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 Lithium ferro phosphate (LiFePO4) has a promising battery technology with 

high charging/discharging behaviors make it suitable for electric vehicles 

(EVs) application. Battery state of charge (SOC) is a vital indicator in the 

battery management system (BMS) that monitors the charging and 

discharging operation of a battery pack. This paper proposes an electric 

circuit model for LiFePO4 battery by using particle filter (PF) method to 

determine the SOC estimation of batteries precisely. The LiFePO4 battery 

modelling is carried out using MATLAB software. Constant discharge test 

(CDT) is performed to measure the usable capacity of the battery and pulse 

discharge test (PDT) is used to determine the battery model parameters. 

Three parallel RC battery models have been chosen for this study to achieve 

high accuracy. The proposed PF implements recursive Bayesian filter by 

Monte Carlo sampling which is robust for non-linear and/or non-Gaussian 

distributions. The accuracy of the developed electrical battery model is 

compared with experimental data for verification purpose. Then, the 

performance of the model is compared with experimental data and extended 

Kalman filter (EKF) method for validation purposed. A superior battery SOC 

estimator with higher accuracy compared to EKF method has been obtained. 
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1. INTRODUCTION  

Burning of fossil fuels causes environmental problem such as global warming, acid rain and urban 

population [1]-[3]. By energy conversion, the resource of energy such as fossil fuel (coal, oil and natural 

gases) and nuclear can be extended to many years from getting totally exhausted [4], and this challenge can 

be tackled by the deployment of emission control systems. The transformation of energy technology, for 

example, electric vehicle (EV) and hybrid electric vehicle (HEV) are one of the efforts for improvement of 

traffic and healthier environment. Batteries technologies are the best choice and popular renewable energy 

than kinetic energy in flywheels, high capacity capacitors and high pressure compressed air [5] in term of 

higher efficiency, safe and recyclable. LiFePO4 battery is popular in EV applications for storage of energy 

which can deliver higher capacity over longer time since it is environment-friendly to the users [6], [7]. 

Therefore, an accurate battery model is crucial to simulate the charging and discharging characteristic and 

detailed analysis. Furthermore, battery management system (BMS) can estimate all parameters accurately 

such as state of charge (SOC) and runtime in order to optimize the performance of battery.  

https://creativecommons.org/licenses/by-sa/4.0/
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SOC is defined as the percentage of the remaining capacity that is present inside of battery [8]. SOC 

cannot be measured directly in a battery and there are several methods to determine the SOC of battery. 

Particle filter (PF) is one of the methods that has been used for estimation of SOC with an improved degree 

of accuracy. PF is an iterative implementation of the Monte Carlo based on statistical signal processing 

application [9]-[11]. Figure 1 shows the basic idea of PF, as introduced by Gordon [11]-[13], which shows 

relationship between posterior probability density function (PDF) and the number of samples which is 

particles [14], [15]. PF method gained popularity in the mid-1990s due to technology development and this 

method was used for nonlinear state estimation. The researcher’s development in PF over recent years with 

successfully applications such as model of statistics, learning of machine, processing of signal, econometrics, 

computer graphics, automation, communications, and others [16]-[18]. 

 

 

 
Figure 1. Basic idea of PF 

 

 

In [19], the paper proposed PF method to estimate the state of vector with three degree of freedom 

(DOF) industrial robot by the measurement of fusion obtained from sensor. PF is more convenient for highly 

nonlinear systems and non-Gaussian noise system where EKF method does not work well on these systems. 

Besides, marker-less tracking is technology broadly used in robot control method. The paper [20] introduces 

a marker-less human-robot interface using PF and Kalman filter (KF) methods. It was used for dual robot to 

track the human movement by a sensor. KF and PF are broadly used in robotics and control systems to 

integrate the robot orientation and position.  

A new kinematic calibration method based on the extended Kalman filter (EKF) and PF algorithm is 

presented in [21] to improve the robot position. The priori value is being provided by EKF algorithm and PF 

algorithm was used to successfully calibrate the parameter of robotic kinematic. In [22], the authors present a 

method for SOC estimation of LiFePO4 batteries at dynamic current and temperatures using PF, whereas 

Thevenin model is proposed in this paper [23] to modelling of NMC cell for different aging levels and 

operating states. The double particle filter (D-PF) and double adaptive particle filter (D-APF) are developed 

for online parameters and SOC estimation of lithium-ion batteries to reduce computational cost and improve 

the accuracy of the SOC estimation [24].  

In this paper, PF is applied to the electrical circuit model of LiFePO4 cell to estimate the lithium cell 

SOC. The research methodology and procedure to estimate the SOC by the PF method are discussed in detail 

in Section 2. Then, the method is verified by comparison and analysis of simulation results with experimental 

data of dynamic behaviors of lithium cell in Section 3. In this section, the performance of the model is not 

only compared with real experimental data but also to the same electrical circuit model using the EKF 

method for validation purposes. Finally, the conclusion is presented in Section 4. 

