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 This paper presents a design of the wireless charging system for e-byke 

applications. The double-side LCC compensation circuit is used to achieve 

high efficiency and reduce the volt-ampere rating. A new constant 

current/voltage (CC/CV) charging control method at the transmitter side is 

proposed to avoid dual side wireless communication. This paper also 

presents a simple method of estimating both the coupling coefficient and load 

impedance only from the transmitter side. A wireless charging system of 

2.5kW is built. Error in the CC/CV charging mode is 3.3% and 1.12%, 

respectively. System efficiency reaches 92.1% in CC charging mode. 
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1. INTRODUCTION  

Recently, electric bicycles (e-bike) are widely used instead of the motorcycle to reduce air pollution 

in the world. The users are almost students and women. Therefore, a convenient and safe charging method is 

necessary. Based on wireless power transfer (WPT) technology, wireless charging systems could be done 

automatically and safely without any human contact with electricity [1-3].  

In wireless charging systems, the power can be transferred from the transmitter side to the receiver 

side over a short air gap [4]. These systems have a low coupling coefficient leads to high reactive power and 

low energy transfer efficiency. Therefore, the compensation circuit is used to reduce reactive power and 

improve system efficiency. There are four basic compensation circuits, which are series-series, series-

parallel, parallel-series, and parallel-parallel [5]. These compensations are simple, easy to design, and it is 

sensitive to the variation of parameters [6]. Besides, some other compensation circuits are used to improve 

efficiency as LCL, CLL, LCC compensation circuits. However, the LCL compensation circuit requires a 

large compensation inductance value, close to the coil’s inductance value [7, 8]. A capacitor is added to the 

LCL compensation circuit to reduce the size, the cost of circuit components that creates an LCC 

compensation circuit [9]. Also, the LCC compensation circuit has resonant frequency independent of the 

coupling coefficient, load, and the soft-switching condition for the electronic devices reached [10-12].  

In [13], The CLL/S compensation circuit is used to limit the inverter current. However, the parameters of the 

compensation circuit are relatively large that is difficult to design high power systems. Besides, efficiency is 

slightly lower than the double-sided LCC compensation circuit.  
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The other problem with wireless charging is that the CC/CV charging modes are required to achieve 

high charging efficiency and lithium-ion pin protection [14, 15]. Therefore, a proper charging control 

strategy is required. The charging control methods in the WPT system consists of three types: transmitter side 

control, receiver side control, and dual side control [16-18]. In these methods, the transmitter side control is 

preferred because it doesn’t require any additional DC/DC converter. However, parameters as load, coupling 

coefficient must be known to control at the transmitter side. Moreover, in the wireless charging, the 

voltage/current of the battery varies during the charging process [5, 19]. Therefore, the battery is considered a 

variable load during charging. Besides, to high-efficiency charging, the e-bike must park in alignment with 

the transmitter to receive energy from the transmitter. However, that is not always possible. When e-bikes 

park in misalignment, the coupling coefficient also varies with each charging [20, 21]. In the wireless 

charging, these parameters are difficult to obtain without using wireless communications.  

The CC/CV charging is performed by designing a hybrid compensation circuit in [22]. However, the 

system is complicated because it needs to add capacitors, inductors, and switches. In [23], the CC/CV is 

performed via AC switches that the system requests weak communication. However, it leads to control 

deviations when the communication signal jammed. In [24], the CC / CV charging achieved through coil and 

compensation circuit design. However, the design method is complicated. The switching frequency must 

switch between the CC and CV charging modes. In [25], the CC/CV charging has performed at only the 

primary side. However, the load estimation method is complicated, which used the quadrature transformation 

algorithm to measure active power. Also, the mutual inductance was not estimated resulting in  

inflexible control.  

In this paper, the LCC compensation circuit is designed for both transmitter and receiver to high 

efficiency and small compensation circuit elements value. Then, a new CC/CV charging control method only 

on the transmitter side is implement that base on a new high accuracy estimation method of both parameters 

like the coupling coefficient and load. A 2.5 kW wireless charging system has built to verify the feasibility of 

the proposed method. Section 2 presents a system structure and LCC compensation circuit design. Section 3 

presents the CC/CV charging control method. Section 4 presents the simulation and experimental results. 

Conclusions are given in section 5. 

 

 

2. SYSTEM STRUCTURE AND LCC COMPENSATION CIRCUIT DESIGN  

The wireless charging system structure is shown in Figure 1. At the transmitter side, the DC voltage 

is converted into a high-frequency alternating voltage by a single-phase inverter for the magnetic coupler. 

