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1. INTRODUCTION  

Multi-motor drive systems have been employed in systems moving paper, metal, material being 

quite popular in manufacturing systems and researched by many authors in the recent times. The control 

method utilized artificial neural network (ANN) technique has been presented by Bouchiba et al., [1]. 

However, the disadvantage is to investigate the appropriate networks with associated learning rules in control 

design. Furthermore, the effectiveness of tracking problem or the stabilization of the cascade system are not 

still considered under the influences of using neural network approach. Dominique Knittel, et al., proposed 

many linear controllers under the consideration of the approximate model of multi-motor systems without 

elastic, friction as a linear system to design the controller based on the transfer function technique [2], [3]. 

The framework of the classical PI controller and H infinity to eliminate disturbance was  proposed in the 

work of [2], [3]. In the elastic multi-motor drive systems, it is necessary to estimate the belt tension to 

establish the associated state feedback controller. However, the difficulties of the control design lie in the fact 

that measurement of this belt tension by using sensors. The sliding mode control (SMC) technique based state 

feedback control enables to eliminate influence of disturbances and unknown parameters was proposed in [1], [4]. 

In [4], the sliding mode controller was combined with disturbance observer as well as iterative learning 

control (ILC), feedforward controller. It can be seen that, the classical nonlinear control law has been 

investigated in robotic systems such as employing the fuzzy-control in inverted pendulum systems [5], robust 

adaptive control schemes in bilateral teleoperators [6], wheeled mobile robotic systems [7], tractor trailer [8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Additionally, the optimal control and optimization problem are also considered in recent time via the work in 

[9]-[12]. The sliding mode based control has been paid much attention in recent years because it is a widely 

relevant control methodology for uncertain/disturbed systems. SMC as a robust control scheme focuses on 

reducing the disadvantage of external disturbances as much as possible based on the design of appropriate 

sliding surface as well as implementing the equivalent controller [13]-[21]. An adaptive scheme was 

proposed in [22] without any knowledge of the bound on the disturbance and their derivatives. The high 

order SMC design was investigated in control system of unicycle under the consideration of uncertainties of 

matched and unmatched term [23]. Additionally, the actuator saturation was also considered in sliding mode 

control design for space craft systems [24]. The problem of investigating state observers for systems is an 

important direction in the control literature. In [25], high-gain observer (HGO) has been investigated since 

1980 s by the work of Petersen and Hollot on H infinity control based on the adjusting of appropriate 

coefficient to satisfy the linear matrix inequalities (LMIs). Authors in [25] described the development from 

the traditional example to differential observability using Taylor expansion with considering the time interval 

[𝑡 − 𝑇, 𝑡]. It suggested that the HGO should be designed by intermediate variables obtained from the 

differential observability work [25]. Moreover, in recent time, the HGO design for a class of multi-input 

multi-output (MIMO) uniformly observable systems were also considered and the extensions of previous 

idea were implemented for uncertain nonlinear systems with sampled outputs [15]. The work in [26] 

mentioned two problems, including state estimation via Neural Networks and backstepping technique in 

dealing with input saturation.  It is worth noting that the output feedback control scheme being the framework 

of state feedback control and observer was designed using dynamic gain and extended state observer [27]. 

The fixed-time SMC has been mentioned under the consideration of model separation for Dual-Motor 

Driving systems but the separation technique problem was eliminated [28], [29]. However, most of the 

previous work in multi-motor drive control systems were not only mentioned to finite time convergence in 

SMC technique, but also not cared about influence of elastic and friction. Furthermore, observer design for 

tension was only considered as linear approximate model  as well as the separation principle has not been 

mentioned. In this paper, we consider the LMI based finite-time SMC for multi-motor systems in presence of 

elastic, friction as well as the high gain observer technique is determined in our work. It is worth noting that 

the SMC based state feedback control scheme guarantees the elimination of disadvantage of disturbance and 

uncertainties. Therefore, consideration of using high-gain observer is investigated to compute the tension in 

this system and combine with the state feedback control scheme to implement the output feedback controller 

guaranteed the separation principle. The stabilization of cascade system is satisfied by the output feedback 

control algorithm and shown by theoretical analysis, simulations. 

