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 The current paper aims at presenting and examining an implementation on a 

digital signal processor (DSP) of the conventional space vector pulse width 

modulation (CSVPWM) so as to control the dual three phase permanent 

magnet synchronous motors (DTP-PMSM) drives applied on electric ship 

propulsion. It is also an attempt to accomplish a developed control of this 

technique based on vector space decomposition (VSD) strategy. By this 

strategy, the analysis and the control of the machine are achieved in three 

two-dimensional orthogonal subspaces. Among the 12 voltage vectors having 

maximum, the conventional technique namely the adjacent two-vectors 

(12SA2V) is chosen. Thereby, the test platform allows the implementation of 

the chosen vectors which are modeled on MATLAB/Simulink using block 

diagrams and the automatically generated code which is targeted in the DSP 

card processor. Simulation and experimental results have exposed the 

efficiency of the proposed test bench of 5 KW prototype machine by using a 

low-cost TMS32F28379D. 

Keywords: 

Current harmonics 

Digital signal processor 

DTP-PMSM 

Electric ship propulsion 

Space vector modulation 

Vector space decomposition 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mhammed Hasoun,  

Departement of Electrical Engineering, 

Hassan II University, 

National High School of Electricityand Mechanics “ENSEM”, Casa, Morocco. 

Email: mhammedhasoun@gmail.com 

 

 

1. INTRODUCTION 

Since the 1980s, the introduction of electric propulsion systems for use in ships offers various 

advantages. This electric propulsion has various benefits that are ships maneuverability, maintenance and 

acoustic noise. Several researchs relating to the electric propulsion system have been addressed to minimize 

the occurrence of marine environmental pollution and maintenance costs in civil and military ships. 

Therefore, electric propulsion has seen a remarkable development in the last years and many ships are now 

electrically propelled equiped [1, 2]. 

Multiphase machine drives have many improvements over three-phase machine drives like lower 

torque pulsations, harmonic currents and higher reliability. Effectively, the increase of the number of phases 

allows a segmentation of the power and hence a reduction of the voltages switched to a given current, where 

high performance requirements are more needed. Multiphase drives are existing in the maritime domain, 

automobile, and avionics [3-10]. The most used type of multiphase drives is the dual-three phase (DTP) 

https://creativecommons.org/licenses/by-sa/4.0/
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machines. These are distinguished by a multiphase structure within the same stator frame such as two stars 

having similar characteristics which are spatially shifted by 30 electrical degrees [1]. 

Permanent magnet synchronous motors (PMSM) have been widely examined as viable solution for 

variable velocity electric drives ship propulsion notably. Nowadays, the use of multiphase PMSM has 

become widely used in the training of high-power systems. Among these machines, dual three phase 

permanent magnet synchronous motors (DTP-PMSM) has been used in many applications like electric 

propulsion. It has a high defect toleration and dependability [8, 11]. Nevertheless, the machines concerned 

have considerable harmonic content while being supplied by a pulse width modulation (PWM) inverter.  

Spatial modulation namely space vector PWM (SVPWM) control using the vector space 

decomposition theory (VSD) is mainly used in recent control of DTP-PMSM and induction machines to get 

sinusoidal waveforms at the inverter outputs [12-17]. This technique is examined and developed in this 

paper. Under this control approach, the model of the overall machine, for instance; fundamental, harmonic 

and components of zero sequence, is changed and divided into three decoupled subspaces and inscribed in 

three separate space coordinates, marked and nominated in the order given as, (α,β): the subspace of torque-

component, (z1,z2): the subspace of harmonic-component and (o1, o2): the subspace of  

zero-sequence [1, 18-23]. The main components and its harmonics take part in the conversion of the energy 

of electromechanical. While, the current components (z1, z2) and (o1, o2) do not participate to the change of 

the energy of electromechanical. Therefore, the stator resistance and the leakages inductance symbolize the 

only obstacle [24-26]; similarly, the additional harmonic currents generate only stator losses.  

In this paper conventional modulation based on the choice of adjacent two-vectors (12SA2V) is 

proposed with SVPWM control of DTP-PMSM using 12-sector VSD applied on electric ship  

propulsion [27-28]. The purpose is to get an implementation on DSP. In order to justify the simulation 

results, an experimental test, is fulfilled. What remains of present work is organised as follows: Section 2 

deals with the machine model which will be shown based on VSD; Section 3 discusses the proposed PWM 

appoach in detail; Section 4 comprises simulation results; Sections 5-6 discuss the experimental results 

followed by Conclusion and References. 