The transmitter side controller performs CC/CV charging control through measuring resonant current and 

inverter DC input power. The primary side LCC compensation circuit is used to reduce reactive power, and 

achieve soft switching for MOSFETs. Then, energy is transferred to the receiver side via the magnetic 

coupler. The receiver side LCC compensation circuit is used to maximize transfer efficiency. The obtained 

AC voltage on the receiver coil via the LCC compensation circuit is rectified and filtered to charge for the 

battery. At the transmitter side, the equivalent load, and the coupling coefficient are estimated. Then, the 

transmitter side controller is designed to control CC/CV charging modes. 
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Figure 1. System structure diagram  

 

 

When the battery charging process is slow, the battery can be modeled as a resistor Reb which 

depends on the battery’s state of charge [5, 25]. The battery equivalent resistance can be expressed as 
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𝑅𝑒𝑏 =
𝑈𝑏

𝐼𝑏
 (1) 

 

where Ub, Ib is the charging voltage, charging current, respectively. When ignoring power losses on rectifiers, 

the equivalent load resistance/current seen from the input of the rectifier is expressed as follows: 

 

𝑅𝑒𝐿 =
8

𝜋2
𝑅𝑒𝑏 (2) 

𝐼𝑒𝐿 =
𝜋

2√2
𝐼𝑏 (3) 

 

When the inverter output voltage and rectifier input voltage are approximated as sinusoidal sources, 

the equivalent circuit is given in Figure 2. Where Li is coil's self-inductance, M is the mutual inductance, Lfi, 

Cfi, Ci are compensation inductor and capacitors; i (i= 1,2) index of parameters at the transmitter, receiver  

side, respectively. 
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Figure 2. Equivalent circuit 

 

 

Ignore internal resistance of coils, the fundamental harmonics approximation method is used to 

analyze the working principle of the resonant circuit. The transmitter and receiver coil have designed the 

same. Therefore, the following parameters are the same: 

 

{

𝐿1 = 𝐿2 = 𝐿𝑖
𝐿𝑓1 = 𝐿𝑓2 = 𝐿𝑓𝑖
𝐶𝑓1 = 𝐶𝑓2 = 𝐶𝑓𝑖

 (4) 

 

The resonance frequency is design to be equal to the inverter switching frequency, ω = 2πfsw. 

Parameter's relationship in the resonant circuit is shown as follows.  

 

𝐶𝑓𝑖 =
1

𝜔2𝐿𝑓𝑖
 (5) 

𝐶𝑖 =
1

𝜔2(𝐿𝑖−𝐿𝑓𝑖)
 (6) 

 

The system output power can be expressed as follows 

 

𝑃𝑜𝑢𝑡 =
𝑘𝐿𝑖

𝜔𝐿𝑓𝑖
2 𝑈𝐴𝐵𝑈𝑎𝑏 (7) 

 

Combine (5), (6), and (7), the compensation circuit parameters for the system are calculated and 

depicted in Table 1. 

 

 

Table 1. System parameters 
Parameter Value Parameter Value 

Pout 2.5 kW Li 110 μH 
UDC 310 V  Ri 0.15 Ω 
Ub 330V – 420V Ci 30.9 μF 
fsw 40 kHz Lfi 58.7 μH 

ReL.opt 32 Ω k 0.25 
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3. PROPOSED TRANSMITTER SIDE CONTROLLER 

3.1. Theoretical analysis  

Analyzing the circuit of Figure 2 when considering the internal resistance of the transmitter and 

receiver coils, the following relationships have drawn: 

 

𝐼𝑒𝐿 =
𝜔2𝑘𝐿𝑖𝐿𝑓2

(𝜔𝐿𝑓2)
2
+𝑅2𝑅𝑒𝐿

𝐼1 (8) 

𝑈𝑒𝐿 =
𝜔2𝑘𝐿𝑖𝐿𝑓2

(𝜔𝐿𝑓2)
2
+𝑅2𝑅𝑒𝐿

𝑅𝑒𝐿𝐼1 (9) 

 

where Ri is coil internal resistances, I1 is resonant current on transmitter coil. At a fixed resonant frequency, 

from (8), (9) show that IeL, UeL depends on k, ReL, and resonant current I1. The coupling coefficient (k) varies 

according to the position between the receiver and transmitter. The equivalent resistance (ReL) varies 

according to the battery charging state. If these parameters are estimated, the CC/CV charging is possible via 

transmitter side resonant current adjustment. 

