in this paper is a platform in which control 

algorithms can be rapidly deployed and tested [14]. The control strategy of the PPB is implemented on a 

TMS320F28379D DSP, it consists of a closed-loop current control system followed by a digital pulse width 

modulation (PWM) block and a decision algorithm of duty cycle. One of the main aims of this work is to 

provide a smart embedded platform that can be used to test various digital controls on power electronic 

converters without going into the details of C programming of microcontrollers, or of converter schematics. 

In order to control the injected power flow into the connected battery, the authors in [15, 16] proposed a SOC 

estimation technique for Li-Ion battery based on a DSP hardware that can be used as a real-time tool for the 

embedded system platforms. The software tools required to set such control strategies are Matlab/Simulink, 

and Code Composer [17-19]. The works in [20] are closely related to the present work, it describes a power 

electronics laboratory that consists of Simulink and TI F28035 processor in order to control  

DC/DC converters. 

This paper is structured as follows: Section 1 introduces the background of the used approach. The 

real-time test platform of the EVCS smart charger operated by a TMS320F28379D DSP is described in 

Section 2. The closed-loop current digital control is detailed in Section 3. Design and simulation results in 

Simulink are presented in Section 4. Experimental results of a fast and a rapid charging mode are performed 

and analyzed in Section 5. Conclusions are provided in Section 6. 

 

 

2. DESCRIPTION OF THE PROPOSED PLATFORM 

Figure 1 depicts the complete scheme of the proposed real-time test platform; it consists of an EV 

Li-ion battery tied to a multi-source power system of the charging station via a DC/DC buck converter. The 

EV battery charger is controlled by a hybrid control strategy composed by a constant current mode supported 

by a threshold voltage mode. The digital control system (DCS) is driven by a control algorithm based on user 

control panel (UCP) data, so that the DCS can generate the required settings for the charger power switch. 

 

 

 

 

Figure 1. Block diagram of the proposed Real-time test platform of the EVCS charger 

 

 

3. CLOSED-LOOP DIGITAL CONTROL STRATEGY 

The EV battery charger is a multi-block system on which measurement sensors can be implemented 

in order to feed the DCS with the charging operation data, as shown in Figure 2. The internal block diagram 

of the proposed DCS is illustrated in Figure 3, it consists of several stages aimed to fulfill the desired 

charging modes of each EV battery via UCP data and a real time processing of the charging current  

and voltage. 
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(a) 

 
(b) 

 

Figure 2. DC/DC buck converter on the power pole circuit board (a) external view, (b) internal view 

 

 

 
 

Figure 3. Internal block diagram of the proposed DCS 

 

 

Compared to conventional technologies of batteries, Li-ion battery charges faster, and has a higher 

power density [21]. It is therefore proposed to use the Li-ion battery in the present work in order to emulate 

the EV storage system behaviour. It can be modeled through an electrical-analogue model [22] as shown in 

Figure 4. The battery terminal voltage is a reflection of the battery open-circuit voltage (E0), internal 

resistance (R0), and transient effects caused by charging or discharging current. The adopted model is 

dynamical, in which several components approximate different features of the dynamic response of a real 

battery. The N sets of RC networks are used to represent the model with continuous state variables. 

 

 

 
 

Figure 4. The electrical-analogue Li-ion battery model 

 

 

The Li-ion battery impedance can be written as in (1). In what follows, a two RC network of the 

battery model is selected to depict the charging operation of an ith EV battery.  
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3.1. Power calculation stage 

In compliance with the applied power demand from electric vehicles batteries, the DC bus of the 

charging station must provide the required energy within the plugging allocated time. In the framework of 

which UCP can provide real time monitoring of the charging sequence, the remaining time (RTEVi) of the 

charging operation can be calculated from the plugging time (PTEVi) as: 

 

PTRT EViEVi −= t    (2)  

 

based on the charging scenario considerations, the DCS of the EVCS would calculate the needed energy and 

then would generate a reference value of the charging power (PEVi), its expression is given  

in (3). 

PT

BC)SOC(SOC
P

EVi

EViEViREEVi
EVi

−
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  (3)  

 

Where BCEVi is the battery capacity of an ith EV. The reference current (Iref) of the closed-loop 

control is generated from this stage as expressed in (4). It is primordial to limit the charging voltage within a 

maximum level in order to avoid critical overloading issues, such as a danger of overheating. 
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3.2. Constant-current charging protocol 

The improved charging protocol aims to set a constant current control on the battery charger, it is 

also intended to control the voltage for not exceeding the overloading level of the connected battery. The 

block diagram of the closed-loop control of the buck converter is depicted in Figure 5.  

