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 A robust high-speed sliding mode control (SMC) of three phase permanent 

magnet synchronous motor (PMSM) is presented. The SMC served for inner 

speed control while a simplified hysteresis current control (HCC) scheme 

was used in the outer current control to generate gating signals for the 

inverter switches. The present research leverages on the ability of SMC to 

directly access system speed error which it attempts driving to zero by 

cancelling modelling uncertainties and disturbances. Performance 

comparison was done for the SMC model and an existing model having 

classical PI controller. With the initial positive speed command of 200 rpm at 

5 Nm constant loading, rotor speed with SMC neatly settled to the reference 

speed at 0.085 seconds without overshoot while the rotor speed of the model 

with PI controller settled at 0.217 seconds after overshoot. This translates to 

155.3% speed enhancement. Similar superior speed performance of the SMC 

was also observed during recovering from sudden speed reversal. While the 

SMC model recovered and settled to the reference speed of -200 rpm at 

0.369 seconds, the model with PI controller settled at 0.482 seconds. From 

the results, it can be seen that SMC demonstared superiority over the 

conventioanl PI controller for complex drives systems. 
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1. INTRODUCTION 

The popularity of controlled permanent magnet synchronous motors (PMSMs) is on the increase for 

applications in the industry within the medium and low power ranges. They have superior characteristics 

such as high torque/inertia ratio, compact size, lower noise and accurate positioning [1]-[5]. PMSMs have the 

advantage of high efficiency when compared with the induction motor [6], high reliability, fast dynamics and 

very good compatibility [7]-[8]. The absence of rotor winding due to the use of the rotor magnets is 

responsible for the enhanced features. Complexity of PMSM makes it a nonlinear system coupled with its 

exposure to uncertainties such as perturbations, disturbances and load changes [9]-[14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Several non-linear control methods have been used in the torque and speed control of PMSMs. A 

fuzzy adaptive internal model control (IMC) schemes, considering control input saturation, was presented in 

[15]. The backstepping speed observer and adaptive backstepping control were used in [16] for PMSM speed 

and torque control via current source inverter (CSI). The scheme showed robustness on both electromagnetic 

and mechanical parameters of the motor. Linear quadratic regulator (LQR) utilizing quadratic cost function 

for the determination of control performance was used in [17] to linearize the inherently non-linear 

mathematical model of the motor. Results from this control technique show that LQR exhibits better system 

dynamic performance with reference to transition time and speed overshoot in comparison with traditional 

PID controller. 

Other nonlinear methods that have been used to control the PMSM includes a neural network loss 

minimization control [18], generalized predictive control (GPC), sliding mode controller (SMC) [19]-[20], 

fuzzy logic controller (FLC) [21]. Generally, when compared to the linear control using PID controllers, 

nonlinear control methods, since the PMSMs are complex nonlinear systems, are more suitable in achieving 

better systems dynamics and steady state performance. In this work, sliding mode control (SMC) is employed 

for accurate speed and position sensing for PMSM drive that employs a robust HCC for inverter gating signal 

generation. Specifically, the present research leverages on the unique ability of the SMC to have direct access 

to the systems speed error which it attempts driving to zero by cancelling modelling uncertainties and 

disturbances. Results obtained were compared with results obtained in the model of [3], [12] where the same 

simplified HCC was used for outer current control but classical PI speed controller was employed for inner 

speed loop control of the same drives system. MATLAB/Simulink 2018 version was used for modelling and 

simulation in this research. 

 

 

2. D-Q MODELLING OF PMSM  

The rotor permanent magnets are responsible for the production of the main magnetic flux. Thus, 

dq-axis voltage equations, the electromagnetic torque and the system mechanical models are respectively 

derived as [3], [22]-[23]: 

 

[
𝑉𝑞

𝑉𝑑
] = [

𝑅𝑠 +
𝑑𝐿𝑞

𝑑𝑡
𝜔𝑟𝐿𝑑

−𝜔𝑟𝐿𝑞 𝑅𝑠 +
𝑑𝐿𝑑

𝑑𝑡

] [
𝑖𝑞

𝑖𝑑
] + [

𝜔𝑟𝜑𝑚
𝑑𝜑𝑚

𝑑𝑡

] (1) 

 

𝑇𝑒 =
3

2

𝑃

2
[𝜑𝑚 𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] (2) 

 

𝑇𝑒 = 𝑇𝐿 + 𝐵𝜔𝑟 +
𝐽𝑑𝜔𝑟

𝑑𝑡
 (3) 

 

where, 𝑉𝑑, 𝑉𝑞 , 𝑖𝑑 , 𝑖𝑞 , 𝜔𝑟 , 𝑅𝑠, 𝐿𝑑 , 𝐿𝑞, 𝐵, 𝐽, 𝑇𝐿, 𝑇𝑒 𝑎𝑛𝑑 𝑃 are as defined in [7]. The constant rotor permanent 

magnet flux is 𝜑𝑚, hence 
𝑑𝜑𝑚

𝑑𝑡
= 0. 

