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 The identification of the reference currents constitutes an important part of 

the control of the active power filter. This part requires an accurate 

estimation of the frequency, phase, and proper extraction of the load current 

harmonics. This makes the modeling more difficult and requests a rigorous 

selection of techniques to be used. For the sake of simplicity, the direct 

method is motivated by the need for the simplicity and flexibility than the 

existing techniques such as the instantaneous power theory and diphase 

currents method. However, this method requires a robust phase-locked loop 

to extract the unity voltages and a robust controller to estimate the magnitude 

of the source current. To this end, this paper proposes the hybrid phase-

locked loop (HPLL) as a good option mainly because 1) it achieves zero 

phase error under frequency drifts, 2) Fast dynamic response, 3) totally block 

the DC offset, 4) From the control point of view, it is a type 1 control system 

which results in high stability margin. To the best of authors’ knowledge, the 

HPLL has not been used in active power filter yet. Furthermore, a neural PI 

regulator is used to estimate the magnitude of the source current. Simulation 

results show the efficiency of the proposed technique and illustrate all its 

interesting features. For the sake of comparison, the proposed method is 

compared to other advanced techniques.  

Keywords: 

Artificial neural network 

Shunt active power filter 

Synchronization 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Zakaria Chedjara 

Laboratoire ICEPS  

Université Djilali Liabes sidi Bel Abbes, Algérie 

Email: zakaria.chedjara@gmail.com 

 

 

1. INTRODUCTION 

The increasing penetration of distributed generation (DG) sources into the power grid and the 

proliferation of domestic non-linear loads have posed serious power quality problems and made the 

mitigation task more difficult than before [1]-[8]. 

Shunt active power filters (SAPF) in low-voltage electrical networks remains one of the most 

studied and developed compensation methods. However, the shunt active power filter remains a complex 

strategy that needs a thorough and careful study to perform well. Each part in the SAPF control algorithm 

performs a very precise task and depends heavily on the performance of the other parts. This dependence 

makes the modeling more difficult and requests a rigorous selection of techniques to be used as shown I 

Figure 1.  

The identification of the current references constitutes an important part of the control of active 

power filter. This part requires an accurate estimation of the frequency, phase, and proper extraction of the 

load current harmonics. To this end, many identifications have been reported in the literature [9]-[22]; they 
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can have categorized into the time domain and frequency domain approaches. The frequency domain such as 

the discrete Fourier transform (DFT) and recursive DFT [20], the nonlinear least square [21]. However, these 

techniques require a computational demanding, and its estimation accuracy is affected by the choice of 

sampling frequency and window length, the time-domain techniques such as the instantaneous power theory 

(IPT) [4], the diphase current method (DQ) and the direct [2], [22].  

All these techniques, regardless of their structure differences, operate satisfactorily under an ideal 

condition, in which the grid voltage is free of any noise. However, this situation almost never occurs in 

practice due to more and more frequent power quality problems (presence of harmonics, interharmonics, DC 

offset and asymmetrical voltage drops).  

The most widely used technique is the phase-locked loop (PLL), the conventional types suffer from 

three critical limitations: 1) only an approximation but not a true amplitude and phase angle of the positive 

sequence component are detected; 2) the detected positive sequence voltages are distorted and unbalanced; 3) 

the dynamic response of the system is significantly affected [23]. 

To deal with this problem, some efforts for designing more efficient PLLs methods have been made 

recently. A review of recent advances is given in [23]. These efforts improve the filtering capability and 

disturbance rejection ability of PLLs by including different filters, the moving average filter (MAF), the 

Delayed Signal Cancelation operator (DSC), Second-Order Generalized Integrator (DSOGI) and others. 

These techniques suffer from one or more on the following shortcomings: 1) slow dynamic response, 2) 

inefficiency under large frequency drifts and highly distorted source voltage, 3) are less attractive to deal 

with the DC-offset problem, 4) require a deep stability analysis. 

Furthermore, the IPT and DQ require a low-pass or high-pass filter to extract the fundamental or the 

harmonic components. However, these kinds of filters must be designed carefully in order to avoid erroneous 

compensation reference signals during the SAPF operation. For the sake of simplicity, the direct method 

requires fewer calculations (does not necessitate pre-processing, such as high-pass and low-pass filtering, in 

order to separate the fundamental and the harmonic components) than IPT, DQ and ensures better accuracy 

and robustness. 

To address these issues, this paper proposes the hybrid synchronous/ stationary filtering technique 

(HPLL) with the direct method [24] as good option mainly because, 1) it achieves zero phase error under 

frequency drifts, 2) Fast dynamic response, 3) totally block the DC offset, 4) From the control point of view, 

it is a type 1 control system which results in high stability margin. To the best of authors’ knowledge, the 

HPLL has not been used in active power filter yet. Besides, a neural regulator to enhance the dynamic of the 

DC bus voltage.  