 

 

2. MACHINE’S DYNAMIC MODEL 

The following two Figures 1 and 2 represent the machine windings structure and their supply 

sources, these double windings of three-phase stator are shifted in the space, with an electrical angular offset 

of 30 degrees with two unconnected neutral points [29].  

 

 

 

 

 

Figure 1. Drive system and its power supply 

 

Figure 2. Windings of the machine 

 

 

Depending on the VSD theory [11], the transformation matrix can be identified by (1). 
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By means of the above matrix conversion, the difficult motor system is divided into three mutually 

decoupled orthogonal subspaces (α-β), (z1, z2) and (o1, o2). The variables equations caracterizing the 

machine, according to the indicated suppositions in [16], can be specified in stationary model by: 

 

[𝑉𝛼𝛽] = [𝑅𝑠][𝑖𝛼𝛽] +
d

dt
[𝛹𝛼𝛽]=[𝑅𝑠][𝑖𝛼𝛽] +

d

dt
[[𝐿𝛼𝛽][𝑖𝛼𝛽] + 𝛹PM. [

cos θ
sin θ

]] (2) 

[𝑉𝑧1,2] = [𝑅𝑠][𝑖𝑧1,2] +
d

dt
[𝛹𝑧1,2] = [𝑅𝑠][𝑖𝑧1,2] + [𝐿𝑧]

d

dt
[𝑖𝑧1,2] (3) 

[𝑉𝑜1,2] = [𝑅𝑠][𝑖𝑜1,2] +
d

dt
[𝛹𝑜1,2] = [𝑅𝑠][𝑖𝑜1,2] + [𝐿𝑜]

d

dt
[𝑖𝑜1,2] (4) 

 

Where: 

- (Ld, Lq )   : Direct and indiret inductances; 

- (Lz , Lo )  : Transformed of inductances conventional and mutual leakage; 

- (ΨPM)     : Permanent magnet flux; 

- (Θ)              : Rotor position.  

 

The current components in the (α-β) subspace contribute to the conversion of electromechanical. 

Nevertheless, the variables of current in (z1, z2) and (o1, o2) do not participate effectively in the conversion of 

electromechanical which generates losses of stator. The conversion matrix should be used to illustrate the 

immobile (α, β) plane in the revolving plane (d, q) which is presented as follows [30]:  

 

𝑇𝑟 = [
cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 𝐼4

] (𝐼4 : four-dimentional unit matrix)  (5)  

 

In the (d-q) plane, the electric and the mechanic equations of the machine are expressed as follows: 

 

[
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Vq
] = [
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𝛤𝑒𝑚 = 𝑝(𝑖𝑞𝛹d − 𝑖𝑑𝛹q)           (𝑝 : Number pair poles)  (7) 

 

 

3. RESEARCH METHOD 

3.1. SVPWM strategy for DTP- PMSM 

In machine drives control, the current approach tends to define the (α-β) frame as being the 

reference of the stator voltage vector produced by the control system. After that, the harmonics coming out in 

the planes (z1-z2) and (o1, o2) only generate losses. To minimize these harmonics, the middling voltage 

vectors generated in the two planes should be zero [31]. The following equation can express the phase 

voltages:  
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While (S = Sa1, Sb1, Sc1, Sa2, Sb2, Sc2) are the states of switch, E is the continuous bus. 
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According to relationship (1), the voltage vectors expressed in the two referentials can be specified 

by the following relationship: 

 

[𝑉𝛼 𝑉𝛽 𝑉𝑧1 𝑉𝑧2 𝑉01 𝑉02]𝑇 = 𝑇[𝑉𝑎1 𝑉𝑏1 𝑉𝑐1 𝑉𝑎2 𝑉𝑏2 𝑉𝑐2]𝑇 (9) 

 

The machine drive comprises 64 diverse voltage vectors. A number of decimals is matching to binary 

numbers and regarded in the following classify [Sa1 Sb1 Sc1 Sa2 Sb2 Sc2]. It is used to stand for each vector. 

Consequently, in the submodels (α-β) and (z1-z2), there are 60 vectors with non null voltage and 4 null ones 

(0, 7, 56, 63) which are expressed in two Figures 3 and 4 [32]. 