The resonant current is expressed by: 

 

1 1

2

AB
f AB

f

U
I j C U j

L



= − = −  (10) 

It shows that the transmitter resonant current I1 could be controlled by regulating inverter output 

voltage (UAB). The phase-shift method is used to adjust the RMS of UAB. The PWM signals for S1~S4 and the 

phase-shift inverter output voltage is given in Figure 3. Through the first harmonic approximation, UAB is 

given as [26]: 

 

𝑈𝐴𝐵 =
2√2

𝜋
𝑈𝐷𝐶 𝑐𝑜𝑠

𝛼

2
 (11) 

 

where α is the phase-shift angle of the resonant inverter. The equations (8) to (11) show the ability to control 

CC / CV charging by adjusting the phase shift angle of the inverter. 
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Figure 3. The PWM signals and phase-shift inverter output waveform 

 

 

3.2. Estimate the coupling coefficient and equivalent resistance from only the transmitter side 
To make estimates of coupling coefficiency and equivalent resistance only from the transmitter side, 

the circuit diagram Figure 2 is analyzed. The equivalent impedance of the receiver side seen into the receiver 

coil can be expressed: 

 

𝑍𝑠 = 𝑅2 +
(𝜔𝐿𝑓2)

2

𝑅𝑒𝐿
 (12) 

 

The equivalent impedance of the transmitter side seen into the transmitter coil can be expressed: 

 

𝑍𝑝 =
𝜔2𝑀2

𝑍𝑠
 (13) 
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The impedance of coil L1 can be expressed: 

 

𝑍𝐿1 = 𝑗𝜔𝐿1 + 𝑅1 + 𝑍𝑝 = 𝑗𝜔𝐿1 + 𝑅1 +
𝜔2𝑀2

𝑍𝑠
 (14) 

𝑅𝑒{𝑍𝐿1} = 𝑅1 +
𝜔2𝑀2

𝑍𝑠
=

𝑃𝐿1

𝐼1
2  (15) 

 

If the losses on the compensation circuit elements are ignored, then: 

 

𝑅𝑒{𝑍𝐿1} ≈
𝑃𝐷𝐶

𝐼1
2  (16) 

 

Where PDC is inverter input DC power. Combining the equations (14) and (16), the coupling 

coefficient can be expressed: 

 

𝑘 = √(
𝑃𝐷𝐶

𝐼1
2 − 𝑅1)

𝑍𝑠

(𝐿1𝜔)
2 (17) 

 

Usually, the wireless charging system for e-bike is the static charging system. When starting 

charging, the vehicle position is fixed. Therefore, from equations (12) and (17), the parameters are estimated 

by the following two steps: 

Step 1: When starting the charging process, the rectifier and battery are cut off and replaced by an 

optimum resistance (RL.opt) as shown in Figure 1. The coupling coefficient is estimated as (17). Then, the 

coupling coefficient value is remembered. 

Step 2: After the coupling coefficient value has been collected, the optimum resistance load is cut 

off. The equivalent resistance value is estimated continuously during charging:  

 

𝑅𝐿 =
(𝜔𝐿𝑓2)

2

𝐴−𝑅2
 with 𝐴 =

(𝜔𝑘𝐿1)
2

𝑃𝐷𝐶

𝐼1
2 −𝑅1

 (18) 

 

Thus, by measuring the values of inverter input DC power and RMS of resonant current, the 

coupling coefficient and equivalent resistance are estimated. 

 

3.3. Analysis of the proposed controller 

The block diagram of the closed-loop control is given in Figure 4. The RMS of resonant current and 

input DC power of the inverter is measured. First, the coupling coefficient is estimated by (17) and 

remembered. Later, the equivalent load is estimated according to (18) during process CC/CV charging. Final, 

the value of equipment load current /voltage is calculated by (7), (8). The value of IeL/UeL is compared with 

IeL.ref/UeL.ref, the errors are fed into the PI (CC/CV) controller that creates the phase-shifted angle. The transfer 

function of the object is identified by PSIM simulation software. Then, CC/CV charging controller designed 

as bellow. Thus, the CC/CV charging process is performed. 

 

𝐺𝑃𝐼.𝐶𝐶(𝑠) = 2.6 +
25.104

𝑠
 (19) 

𝐺𝑃𝐼.𝐶𝑉(𝑠) = 0.01 +
200

𝑠
 (20) 
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Figure 4. Closed-loop control block diagram 
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4. SIMULATION AND EXPERIMENT RESULTS 

4.1. Simulation results 

The circular coil structure is used to build the transmitter and receiver. When misalignment between 

the transmitter and receiver is variation, 2D/ 3D FEA simulation results of the coupling coefficient are shown 

in Figure 5. The results show that when misalignment between the transmitter and the receiver increases, the 

coupling coefficient decreases. The coupling coefficient equal to 0.25 is the highest when the transmitter and 

receiver align.  

