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 In this research, the zero-voltage switching (ZVS) of the GaN FETs-based 

high frequency three-port half-bridge converter (TPHBC), which is capable 

of interfacing a renewable energy source, an energy storage and a load is 

discussed. To achieve ZVS, which plays a key role in power loss reduction of 

the high switching frequency converters, not only the parasitic elements but 

also the dead-time between two switches in one converter arm must be taken 

into account. This research gives a detail analysis about the influence of the 

dead-time on the ZVS condition. Based on the analysis, a minimum dead-

time which guarantees not only the ZVS but also the safe operation of the 

converter is obtained. Simulations in various load condition of the TPHBC 

are carried out to verify the validity and effectiveness of the  

proposed method. 
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1. INTRODUCTION 

Renewable energy has attracted great attention recently as an alternate solution to the fossil energy 

which may soon be depleted in near future. Due to the inherent intermittence of renewable energy source 

such as solar, wind, tide, etc., the energy storages such as battery, super capacitor are indispensable in the 

renewable energy power systems, especially in the stand-alone systems [1]. These energy storages function 

as an energy buffer to smoothly supply the loads. Conventionally, several converters are employed to 

interface the energy source, storage and load simultaneously. The advantages of this solution is simple in 

hardware and control design since these converters function independently. However, multiple converters 

may result in large volume and high power losses [5].  

To deal with the aforementioned problems of the conventional solution, three port converters 

(TPCs) which capable of interfacing renewable energy source, storage and load simultaneously has been 

developed [8], as PV-fed LED lighting systems, etc. Comparative studies on TPCs shows that this 

configuration offers many advantages over the conventional solution such as higher efficiency, lower cost 

and compact packing design. These remarkable merits allow the TPCs to be employed in many applications 

such as hybrid electric vehicles, hybrid energy storage systems, PV systems with battery backup. To handle 

the power flow in TPCs, various topologies where half bridge or full bridge converters along with magnetic 

coupling via high frequency transformer have been studied. The most flexible topology where bidirectional 

power flow can easily be achieved is based on the dual active bridge (DAB) converter [11]. In this 

configuration, the power flow can be controlled by phase shift and/or duty cycle of the converter bridges. 

Since the energy can be transferred bidirectionally, this topology is a promising solution to many applications 
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such as: fuel-cell electric vehicles where regenerative energy can be collected from the motor, or in 

renewable energy systems with backup battery.  

How to minimize the total power loss, which is composed of conduction losses, static losses and 

switching losses, has always been a major issue in high switching frequency converters. Since the conduction 

losses and static losses are almost constant due to the hardware design, the switching losses play a key role in 

the total efficiency of the system. One of the most effective solution to reduce the switching losses in 

converters until now is zero voltage switching (ZVS) where the switch voltage is brought to zero before the 

gate voltage is applied [18]. Conventionally, the analysis of ZVS condition is carried out based on the 

parasitic elements and the load condition while the influence of the dead-time between two switches in one 

converters arm is neglected [18].  

In this research, the ZVS condition of a three-port half-bridge converter with secondary side 

synchronous rectifier (TPHBC-SR) is analyzed. This configuration suits well small power stand-alone PV 

applications with a backup battery such as led lighting. The main contribution of this research is the 

theoretical analysis of the influence of the dead-time on the ZVS condition. This analysis allows the dead-

time can be appropriately chosen to guarantee the ZVS while the safe operation of the converters arm is still 

fulfilled. The proposed method is verified by both numerical simulations and experiments.  

 

 

2. THREE PORT HALF BRIDGE CONVERTERS 

2.1. Operating mode analysis of the TPHBC-SR 

The topology of the TPHBC-SR is shown in Figure 1 in which the primary side of the converter can 

be operated in either half bridge, buck or forward-flyback mode. The flexibility of this topology allows the 

power flow to be controlled in multiple directions which fulfills the requirement of stand-alone PV systems 

with battery backup as illustrated in Figure 2. The battery can be can be charged when the primary side 

operates in buck mode. In half-bridge mode, the load can be feed from either the PV or both the PV and the 

battery. And in the case of no-irradiation, the converter can be operated in forward-flyback mode to transfer 

the energy from the backup battery to the load. 
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Figure 1. The operation modes of the TPHBC [14] 

 

 

For simplicity, assume that the capacitor 𝐶0, 𝐶1, 𝐶2 are sufficient large such that the voltage across 

the capacitor are constant in steady-state operation. By neglecting the power loss of the converter, the 

following relation holds: 

 

𝑝𝑖𝑛 = 𝑝𝑏 + 𝑝𝑜 (1) 

 

where Pin, Pb and Po are the power of the PV, the backup battery and the load, respectively.  
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The operating mode of the converter can be explained based on the above relation as follows: 

➢ In DO mode where 𝑝𝑖𝑛 > 𝑝𝑜, both the load and the battery receive energy from the PV. 