 

 

 
 

Figure 1. Shunt active power filter control 
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2. REFERENCE CURRENT GENERATION USING THE DIRECT METHOD 

In this work, the direct method has been adopted as shown in Figure 2 [2]. There are three blocks for 

this control strategy. The first block estimates the maximum currents of the source using a proportional 

integrator (PI) with a neural approach. These currents take care of the active power required by the active 

filter and the losses generated in the inverter. Instantaneous reference source currents are evaluated by 

multiplying the estimated maximum currents by the unit voltage vectors. The second block determines the 

reference currents of the filter which are obtained by subtracting from the reference source currents, the 

instantaneous load currents and compared to the currents of the filter. The third block gives the errors which 

are used through a PWM (pulse width modulation) to generate control signals for the active filter.  

 

 

 
 

Figure 2. Identification structure of reference currents with the direct method 

 

 

2.1. Problem formulation 

With the direct method, the identification of the reference currents depends on the phase estimation 

algorithm. A phase-locked loop is the most widely used technique to recover a balanced system.Figure 2 

illustrates the conventional SRF-PLL (the synchronous reference frame). Since conventional SRF-PLL is the 

basic structure for implementing almost all advanced PLLs, a brief description of its operating principle and 

properties is first presented [23].  

 

 

 
 

Figure 3. SRF-PLL with LPF 

 

 

In conventional SRF-PLL, Clarke and Park's transformations are applied to voltage signals to 

transfer them to the synchronous reference frame (dq). The resulting dq axis signals contain the phase and 

amplitude error information. The signal containing the phase error, here Vq, passes through the LF, which is 

an integral proportional regulator (PI). The cooperation of this regulator and the VCO guarantees a zero 

average phase tracking error at nominal and non-nominal frequencies in steady state. Note that the unit vector 

generated by the VCO [i.e., sin and cos] is used by the PD (park transformation) to generate the phase and 

amplitude error information. Also note that the PI controller output and the d-axis signals are estimates of the 

frequency and magnitude of the grid voltage, respectively. The d-axis signal is transmitted to a low-pass filter 

in order to reject/attenuate the possible disturbances and accurately estimate the magnitude of the grid 

voltage. According to the ref, the transfer function of SRF-PLL with additional LPF is (1):  
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Figure 4 shows the frequency response of (5) for ω=314 rad/s and three values of k. In these plots, it 

can be noted that the negative frequency is interpreted as a response to the negative sequence vector signal. 

The frequency response is asymmetric around the zero and it provides a unit gain with zero-phase shifts at 

the fundamental frequency of positive sequence, while offering some level of attenuation to the same 

negative sequence frequency. The dynamic response depends on the parameter k. 

 

 

 
 

Figure 4. Bode diagram of the. SRF-PLL with LPF 

 

 

As mentioned before this technique suffers from the following shortcomings: 

1) Only an approximation of the detected amplitude and phase of the positive sequence components. 

2) Under greatly unbalanced and distorted conditions: The detected fundamental component is unbalanced 

and distorted. 

3) The dynamic response is significantly reduced. These shortcomings are the main motivation behind 

developing the advanced techniques.  

 

2.2. DC bus voltage 

PI regulators generally achieve a good compromise between performance and cost, that is why these 

kinds of regulators are used in 80% of industrial regulation systems [25]-[30]. Despite this, the determination 

of the parameters (P, I) is not obvious and fundamentally not optimal. To deal with these challenges, we 

propose the use of a neural network learning capability to determine these parameters. Figure 5 shows the 

principle of this technique where an ADALINE with two weights is used: 𝜔0 as the proportional parameter 

and 𝜔1 as an integral parameter. These weights relate the errors e(k) and e(k-1) at time k and k-1 to the 

output in the linear combination. The error is defined between the reference signal delivered to the regulator 

and the measured output of the system to be controlled. 

 

 

 
 

Figure 5. The neural PI regulator 
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3. THE H-PLL TECHNIQUE 

A schematic diagram of this technique is shown in Figure 6. From the control point of view, this 

technique is a type1 since it characterized by having only one integrator in its control loop and this allows a 

fast-dynamic response and high stability margin. The key parts of this structure are the MAF in dq space and 

DSC in αβ space and this is the reason why it referred to the hybrid PLL.  

 

 

 
 

Figure 6. The H-PLL structure 

 

 

3.1. MAF 

A MAF is good alternative to make the SRF immune to the unbalance, harmonic, and DC offset. 

The MAF described as (2): 
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Where Tw is the length of the MAF window, the MAF passes the DC Component and completely 

blocks the frequency components of multiple integers from (1/Tw) in hertz. This is the reason why the MAF 

is sometimes called (quasi-ideal LPF). This selection of Tw is a tradeoff between excellent filtering 

capability and fast dynamic response. For example, Tw=T removes all harmonics and DC offset but 

unfortunately, this selection results in slow dynamic response. Besides, to achieve fast dynamic response 

selecting Tw=T/2. In this case, however, the MAF cannot reject the DC offset [24]. 