The wireless dynamic charging system is simulated by PSIM software to evaluate the proposed 

designs. Simulation model using the parameters given in Table 1. Figure 5b (k.est) show the estimation result 

of the coupling coefficient that estimated an error of less than 2%. 

 

 
 

(a) 

 

 
 

(b) 

 

Figure 5. FEA simulation and estimation result of the coupling coefficient, (a) 3D simulation result, (b) 2D 

simulation and the estimation result 

 

 

Figure 6 shows the results of a closed-loop simulation of the CC/CV charging process. The coupling 

coefficient is estimated at the beginning of the charging process. The value of equivalent load impedance is 

changed within a range of 10 Ω to 200 Ω during simulation, which corresponds to the charging state of the 

battery. Figure 6(a) shows CC charging mode simulation results with a reference value of 7.5 A. When the 

battery equivalent resistance (Reb) changes from 15Ω to 25 Ω, simulation results indicate that: battery current 

is maintained to reference value with an error of 3.3%, battery voltage increases from 112V to 180V, 

estimated load resistance (Reb.est) varies from 15.3 Ω to 24.8 Ω with an estimation error of 1.4%. Figure 6(b) 

shows CV charging mode simulation results with a reference value of 400 V. When the battery equivalent 

resistance (Reb) changes from 120Ω to 150Ω, simulation results indicate that: battery voltage is maintained to 

reference value with an error of 1.12%, battery current decreases from 3,29 A to 2.64 A, estimated load 

resistance (Reb.est) varies from 118Ω to 147Ω with an estimation error of 1.8%.  

Figure 7 gives waveform simulation results in the cases in Figure 6 at steady-sate. Figure 7(a) shows 

to control the constant charging current in the simulation case, the phase-shift angle (α) reduces from 280 to 
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250. Zero voltage switching for MOSFET is achieved with a maximum Ioff of 2.5A. Figure 7(a) shows to 

control the constant charging voltage in the simulation case, the phase-shift angle increase from 970 to 1130. 

The voltage/current waveform of the MOSFET, in this case, is shown in Figure 7(c). The two legs of the 

inverter are operated in two different states of soft switching. The S1/S4 MOSFET operates in the zero 

voltage switching condition and S3/S2 MOSFET operates in the zero current switching condition. The S1/S4 

has turn-off loss and S3/S2 has turn on-loss. The ZVS/ZCS condition depends on the phase-shift angle  

and load. 

 

 

  

(a) (b) 

 

Figure 6. Closed-loop CC/CV charging simulation results, (a) CC charging, (b) CV charging 

 

 

 
(a) 

 

 
(c) 

 
(b) 

 

Figure 7. Simulation waveform, (a) CC charging mode, (b) CV charging mode, (c) Simulation waveform of 

MOSFET voltage/current in CV charging mode 
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Figure 8. The wireless charging system experimental setup 

 

 

 
 

Figure 9. The voltage/current waveform of inverter in CC charging mode 

 

 

4.2. Experiment results 

A wireless charging system with a 2.5kW has built in the laboratory as in Figure 8. Polypropylene 

film capacitors are used in compensation circuits to reduce losses and increase high current tolerance in high-

frequency systems. C3M0280090D SICs are used to improve inverter efficiency. 

The experimental result waveforms of inverter output voltage/current in CC charging mode are 

shown in Figure 9. During the CC charging process, current charging is maintained by 8.5A, the ZVS is 

achieved perfectly, the ZCS condition is also almost achieved. The maximum efficiency reaches 92.1% at 2.5 

kW in the CC charging mode when the receiver and transmitter are aligned. 

 

 

5. CONCLUSION 

The paper proposes to perform a wireless charging system for e-byke. The double-sided LCC 

compensation circuit is designed that the advantage of high efficiency and resonant frequency regardless of 

the coupling coefficient and load. The CC/CV charging control is performed only from the transmitter side. 

Also, the paper proposes a simple method to estimate both the load and the coupling coefficient based on 

measured parameters such as RMS of resonant current and input DC power of the inverter. The simulation 

and experimental results verify the feasibility of the proposed method. A 2.5 kW wireless charging system is 

built. The maximum charging efficiency reaches 92.1%.  
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