 

 

2. DYNAMIC MODEL OF A ROBOT MANIPULATOR AND PROBLEM STATEMENT  

As the work described in [30], the model of a multi-motor systems with friction, backlash and 

elastic can be represented as (1): 
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In which, the parameters of this system are shown in Table 1. In order to consider the model (1) in 

the state space representation, the state variables and control inputs are given to obtain the state space model (2):  

 

    1 2 3 4 5 6 1 2 1 2 21 12
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Table 1. Dynamic parameter 
Paramaters Explaination 

J1, J2, JL1, JL2  Motors’s Inertia moment, Loads’s Inertia moment (kgm2) 

𝑇, 𝑇𝐿, ∅𝑟  The torque of Motor, Load (Nm), rotor’s Flux (Wb) 

𝐿𝑟  Rotor’s Self-induction (H) 

𝑟, 𝑘, 𝜔𝑟 , 𝜔, 𝐹  
Roller ‘s Radius, velocity ratio, rotor’s electric angle velocity, stator’s angle 

velocity, belt tension  

ω1, ω2, ωr1, ωr2 The angle velocity of motor, load 

c1, c2, b1, b2 The coefficients of Stiffness and friction  

∆𝜔1, ∆𝜔2 The errors of angle speeds under the influence of backlash, elastic 

 

 

Remark 1 : Unlike the description was established in [1]-[4], this work considers multi-motor systems 

in presence of nonlinear property, backlash, friction, elastic phenomenon. Therefore, the 

transfer-function based approach in [1]-[4] has not been mentioned in this paper due to these 

challenges.  

The main control objective to find the velocities 1 2,r r   obtaining the tracking of state variables 

vector 𝑥 = [∆𝜑1, ∆𝜑2, 𝜔𝐿1, 𝜔𝐿2, 𝐹21, 𝐹12]
𝑇. Furthermore, because it is hard to establish the sensors in this 

multi-motor system, the controller needs to be added more the state observer obtaining the separation 

principle. 

For the output feedback control design, the assumptions are introduced as follows: 

Assumption 1. The diameter of each motorcycle is negligible compared to length of the conveyor belt of a 

multi-motor system. 

Assumption 2. The friction and slip coefficients of the conveyor belt of a multi-motor system are constant 

and they were not depended on loads, diameter of each motorcycle is negligible compared to 

length of the conveyor belt of a multi-motor system. 

 

 

3. FINITE-TIME OUTPUT FEEDBACK SLIDING MODE CONTROL DESIGN  

3.1.  Finite-time tracking sliding mode control design 

According to the model (3) and Assumption 1, 2, the tracking error model can be obtained as (3): 
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 It can be rewritten by: 
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therefore, the tracking error model (4) can be represented as: 
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Consider the sliding variable ( ) ( )12 1
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the finite time sliding mode control law is proposed as described in the following Theorem 1. 

Theorem 1: Consider the system (5) with the disturbance (𝑑2(𝑧, 𝑡)) being bounded by 2d  and the SMC is 

given as; 
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the positive constant numbers.  The proposed SMC enables us to obtain the finite-time Input State Stability 

(ISS) stability. 

Proof : The Proof is divided into two steps.  
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In Step 1, we prove that the closed system reaches to the sliding surface in finite time: 

Based on the Lyapunov candidate function using the sliding variable as: 
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substituting (7) into (9) gives: 
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( )

( )( )( )
21

2 2 0 2

2

2 2 2

1
ln

1
r

V s e t
t



 

  

−

+
=

−
 (12) 

 

where  
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Then the system (5) is stabilized in finite time with the attraction region ( )1e t k . The Proof is 

similarly implemented as above step with the corresponding Lyapunov Function 1

1 1 1 1( ) ,  
T

V e e Pe P X −= =  

 

3.2.  High-gain observer control design of multi-motor systems 

As described in [25], it is hard to find the observer for multi-output systems because the data 

collection needs to be implemented in the sufficiently small interval as well as employing the taylor series 

approximation. Therefore, the high-gain observer was proposed by [15] enabling us to deal with multi-output 
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This above system also satisfies several assumptions as described in [15]. It is hard to find directly 

the High-Gain observer for model (19), so that it can be transferred into the following form to easier design 

based on the transformation as follows:  
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selecting the candidate function 
1( ) TV S  = , take the derivative of this function along the system 

trajectory of transformed systems: 

2 1 0 0
1 1 0

min

ˆ(u, ( ))
2 (S)

(s)

c

V V
z


      



   
 − + + +  

 

 where x

min

(s)
(S)

(s)

ma



=   

 

based on the work in [15], we imply that: 

 