➢ In DI mode where 0 < 𝑝𝑖𝑛 < 𝑝𝑜, the load receives energy not only from the PV source but also from 

the backup battery. 

➢ In SISO mode where 𝑝𝑖𝑛 = 0 corresponding to no-irradiation situation, the backup battery becomes 

the main energy source of the system. 

 

2.2. ZVS analysis. 

As mentioned above, the ZVS play a key role in power loss reduction of switching power supply. 

This section first gives an analysis to show the relation between parasitic elements and ZVS condition of the 

TPHBC-SR. Then, the influence of the dead-time between two switches of the inverter arm on the ZVS 

condition, which have never been stated in the literature, is analyzed. Based on this result, the dead-time can 

be appropriately selected to fulfill not only the safe operation of the inverter arm but also the ZVS condition.  

In TPHBC-SR, the two switches M3 and M4 on the secondary sides operate with ZVS naturally due to the 

synchronous rectification configuration with body diodes while M1 cannot achieve ZVS. Hence, the ZVS 

condition of switch M2 is considered in this research.  
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Figure 2.  ZVS of switch 2M  

 

 

Figure 2 show the switching states of M2. As can be realized, M2 can only achieve ZVS if and only 

if its parasitic capacitor 𝐶𝐷𝑆 is fully discharged whilst the corresponding capacitor of M1 is fully charged. 

Which means M2 is turned on when its drop voltage 𝑉𝐷𝑆 is zero while the remaining switch M1 had already 

been turned off. In that case, the energy stored in the transformer leakage inductance must satisfy the 

following relation: 

 

{
1

2
𝐿𝑘(𝐼𝐿𝑚 + 𝑛𝐼𝐿0)2 > 𝐶𝐷𝑆𝑉𝑏

2

𝐼𝐿𝑚 + 𝑛𝐼𝐿0 > 0
 (2) 

 

In which, Lk is the leakage inductance, CDS is the parasitic capacitor of the switch, IL0 is the current 

of the secondary inductor. As given in [14], ILm is the current of the main coil of the transformer  

computed by: 

 

𝐼𝐿𝑚 =
𝐼𝑏−(𝐷1−𝐷2)𝑛𝐼𝑜

𝐷1+𝐷2
 (3) 

 

During transient state, the voltage across M2 oscillates at its natural resonant frequency and can be 

represented by:  

 

𝑉𝐷𝑆 = 𝑉𝑚sin (2𝜋𝑓𝑟𝑡 + Φ) (4) 

 

In (4), Φ is the phase angle, the amplitude 𝑉𝑚 is dependence of the primary side current 𝐼𝑝 and the 

resonant frequency 𝑓𝑟 is computed by: 

 

𝑓𝑟 =
1

2𝜋√2𝐶𝐷𝑆𝐿𝑘
 (5) 
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Suppose that 𝐼𝑝𝑀𝑖𝑛 = 𝐼𝐿𝑚 + 𝑛𝐼𝐿0 is the minimal value of the primary current 𝐼𝑝 such that the ZVS 

condition (2) is satisfactory. The voltage across M2 during off-to-on state with different values of the primary 

current 𝐼𝑝 is shown in Figure 3. As can be seen, in the case of 𝐼𝑝 < 𝐼𝑝𝑀𝑖𝑛, the amplitude 𝑉𝑚 is small and does 

not decrease to zero following that the ZVS cannot be achieved. In contrast, the ZVS condition is always 

fulfilled as  𝐼𝑝 > 𝐼𝑝𝑀𝑖𝑛. By taking Figure 3 in consideration, it can be seen that the amplitude of the 

oscillation voltage 𝑉𝑚 is equal to the battery voltage 𝑉𝑏 in the case  𝐼𝑝 = 𝐼𝑝𝑀𝑖𝑛, which means 

 
1

2
𝐿𝑘𝐼𝑝𝐵

2 = 𝐶𝐷𝑆𝑉𝑏
2 (6) 

 

To properly chose the dead-time, define 𝑡𝑧 as the necessary time for the voltage across M2 to 

decrease from 𝑉𝑏 to zero. Then, the ZVS condition can be reached if and only if the dead-time 𝑡𝑑 > 𝑡𝑧. It is 

obviously seen in Figure 3 that: 

 

𝑡𝑧 =
1

4𝑓𝑟
 (7) 
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Figure 3. The relation between oscillation Vds of M2 and primary side current 

 

 