 

 

2. RESEARCH METHOD  

The 3.2V of 18Ah LiFePO4 lithium cell is used for the battery modelling in this research and the 

detailed specifications of the battery are shown in Table 1 [26]. The work process is shown in Figure 2. Pulse 

discharge test (PDT) and random test are performed to investigate the LiFePO4 battery dynamic 

characteristics in this research. The measurement of voltage and current from the test is collected and stored 

in data acquisition system (DAQ) model NI9219. Next, the PF is developed for battery model and 

experimental data was obtained from the battery test will to simulate and analyses the PF performance by 

MATLAB simulation tool.  

 

 

sample  

posterior 
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2.1.   Battery test procedure 

Figure 3 shows experimental assembly for test procedure. A 120V programmable electronic load 

device model IT8514C from ITECH with specification of 240 A and 1200 W, is used to act as constant 

current load in order to discharge the LiFePO4 battery; and a DC power supply model EA-PSI 8200-70R 

from Elektro-Automatik, capable of delivering 70A load with rating of 200 V and 5000 W, is used to charge 

the LiFePO4 battery. The ambient temperature of the battery test was monitored by environment chamber 

which is JH-KE. The experimental results obtained from the battery test are collect and stored by National 

Instrument DAQ model NI9219. NI9219 is interfaced with LabVIEW software to gather the data from 

battery test. The experimental data was saved and stored in excel file to easily simulate and analyses the 

process using MATLAB software.  

 

 

Table 1. Specification of LiFePO4 battery 
Characteristics Rechargeable Lithium Ferro Phosphate (LiFePO4) Prismatic Battery 

Dimension  18mm x 182mm x 95mm 

Nominal voltage (V) 3.2V 
Capacity Min. 18Ah at 9A (0.5C) discharge to 2.0V at 20℃ 

Charging Method 9A (0.5C) to 3.65V for 2.5hrs at 20℃ 

Charging Termination Control Taper Current 0.05C (0.9A) at 3.65V 
Operating Temperature (ºC) Charge:0 ºC to 60 ºC 

Discharge: -30 ºC to70 ºC 

Storage: -20 ºC to 45 ºC 
Internal Resistance (mΩ) < 2 mΩ 

Maximum Discharge Current (A) 180A (10C) 

Cycle life > 1000 cycle 
Weight (kg) ~0.62kg 

 

 

 
 

Figure 2. Flow Chart for the estimation SOC using PF 

 

 
Figure 3. Experiment and battery test procedure 
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2.2.  Experimental result 

Two tests were performed on the LiFePO4 battery to determine the performance of PF, which is 

PDT and random test. Figures 4 and 5 represent the experimental measurement of current and voltage. PDT 

is conducted, which consists of a sequence of constant discharge current and rest duration as illustrated in 

Figure 3. The battery is discharged by 9A load current with a period time of 26980 seconds and six cycles of 

pulses for PDT. The battery’s charge and discharge are shown in Figure 4, which is called a random test. The 

duration for the random test is 10320 seconds with 12 cycles of charging/discharging pulses. 

 

 

 
 

Figure 4. Profile of current and voltage for PDT 

(9A) 

 
 

Figure 5. Profile of current and voltage for random 

test 

 

 

2.3.  Battery modelling 

Figure 6 illustrates the model which was chosen in this research, as proposed by authors in [25]-

[28]. The parameter of usable capacity (Ccapacity), open-circuit voltage (OCV), and response of transient (three 

RC network with series resistance) are important parameters for dynamic characteristics of battery model.  

 

 

 
Figure 6. Three RC battery model with dynamic characteristic 

 

 

The usable capacity is the extracted energy from the battery which presumes a battery is discharged 

from same charge state until the equal end-of-discharge voltage [26]. The usable capacity is determined from 

experimental result of constant discharge test (CDT) which is performed to measure the battery’s capacity in 

a specified state. Figure 7 shows the experimental result for 9A CDT test and the equation of usable capacity 

expressed as (1) where the equation gets from the curve fitting tool by MATLAB software. The usable 

capacity (CN), can be expressed as: 

 

𝐶𝑁 = 4.559𝑒𝑥𝑝−0.4932 𝑥 𝐼𝐿 + 13.44𝑒𝑥𝑝−0.001729 𝑥 𝐼𝐿 (1) 

 

OCV-SOC relationship is crucial for battery modeling since it represents the terminal voltage level 

in three parallel RC battery model. The battery’s OCV-SOC relationship is shown in Figure 8, which is an 
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important parameter in nonlinear relations where the value of OCV is directly dependent on the value of SOC 

[29], [30]. OCV for a certain SOC can be identified based on PDT when the battery is at rest condition until 

it reaches a new equilibrium state shown in Figure 8 [31]. A fifth-order polynomial equation can be 

formulated by using curve fitting tool in MATLAB to represent the OCV- SOC relationship as expressed in 

(3). Thus, the parameters can be determined by transient voltage response for discharge and rest, as 

illustrated in Figure 9, where the terminal voltage of the battery is derived as (4). Finally, the battery 

parameters that have been extracted from (4) are tabulated in Table 2. 