( ) 2
1 1 1 11q

c
V c V V 

 −
 − − +  (20) 

 

the fact that is the following selections: 1
1 1 1

1 1(I , I ,..., I )qn n nblockdiag   − =   
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ˆ(z)+  is the left inverse of block diagonal matrix ˆ(z)  with 

1

1 2 1

1

2 1
1

ˆˆ ˆ (u, z)(u, z , z )
ˆ(z) blockdiag , ,...,

ˆ ˆ

q
k

n k
i

ff
I

z z

−

+
=

 
 =  

  
 where S is the positive definite solution of the algebraic 

Lyapuov equation (21):  

 

0T TS A S SA C C+ + − =  (21) 

 

comeback to the model (19), the equivalent observer can be determined as (22):  

 

1 1ˆ(z)
ˆ ˆ ˆ ˆˆ ( ) f(u, z) (z) (z z)Tz S C C

z
 

+

+ − − 
= = −   − 

 
 (22) 

 

although implementing the observer intermediately, we still obtain the direct result (23): 

 

11

2 1
2 2

1 1

1

1
1

(u, z)

ˆ(z)

(u, z)

q

n

q

T

q
q q k

q k
i

C I

f
C

x
S C

f
C

z











+

+ − −

+
−

+
=

 
 
  
      =
 
 
  
     



 (23) 

 

where 
1

1

2(i, j) ( 1)i j j

i j nS C I+ −

+ −= −  with 
!

;1 i, j q
!(j i)!

i

j

j
C

i
=  

−
 

in order to find control design appropriate HGO for multi-motor systems (1), we need to implement 

alternately: 

Consider the following multi-motor systems: 

 

1 2

2 1 1 2 2 1 3

3 12 1 21 2 22 3

12

3

1
( )

1
( ) K ( ) ( ) (T . )

1
(1 )

.

L C L

TC

x u x
T

x J f x u x f x r x
K

x C r x r x x
C l

y x


= −


 

= + − − + 
 

  
 = − + 
  


=

 

where 

 

3111 1 21 1 212 2 2

1 2 3

12 2 22 2 32 12

 ;    ;    
r

r

xx x F
x x x

x x x F

 

 

           
= =  = =  = =           

          
 

 

according to the result (22), we obtain the equivalent observer: 

 

1 2 3 3

2

2 1 1 2 2 1 3 3 3

3

3 12 1 21 2 22 3 3 3

12

3

1
ˆ ˆ ˆ(u x ) 3 (x )

1
ˆ ˆ ˆ ˆ ˆ ˆ( ) K ( ) ( ) (T . ) ( )

1
ˆ ˆ ˆ ˆ ˆ(1 ) ( )

.

y

L C L

TC

L

x x
T

x J f x u x f x r x x x
K T

x C r x r x x rJ x x
C l

x








= − − −


 

= + − − + + − 
 

  
 = − + + − 
  


=

 (24) 
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4. OFFLINE SIMULATION RESULTS 

To clearly validate the efficacy of the proposed output feedback control scheme, a multi-motor 

driving system is established in Figure 1, which shows the physical meaning of parameters as well as the 

completed control system. The simulation results in Figures 2 and 3 describe the behavior of tension and 

velocities when the load is changed from TL1=100 Nm to TL2=50 Nm. It should be noted that the comparison 

between the response using proposed solution and the classical approaches has been investigated. 

Furthermore, the simulation results in Figure 4 show the response of proposed high gain observer in Multi-

Motor systems.  

 

 

 
 

Figure 1. The structure of multi-motor control system 
 

 

 
(a) 

 
(b) 

 

Figure 2. (a) The response of tension PID with the load variation (b) The response of tension LMI-SMC with 

the load variation 
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(a) 

 
(b) 

 

Figure 3. (a) The response of speed PID with the load variation (b) The response of speed LMI-SMC with the 

load variation 

 

 

 
(a) 

 
(b) 

 

Figure 4. The response of observer, (a) tension observer, (b) speed Observer, with gear gap 𝛼=0.15 rad 

(8,590) 

 

 

5. CONCLUSION 

To deal with the multi-motor systems in presence of nonlinear property, backlash, elastic, the finite 

time sliding mode controller combining with high gain observer is developed in this work. The convergence 

time of SMC is clearly estimated by LMI technique and the observer is dealt with multi-output systems. The 

proposed controller is validated via simulations in comparison with existing solution. 
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