 

 

3. SMC SPEED CONTROL OF PMSM 

Speed error 𝑒 is the difference between the commanded speed reference, 𝜔𝑑, and the rotor speed 

feedback, 𝜔𝑟, such that 𝑒 = 𝜔𝑑 − 𝜔𝑟 [24], [25]. 

From (3), 

 
𝑑𝜔𝑟

𝑑𝑡
=

𝑇𝑒

𝐽
−
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−
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 (4) 

 

from (2), for a surface PMSM, 
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−
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−
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𝐽
 (5) 

 

taking the derivative of the tracking error (𝑒), we have (6): 
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𝑒̇ = 𝜔̇𝑑 − 𝜔̇𝑟  

𝑒̇ = 𝜔̇𝑑 − [
3𝑃𝜑𝑚𝑖𝑞

2𝐽
−
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𝐽
−

𝐵𝜔𝑟

𝐽
] (6) 

 

taking double derivative of 𝑒 we have (7): 
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defining the sliding surface, we have (8): 

 

𝑠 = 𝑒̇ + 𝑐𝑒 (8) 

 

The PMSM speed system equivalent controller is calculated by setting 𝑠̇ = 0 

 

𝑠̇ = 𝑒̈ + 𝑐𝑒̇ (9) 

 

𝑠̇ = [𝑤̈𝑑 −
3𝑃𝜑𝑚𝑖𝑞̇

2𝐽
+

𝐵𝜔̇𝑟

𝐽
] + 𝑐𝑒̇ = 0 (10) 

 

therefore from:  
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2𝐽
+
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𝐽
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2𝐽
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𝐽
+ 𝑐𝑒̇ (11) 

 

setting 
3𝑃𝜑𝑚

2𝐽
= 𝑏   

∴ 𝑏𝑖̇𝑞̇ = 𝜔̈𝑑 +
𝐵𝜔̇𝑟

𝐽
+ 𝑐𝑒̇  
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1

𝑏
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integrating (12), 

 

𝑖𝑞 =
1

𝑏
[𝜔̇𝑑 +

𝐵𝜔𝑟

𝐽
+ 𝑐𝑒]  

 

the equivalent control 𝑈𝑒𝑞 = 𝑖𝑞 [26] 

 

∴ 𝑢𝑒𝑞 =
1

𝑏
[𝜔̇𝑑 +

𝐵𝜔𝑟

𝐽
+ 𝑐𝑒] (13) 

 

the switching controller is designed as (14): 

 

𝑢𝑠 = 𝑘𝑠𝑔𝑛(𝑠) (14) 

 

the parameter 𝑘 > 0 is a controller gain   

finally, the control law is a sum of of (13) and (14): 

 

𝑈 = 𝑢𝑒𝑞 + 𝑢𝑠 =
1

𝑏
[𝜔̇𝑑 +

𝐵𝜔𝑟

𝐽
+ 𝑐𝑒] + 𝑘𝑠𝑔𝑛(𝑠) (15) 

 

Figure 1 is a block diagram of (1) 
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Figure 1. SMC controller block diagram 

 

 

4. OVERALL CONTROL PROCEDURE 

Complete system diagram is shown in Figure 2. Rotor sensed speed 𝜔𝑟 is processed by a 1st order 

low pass filter before comparison with reference speed 𝜔𝑑. An error 𝑒 = 𝜔𝑑 − 𝜔𝑟 is generated which, in 

addition to 𝜔𝑑 and 𝜔𝑟, serves as the input to the sliding mode control unit already described in Figure 1. The 

SMC unit generates a suitable control signal 𝑢 , which in this case, is stator q-axis reference current (𝑖𝑞
∗). This 

drives the error, 𝑒, to zero by enabling the system speed response 𝜔𝑟 to attain the set reference 𝜔𝑑. The 𝑖𝑞
∗ , 𝑖𝑑

∗  

and 𝜃𝑒 are the input signals of the reference stator current estimator by inverse park’s transform. The phase 

currents, 𝑖𝑎 , 𝑖𝑏 and 𝑖𝑐 , in conjunction with corresponding generated reference currents 𝑖𝑎
∗  , 𝑖𝑏

∗  , 𝑖𝑐
∗ and ∆𝑖𝑞

∗  are 

compared to generate the gating signals, as illustrated in Figure 3, for the inverter with power circuit shown 

in Figure 4. Where ∆ is a variable hysteresis window. The control logic for the gating signal generation is 

illustrated in [22]. 