 

3.2. DSC 

To solve this problem, we use the operator (DSC) in the PLL input [24]. DSC is a finite impulse 

response filter which can be defined in the Laplace domain as   
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Where n is the delay factor, and it should be determined based on which components are to be 

removed. According to ref, selecting n=2 to remove the DC component.  

 

 

4. SIMULATION RESULTS 

The proposed algorithm is simulated using Matlab/Simulink. Three scenarios are investigated: ideal 

source conditions, unbalanced and distorted, DC offset in order to analyze the performance and the 

effectiveness of the proposed algorithm. Since the MCCF-PLL is mathematically equivalent and perform 

similarly under different operating conditions to some advanced Type 2 PLLs such as decoupled double SRF 

(DDSRF), (DSOGI), multiple reference frame PLL (MRF-PLL) and the frequency adaptive discrete filter 

(FADF) with two stages [30], it has been used as a reference in evaluating the proposed technique. 

 

4.1. Ideal source voltage 

This scenario will serve as a reference for two other scenarios. Figure 7 shows the behavior of the 

active power filter under ideal source voltage condition. Under this condition, the active power filter lowered 

the THD from 28% to 1.71% with the proposed scheme and 1.89% with the MCCF-PLL. Besides, it can be 
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seen that, the proposed scheme is fast compared with MCCF-PLL, to be more exact the H-PLL have a 

settling time about 1 cycle while, the MCCF-PLL have 2 cycles. In addition, the neural regulator enhances 

the DC bus voltage dynamic.  

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Figure 7. Simulation results under highly unbalanced source voltage: (a) load current and its frequency 

spectrum, (b) source current and its frequency spectrum with the MCCF-PLL, (c) source current and its 

frequency spectrum with the H-PLL, (d) DC bus voltage with the neural regulator, (e) DC bus voltage with 

the classical PI regulator 

 

 

4.2. DC offset condition 

In this scenario, a DC component of phase (a) and phase (c) +50v, -50v is added to the grid voltages. 

Figure 8 shows the behavior of the active power filter under DC offset condition. Under this condition, the 

(d) 

(a) 

(b) 

(c) 

(e) 
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active power filter had good performances only with the proposed scheme with a source current THD of 

1.89%. It can be noted that the proposed algorithm is largely better than the MCCF-PLL. 

 

 

 
 

 
 

 
 

 
 

  
 

Figure 8. Simulation results under DC offset: (a) source current and its frequency spectrum with the MCCF-

PLL, (b) source current and its frequency spectrum with the H-PLL with neural regulator, (c) DC bus voltage 

with MCCF-PLL, (d) DC bus voltage with H-PLL and neural regulator 

 

 

4.3. Distorted source voltage condition 

In this scenario, the source voltages are unbalanced and distorted with the THD of 10.31%. Figure 9 

shows the behavior of the active power filter under unbalanced and distorted conditions. Under this 

condition, the two schemes converge to similar results. 

 

4.4. Performance comparaison 

This subsection provides a comparative study of the proposed H-PLL and the neural regulator to 

extract the magnitude source of the current with the MCCF-PLL; the methods are compared according to the 

following standpoints: Unbalance robustness, frequency adaptability, distortions, DC offset, the dynamic of 

source current and DC bus voltage. 

According to Table 1 and Table 2, the proposed H-PLL technique with a neural regulator is 

recommended as a good alternative mainly because it effectively rejected the unbalance, DC offset, and the 

harmonic component and offers a satisfactory compromise between the dynamic response, filtering 

capability. 

 

 

Table 1. THD under circumstances Table 2. Comparison of transient responses  
THD% H-PLL MCCF-PLL 

Ideal condition 1.71% 1.89% 

Unbalance and distorted 3.48% 2.88% 

DC-offset 1.71% 19.41% 
 

Settling time H-PLL MCCF-PLL 

Frequency step change <2 cycles [24] 2.5 cycles [28] 

Source current 1 cycle 2 cycles 

DC bus voltage 2 cycles 3 cycles 
 

(a) 

(b) 

(c) 

(d) 
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Figure 9. Simulation results under distorted conditions: (a) source voltage and its frequency spectrum, (b) 

source current and its frequency spectrum with the H-PLL, (c) source current and its frequency spectrum 

with MCCF-PLL 

 

 

5. CONCLUSION- 

In this paper the H-PLL synchronization technique to enhance the performance of APF under 

adverse grid conditions with the direct method is presented. The main advantage of the proposed method is 

the fact of being able to work under adverse grid conditions with the fast-dynamic response and with high 

stability margin. The neural PI regulator is used to enhance the dynamic of the DC bus. Simulation results 

have been obtained and show that the proposed H-PLL with a neural regulator is a very suitable for shunt 

active power filter. 
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