 

 

 
 

Figure 5. The improved closed-loop constant current control 

 

 

The portioned block is implemented digitally on the used development kit i.e., TMS320F28379D 

DSP. The reference input Iref (which specifies the desired charging current) is initialized via the power 

calculation block. The error signal is driven by PI controller, that is expressed as in (5). 
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Where, Kp is the gain of proportional action, Ki is the gain of integral action. HC (s) described in (6) 

represents the delay due to the calculation times and the execution of the DSP [23]. 
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The pulse width modulator is programmed to produce PWM signals at a switching frequency of 

25kHz. The system clock on the TMS320F28379D DSP has a frequency of 200MHz [24]. In order to provide 

a switching frequency of 25kHz, the system clock must be divided down by a factor of 8000. Therefore, the 

control signal Dα that determines the duty cycle of SCH must be in the range 0-7999. The ePWM block can 

produce 8000 equally space duty cycles over the range 0< SCH <1. The equation that expresses the regulated 

signal and the duty cycle is presented in (7). 
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The transfer function of the buck converter power stage is well known [25], it is expressed as: 
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Given the adopted model of the Li-ion battery, the conductance function of two sets of RC networks 

can be synthesized from (1) as follows: 
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3.3. Coulomb counting method 

The coulomb-counting algorithms are often used in the battery management systems, they describe 

the SOC as the ratio of available capacity to the nominal one [26]. The available capacity in a connected 

battery operated under charging operation mode can be calculated by measuring its charging current flow and 

integrating it over the time interval. The used equation to calculate the instantaneous SOC is given as: 
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Where, SOCEVi-ins is the SOC of an EV battery in real-time processing, SOCEVi represents the initial 

SOC, Imes represents the charging current, BCEVi is the nominal capacity of the battery, and K is the input 

gain of the integrator. 
  
 

 

 

4. SIMULATION RESULTS 

In order to check the validity of the proposed Real-time test platform, a closed-loop current digital 

controller design is carried out in MATLAB/Simulink. The modeled block diagram is depicted in Figure 6, it 

consists of a low power prototype of a real-time test platform of EV battery charger.  

The charging power is measured in the scale of watts which emulates the high-power charging 

scenarios. Thus, a DC bus voltage VDC is stabilized at 30V, within a maximum power of 90W, the load is 

represented by a Li-ion battery of 12V/4Ah. The specification of the proposed DC/DC buck converter used in 

simulation is given in Table 1.  

The simulation features are based, on the one hand, on testing the proposed closed-loop control via 

constant current method improved by threshold voltage control, on the other hand, on a real-time monitoring 

of the charging process using the coulomb counting algorithm of estimating the SOC. The rapid and the fast 

charging modes are emulated by a charging scenario of two EV batteries connected in two different time 

intervals, Table 2 shows the used scenario. 

As can be seen from the Figure 6, the two charging modes of the proposed scenario are implemented 

through power switches controlled by a decision algorithm. However, Figure 7 depicts the simulation results 

of the charging current and the injected power into two Li-ion batteries. Based on the scenario data in Table 2 

and the expression of eq. (2), the power required by each vehicle battery is 57.6W for the one that is rapid 

(above 50W), and 19.2W for the other that is fast (7W to 22W). 
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Figure 6. Block diagram of the proposed Real-time test platform modeled on Simulink 
 

 

Table 1. Parameters of the simulation setup 
Parametes Setup value 

Input voltage, VDC 30 V 

Output voltage, VBAT 12 V 

Buck inductor, L 100 𝜇H 

Buck capacitor, C 690 𝜇F 

ESR of capacitor, r 0.128 Ω 

Switching frequency, Fs 25 kHz 

 

 

Table 2. Charging scenario of two electric vehicles batteries 
BAT   PTEVi 

(min) 

SOCEVi 

(%) 

SOCEVi-RE 

(%) 

Charging 

mode 

EnEVi 

(Wh) 

1 2.83 61 65 Rapid 2.66 

2 3.5 55 57 Fast 1.12 

 

 

 
(a) (b) 

 

Figure 7. Simulation results of rapid and fast charging modes (a) current waveform (b) power waveform 

 

 

In the charging current waveform, the system reacted efficiently to the quick change in reference 

values. At t=0min, the first battery was connected and then charged with an effective value of current rate of 

3.86A, after 2.83min of plugging event, its SOC had reached the required level of 65%. The second scenario 

was started at t=3.15min, the real-time processing of data set an update of the reference current at 1.29A. 