Based on (5) and (7), it can be derived that 

 

𝑡𝑧 = 𝜋√
𝐶𝐷𝑆𝐿𝑘

2
 (7) 

 

So, the minimal dead-time 𝑡𝑑 which guarantees not only the safe operation but also the ZVS is: 

 

𝑡𝑑𝑀𝑖𝑛 = 𝑡𝑧 = 𝜋√
𝐶𝐷𝑆𝐿𝑘

2
 (8) 

 

 

3. NUMERICAL SIMULATION. 

To show the validity of the proposed method, numerical simulations using eGAN FETs are carried 

out by LTSPICE software, parameters of eGAN FETs are available in [25]. The parameters of the TPHBC-

SR used in simulation are provided in Table 1.  

As discussed in previous section, (2) must be satisfied to achieve ZVS. However, the proper value 

of 𝑡𝑑 should be carefully considered. For example, if 𝑡𝑑 is too large, e.g., 𝑡𝑑 > 2𝑡𝑧, the ZVS may not be 

achieved due to the rising of oscillation voltage 𝑉𝐷𝑆 as shown in Figure 4a. In contrast, appropriate value of 

𝑡𝑑 results in ZVS with low dv/dt of 𝑉𝐷𝑆 as shown in Figure 4b. The nature ZVS of M3 and M4 are also shown 

in Figure 5. In conclusion, the appropriate dead-time should be: 

 

𝜋√
𝐶𝐷𝑆𝐿𝑘

2
< 𝑡𝑑 < 2𝜋√

𝐶𝐷𝑆𝐿𝑘

2
 (9) 
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Table 1. Simulation parameter 
 Parameter Values 

Input voltage 𝑉𝑖𝑛 18.5V 

Battery 𝑉𝑏 12V 

Output capacitor 𝐶𝑜 2.5uF 

Output inductor 𝐿𝑜 30uH 

Output power 𝑃𝑜 30W 

Transformer Coilcraft PL300-104L Plannar 

Switching freq 𝑓𝑠 500Khz 
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Figure 4.  Switching state of M2 with different values of dead-time 𝑡𝑑, (a). Switching state with large dead-

time (40ns), (b) Switching state with appropriate dead-time (20ns) 
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Figure 5. Nature ZVS of M3 and M4 switch, (a) ZVS of M3, (b) ZVS of M4 

 

 

4. EXPERIMENT RESULTS. 

In this section, a prototype TPHBC-SR is built based on GaN FETs. The schematic of the high 

frequency driver for the switches is shown in Figure 6. The parameters of the experimental system are same 

as simulation section. 

Since the switching frequency is high, i.e., 500kHz in this case, the printed board circuit (PCB) 

design plays a very important role in suppressing the ringing loop which may cause serious problem such as 

electromagnetic interference (EMI) noise or over voltage [21]. In TPHBC-SR design, there are two important 

ringing loops, i.e., Driver-GaN loop and power ringing loop including input capacitors and switches. The 

main reason of the ringing loop is the existence of parasitic inductor and capacitor along the circuit routes. 

Therefore, minimizing the loop in PCB design is crucial in minimizing the parasitic elements. The PCB 

design with minimized loop is shown in Figure 7, in details.  
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Figure 6.  GaN FETs driver schematic 
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Figure 7.  PCB design of TPHBC-SR with minimized ringing loop (a) Minimized Driver-GaN loop,  

(b) Minimized ringing power loop, (c) Top layer, (d) Bottom layer 

 

 

The experimental results with prototype TPHBC-SR are shown in Figure 8. The switching state of 

switch M3 is shown in Figure 8(b) while the switching states of M2 with various load conditions are shown in 

Figure 8(c) and Figure 8(d), respectively. It can be observed that both M2 and M3 achieve ZVS. In advanced, 

with appropriate dead-time which is adjusted based on (8), M2 can achieve ZVS in wide range of load.  
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Figure 8. Experimental results with various load condition, (a) Experimental systems, (b) ZVS of 

M3/M4, (c) ZVS of M2 with 70% rated load, (d) ZVS of M2 with 30% rated load 

 

 

5. CONCLUSION 

In this study, ZVS condition for th high frequency GaN FETs-based TPHBC-SR is introduced. 

Conventionally, the ZVS condition is chosen based on the parasitic elements of the converter. This research 

shows that the dead-time between two switches of a converter arm also has strong influence on the ZVS 

condition. Then, the computation of minimum dead-time which guarantees both ZVS and the safe operation 

of the converter arm is provided. The effectiveness of the method is confirmed by both numerical simulations 

and experiments with a prototype converter. The matching between the experiment and simulation results 

proves the validity of the proposed solution.  
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