 

 

 

Figure 3. Illustration of space vectors using  

VSD in (𝛼 − 𝛽) 

 

Figure 4. Illustration of space vectors using  

VSD in (z1 − z2) 

 

 

According to the two above figures, the (α-β) vectors of voltage can be divided into four dodecagons 

with diverse amplitudes (from innermost to outermost: D1, D2, D3, D4) [33] which are expressed as follows: 

 

{
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 (10) 

 

The voltage vectors, having an utmost magnitude in the (α-β) subspace, will have a smallest 

magnitude in the (z1-z2) subspace; however, the others retain the same magnitude. 

 

3.2.  12-Sector conventional modulation (12SA2V)  

In this strategy, the 12 and the 24 voltage vectors which have respectively highest and half 

amplitude share the (α-β) subspace into 24 sectors. The vectors of voltage chosen allow to obtain the 

minimum amplitude vectors in the (z1-z2) subspace, which warranties the least current content of harmonics 

in the (z1-z2) subspace. Therefore, contributee to the minimization of losses [3].  

The vectors of voltage having highest magnitude (45-37-36-52-54-22-18-26-27-11-9-41) allow 

synthetizing the reference voltage vector 𝑉𝑟𝑒𝑓 as shown in Figure 5. In accordance with the site of the 

reference voltage vector 𝑉𝑟𝑒𝑓 in the (α-β) subspace as shown in Figure 3, this idea is the same as the 

conventional method. Just two adjacent voltages are employed to synthesize the reference voltage vector 

𝑉𝑟𝑒𝑓. Take the example where the reference voltage vector is placed in sector S1, the two attached voltage 

vectors (37-36) and null voltage vectors (7-56) are used. The period corresponding to each voltage vector is 

defined by the relationship as follows: 
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] = 𝑇𝑠 [

𝑉𝑟𝑒𝑓𝛼
𝑉𝑟𝑒𝑓𝛽

] (11) 

 

Where: 

𝑇𝑠          : Sample time; 

t1 and t2 : Periods matching to the two voltage vectors; 

𝑉𝑋
𝑘         : Projection of kth voltage vector under the x-axis (x= α, β, z1, z2).  

 

The period interval assigned to zero voltage vectors is the residual time:  

𝑡0 = 𝑇𝑠 − (𝑡1 + 𝑡2) (12) 

 

So as to nearly allow the realization during each PWM period of two transitions, the zero vectors are 

intentionally situated at the commencement, the medium and at the finish of the switching sequence via the 

succeeding arrangement (V0-V1-V2-V0-V2-V1-V0) as shown in Figure 6. If the same reflexion is applied to the 

other sectors, the periods of two non-null vectors are determined in Table 1. 

The projection of the vectors of voltage on the (α-β) and (z1-z2)-axis in the relationship (11), allows 

to determine the coefficients mentioned in the Table 1. 
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The (12) allows to establish the period assigned to null vectors of voltage. The finishing switching sequences 

for all sectors, where just the null voltage vectors 7 and 56 are used, are shown in the below Table 2.  

 

 

Table 1. 12-Sector PWM Vectors applying Times (S1-S6) 
  SECTORS 

  S1 S2 S3 S4 S5 S6 

TIMES 
t1 T1 T3 T4 -T5 T3 T2 

t2 T2 -T1 T5 T6 -T6 -T3 

 

 

Table 2. 12-Sector PWM switching sequences (S1-S12) 
  SECTORS 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

VECTORS 

V01 7 7 7 7 7 7 7 7 7 7 7 7 

V1 37 36 54 22 22 18 27 11 11 9 45 37 

V2 36 52 52 54 18 26 26 27 9 41 41 45 

V02 56 56 56 56 56 56 56 56 56 56 56 56 

 

 

 
 

 
 

Figure 5. Illustration of 12 maximum magnitude 

 in (α-β) 

Figure 6. Sequence of switching in sector 1 

 in (α-β) 
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4. RESULTS AND DISCUSSION  

4.1.  MATLAB/Simulink Simulation 

In the third section, the approach suggested will be reasonably investigated via Matlab/Simulink 

environment and experimental test. The principal characteristics of the DTP-PMSM, through a 5 KW model 

machine for ship propulsion are enumerated in the simulation tests provided in Table 3. According to the 

simulation results, the load torque is set at 15 N.m, the machine velocity is maintained at 300 rpm and the 

drive switching frequency is fixed at 5 kHz. The Figures 7 to 10 illustrate the simulation tests of the  

exposed approach.  