 

 

 
 

Figure 2. Complete system diagram of the PMSM drives with SMC 
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Figure 3. Generation of gating signals 

 

 

 
 

Figure 4: Three-phase inverter power circuit 

 

 

5. COMPARISON OF THE RESULTS 

In this section, plots of Figures 5-12 obtained from MATLAB/Simulink are used to compare the 

performance of this developed drives system employing SMC for inner speed control with the performance of 

the same system that employs classical PI controller for inner speed control as already reported in [3], [15]. In 

both cases, the outer current control is by HCC. PMSM parameters are shown in Table 1. 

 

 

Table 1. PMSM parameters 
Motor parameters Value 

Rated Power 4 Hp 

Frequency 50 Hz 

Stator resistance (Rs) 0.2 Ω 

Constamt rotor flux 

linkage(𝜆𝑓) 

0.175 Wb 

Inductance d axis (𝐿𝑑) 0.0085 H 

Inductance q axis (𝐿𝑞) 0.0085 H 

Inertia constant (J) 0.42 Kgm2 

No. of poles (P) 6 

 

 

The sensed rotor speed obtained with SMC and the PI controllers are compared with the speed 

reference as shown in Figure 5. With a positive speed command of 200 rpm, speed response with the SMC 

neatly settled at the reference at 0.085 seconds without overshoot while the speed response of the PI 

controller experienced overshoot before settling to the speed refence at 0.217 seconds. Sudden (step) 

reference speed reversal from 200 rpm to -200 rpm occurred at 0.25 seconds leading to change in speed 

orientation for the two models. At -200rpm, the SMC seamlessly traced the speed reference while the PI 

controller had negative overshot before settling to -200 rpm. 
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Figure 5. Reference speed, 𝜔𝑑 and rotor speed, 𝜔𝑟 

 
 

Figure 6. Electromagnetic torque, 𝑇𝑒 and load torque, 

𝑇𝐿 

 

 

 
 

Figure 7. Stator current for Phase ‘a’ 

 
 

Figure 8. Stator current for Phase ‘b’ 

 

 

 
 

Figure 9. Stator current for phase ‘c’ 

 
 

Figure 10. d axis stator current, 𝑖𝑑 

 

 

 
 

Figure 11. q axis stator current, 𝑖𝑞 

 
 

Figure 12. Rotor position, 𝜃𝑟 
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Figure 6 shows the load torque 𝑇𝐿 in comparison with the electromagnetic torque 𝑇𝑒 using the SMC 

and PI controller. The electromagnetic torque remained constant to sustain speed build-up. At the point when 

rotor speed equals reference speed, electromagnetic torque reduces to the load torque value of 5Nm with the 

model with SMC settling at the load torque faster since there is no speed overshot. Torque recovery due to 

speed reversal takes the same form with the model with SMC showing better dynamic behavior as shown. 

The three phase currents for the model with SMC and PI are respectively compared for phases a, b, 

and c in Figures 7, 8 and 9. Better dynamic performances are obtained for the model with SMC in each case. 

The models being field orientation controlled (FOC), the stator d-axis currents, shown in Figure 10, for the 

SMC and the PI models averages to zero to track the reference value which is zero in FOC. Current transients 

due to speed reversal are also seen. 

The stator q-axis current, shown in Figure 11, is in direct proportion to electromagnetic torque 𝑇𝑒 

because being the torque controlling component of the stator current. Faster dynamic behaviour was observed 

for SMC model. The rotor position for the two models is compared in Figure 12. Since the model with SMC 

attained steady state much faster than the model with PI controller, it is observed that the rotor position for 

the SMC, is at every time instant, ahead of the rotor position for the PI controller. 

 

 

6. CONCLUSION 

This research has leveraged on the unique ability of the SMC to have direct access to the systems 

speed error which it attempts driving to zero thereby cancelling modelling uncertainties and disturbances. 

SMC was employed for inner speed control of the motor while a simplified HCC was used for the outer 

current control. This is so because of the proportionality of torque and current in both stationery and rotor 

frames of reference whereby effective current control results in effective torque and speed control. 

Responses from the developed SMC model were compared with responses from an earlier model 

that utilizes classical PI controller for inner speed control employed on the same PMSM under the same 

condition of step speed command from 200rpm to -200rpm and constant load torque of 5Nm. 

With the initial positive speed command of 200rpm at 5Nm loading, speed response with the SMC 

neatly settled at the reference at 0.085 seconds without overshoot while the speed response of the PI 

controller experienced overshoot before settling to the speed refence at 0.217 seconds. This translates to 

155.3% speed enhancement. The same superior speed performance of the SMC is observed during recovering 

from sudden speed reversal at 0.25 seconds.  

This research has provided sufficient evidence that the SMC exhibits more robust performance and 

faster response time than the PI controller in the control of complex drives systems under the same condition. 

MATLAB/Simulink 2018 version played a vital role in this research by presenting a suitable environment for 

modeling and simulation. 
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