There is a quick tracking of the reference current, the same reaction is noticed in the charging power curve, 

the measured power is around its reference value set by the DCS. In order to facilitate the analysis results and 

to get effective synthesis, a waveform of the instantaneous SOC of both batteries is shown in Figure 8. 
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Figure 8. Simulation results of the SOC waveform based on Coulomb counting algorithm 

 

 

A gradual change in SOC is observed in the two the charging modes. Therefore, the obtained results prove 

the convergence of the measurement values towards the values set by UCP.  

 

 

5. RESULTS AND DISCUSSION 

The proposed control strategy is tested on an experimental test bench assembled and operated at the 

power electronics laboratory as illustrated on Figure 9. The DC bus power of the MPCA75136 power circuit 

is provided by a DC power supply. PWM signals to control the MOSFET are supplied from an external 

source, which in this case is the TMS320F28379D DSP. The parameters of Table 1 are used in this setup, to 

complete the demonstration, a Li-ion battery is integrated to perform the 12V/4Ah load. 

The designed Simulink model used to build the program code for TMS320F28379D DSP is 

presented in Figure 10. The ADC block samples the inductor current and the output voltage sequentially, 

these signals are scaled to get real-time values of the power stage. As described in Sec. 2, the range of Dα is 

from 0 to 7999, the PI saturation block adjusts the Dα in the range of 160−7600, that would avoid duty ratio 

close to 0% or 100%. The schematic of the closed-loop control and of the PWM block is driven by a decision 

algorithm. 

The decision algorithm stage would avoid the charger from exceeding the desired SOC of each 

connected EV battery. However, the system response waveform for step-down the reference current from 

3.86 to 1.29A is shown in Figure 11. The used control result suffers from inductor current oscillations but 

reaches the required reference value within a short delay.  
 

 

 
 

Figure 9. Experimental setup of the proposed Real-time test platform  
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(a) (b) 

 

Figure 10. The designed Simulink model (a) ADC converter block (b) PWM block 

 

 

 
(a) (b) 

 

Figure 11. Experimental results of the proposed charging scenario (a) current waveform (b) power waveform 

 

 

The second charging sequence that was started at t=190sec has a charging current of an effective 

value equal to 1.29A, and a reduced ripple rate in the range of 10-15%. Therefore, the out of range impact of 

current ripple causes a battery performance degradation as reported in [27]. The reference current set to be 

rapidly changed, the steady state behaviour of the system is thus as expected. The closed-loop control system 

maintains the output power at each reference value even if the load is altered between two Li-ion batteries in 

different time intervals i.e., t=170-190sec and after t=400sec. Meanwhile, the DCS monitors both the current 

and the voltage across the battery so that it will never exceed an overload voltage and the charging will take 

place during the time interval allocated by each EV user. However, Figure 12 shows the experimental 

measurement of the SOC in real time processing. 

 

 

 
 

Figure 12. Experimental results of the SOC waveform based on Coulomb Counting algorithm 
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The first battery SOC reached the required rate within t=170sec, which is the same plugging time 

allocated by the corresponding EV user (2.83min). The fast charging mode is emulated in the second 

sequence where the battery is charged within t= 210sec, means 3.5min of plugging the battery into the EVCS 

terminal. The proposed charging scenario had verified the exposed control strategy which remains valid for 

the charging scenarios that can last a long duration time and require high charging power demand. 

 

 

6. CONCLUSION 

In this paper, a real-time test platform is presented in full detail in which an improved closed-loop 

constant current digital control is implemented on a Li-ion battery charger of EVCS. In order to develop the 

proposed control algorithm, a PI control with anti-windup correction and a column counting method of SOC 

were performed via a charging scenario emulating two charging modes i.e., fast and rapid. A steady state 

analysis of the experimental results highlights that both the power ripples and the charging current ripples 

were found to be decreased within the tolerable range. Apart from the proposed test platform, it is also 

important to analyze the economic and the reliability aspects of the DC bus power system based on hybrid 

energy sources, which can also be treated as the future scope of this work. The power pole circuit, the TI 

development kit, and Simulink combine to set effective real-time test platforms for evaluating control 

algorithms based on digital PWM. This has important implications for the BMS control algorithms. Overall, 

the proposed platform can be used to deploy and experiment digital controllers for buck, boost, buck-boost, 

flyback, and forward converters in research laboratories.  
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