As it can be seing from the simulation results, we can notice that the current of stator phase is not 

purely sinusoidal and that the large current harmonic appears in motor phase current for the conventional 

SVPWM technique as shown in Figures 7-8. In fact, the phase current, has a great quantity of the 5th and the 

7th order harmonics of current that are dominant. The total harmonic distortion (THD) is 63.7%. Conversely, 

the amplitude of the 5th and the 7th order current harmonics is extremely important. It is worth pointing out 

that these constituents of stator current do not participate to the air gap flux and will simply cause energy 

losses. Figure 9 stands for the currents in (α-β) subspace which have a smooth and a normal trajectory for this 

method. The response of velocity is showed in Figure 10; the speed gets its mention with good static and 

dynamic presentation. 

 

 

Table 3. Machine’s principal components 
Designation Value/ unit 

DC continous bus : E 200 V 

Resistance of stator : Rs 1.096 Ω 

Inductance directe : Ld 8.45 mH 

Inductance quadrature : Lq 8.45 mH 

Flux of permanent magnet : 𝛹PM 0.184 Wb 

Moment of total inertia: J 93.10-3 kgm2 

Coefficient of total viscous friction : f 0.01 Nms/rad 

Pair poles number: p 3 

 

 

  

 

Figure 7. Stator phase current 

 

Figure 8. Harmonic analysis (FFT) 

 

 

 

  

 

(a) (b)  

 

Figure 9. Trajectory of space current vectors in two 

subspaces: (a) (α-β) and (b) (z1-z2)  

Figure 10. Machine’s speed 
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4.2. Experimental Based on TMS320F28379D 

So as to approve the possibility of the recommended SVPWM technique, a set of tests is fulfilled. 

The photograph of experimental results is shown in Figure 11. This latter is consisting of a dual three phase 

voltage source inverter (VSI) supplying a 5 KW experimental setup machine, and the entire control strategy 

is tested on a DSP TMS320F28379D card processor. In fact, it is feasible to apply the 12-sector PWM 

technique related to the implemented SVPWM technique. 

The experimental results which use conventional technique with the similar characteristics and 

working conditions like those of tests, are expressed in Figures 12-14. Figures 12 and 13 are the experimental 

tests equivalent to the simulation results of Figures 7 and 8, respectively. Figure 14 is the experimental result 

equivalent to the simulation result of Figure 10. There is a reliable association between the experiments and 

the simulations results. The suggested PWM strategy is successfully experimented and the resulting 

assumptions can be drawn from these experimental tests: In this technique, the phase current is not purely 

sinusoidal and has a harmonics great quantity, the 5th and the 7th particularly. The latter two, appearing in the 

(z1-z2) subspace, are very large because and cause signal distortion due to the absence of control over 

currents in the (z1-z2) subspace. This shows the feasibility of the suggested strategy. 

Figure 14 illustrates the machine velocity under the double open loop control strategy. It also 

indicates the rapid speed response of the control system. This stabilizes at a 300-rpm value. 

 

 

 
 

Figure 11. Photograph of experimental test bench 

 

 

  

 

Figure 12. Experimental of stator phase current 

 

Figure 13. Experimental of harmonic analysis 

(FFT) 
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Figure 14. Experimental of machine’s speed  

 

 

5. CONCLUSION 

The principal goal of the suggested work is to carry out an implementation on SVPWM 

conventional method to control the DTP-PMSM drives. In fact, the SVPWM using the conventional adjacent 

two voltage vectors (12SA2V) modulation has been presented under stator current total harmonic distortion 

(THD). After that, this method has been applied on DSP board TMS32F28379D. In the tests, the sensor of 

current is sampled by the control of open-loop. As deduced from the simulation results, the conventional 

SVPWM control based on vector space decomposition gives reasonable results regarding the experimental 

tests. It has been confirmed that the suggested method can be easily implemented digitally versus other 

methods using four voltage vectors whose implementation will be the subject of a future article. The farther 

investigation will concentrate on the detailed experimentations for the DTP-PMSM.  
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