 

SoC(t) = SoC(0) −
1

CN x 3600
∫ IL(t) (2) 

 

OCV(SoC) = (4.513 x 10−10)SoC5 − (1.295 x 10−7)SoC4 + (1.505 x 10−5)SoC3 −
0.0008927SoC2 + 0.02764SoC + 2.918   (3) 

 

V(t) = OCV − VRC1(t) – VRC2(t) − VRC3(t) −  IL x Rs(t) (4) 

 

 

 
 

Figure 7. Experimental result for 9A CDT test 

 

 

 
 

Figure 8. OCV-SOC relationship 

 
 

Figure 9. Transient voltage response for PDT 

 

 

Table 2. Battery model parameters based extracted from CDT and PDT tests 
Battery Parameters 

R1=0.0238 Ω C1=171.6878 Farad RS=68.896 µΩ 

R2=0.0173 Ω C2=4583.3 Farad  
R3=0.0165 Ω C2=46879 Farad  

 

 

2.4.  Particle filter (PF) algorithm 

PF algorithm is applied in this research to achieve high accuracy of the OCV estimation. This value 

is used to determine SOC by utilizing SOC-OCV relationship curve as shown in Figure 7. The relation 

between SOC and OCV varies based on the type of battery and it is usually given by the manufacturer. The 

Recursive Bayesian estimation and importance sampling (IS), which is the general methods or technique for 

estimate properties of a particular distribution are used in PF algorithm as basic framework.  
In this research, Monte Carlo is implemented based on IS to remove the particle from the posterior 

probability density (PDF) and weights of each particle. After that, the particles are filtered and updated 

according to their pdf and weight. The OCV estimation can be computed based on pdf and weight of the 
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updated particles. PF is not restricted by the assumption of linear model and Gaussian noise at the same time 

compared Kalman filter (KF) algorithm. As a result, PF become a popular method to solve the nonlinear and 

non-Gaussian state estimation problem [22]. The PF algorithm is explained in detailed in this section [32]. 

(a) Initialization k= 0.  

Generate initial particles within minimum voltage and maximum voltage with a uniform probability. 

Suppose the number of particles is N, the variance of measurement noise is 𝑣𝑘 and the variance of 

process noise is 𝑤𝑘. These particles are denoted by X0 
i (i = 1,2, . . , N) for SOC. 

(b) Prediction. 

Generate N particle , last sampled particle Xk−1 
i  and get output estimation Yk 

i  according to (5) and (6): 

 

{
x k+1 = Ax k + Buk  +  wk

y k  = Cx k + Duk  +  vk
 (5) 

 

{
 
 

 
 

[
 
 
 
SoCk+1
VRC1k+1
VRC2k+1
VRC3k+1]

 
 
 

= Ak x 

[
 
 
 
SoCk
VRC1k
VRC2k
VRC3k]

 
 
 

+ Bk x ILk + wk

Vt,k  = OCV − VRC1k − VRC2k − VRC3k − ILkx Rs + vk

 (6) 

 

Where, 

 

Âk =
∂f(SoCk ,VRC1 ,VRC2 ,VRC3)

∂SoCk
|
SoCk=SoĈk+

  (7) 

 

Âk =

[
 
 
 
 
 
1 0 0 0

0 1 −
dt

R1C1
0 0

0 0 1 −
dt

R2C2
0

0 0 0 1 −
dt

R3C3]
 
 
 
 
 

  (8) 

 

Bk =

[
 
 
 
 
 
 

−dt

CN x 3600
dt

C1
dt

C2
dt

C3 ]
 
 
 
 
 
 

  (9) 

 

Ck = [
∂g(SoCk ,VRC1 ,VRC2 ,VRC3)

∂SoCk
|
SoCk=SoĈk−

−1 −1 −1] (10) 

 
∂(OCV)

∂(SoC)
= 5 x (4.513 x 10−10)SoC4 − 4 x (1.295 x 10−7)SoC3 + 3 x (1.505 x 10−5)SoC2 −

2 x 0.0008927SoC + 0.02764  (11) 

 

Dk = Rs  (12) 

 

(c) Evaluate importance weight 

Calculate the maximum qi of the particles Xk 
i  according to the measurement y k represented as (6): 

 

qi =  p(y k|Xk 
i ) =

1

√2πR
e−(y k− yk 

i )2
1

2R  (13) 

 

Normalized the importance weight as follow qi = qi/∑ qj
N
j=1  

(d) Resampling 

Generate a set of posterior particles Xk 
i  based on their weights qi by multinomial resampling method, 

i=1, 2, …, N 
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(e) Output  

The state variables (OCV) after completion of the algorithm are obtained by Xk = ∑ qi
N
i Xk 

i . Take 

Xk 
i into OCV-SOC curve to obtain SOCV,k 

 

 

3. RESULTS AND DISCUSSION 

The experimental result and the estimation of SOC from PF algorithm are presented and discussed 

in this section. The outcome for this research is presented in two different parts: i) PDT, and ii) random test. 
The initial SOC(𝑥0),error covariance measurement update (P), process noise (𝑤𝑘) and sensor noise (𝑣𝑘) are 

assumed in (14) to (17). The initial SOC is set to 90% for PF method for analysis. 

 

x0 = [90 0 0 0]T  (14) 

 

P = [

19000 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

]  (15) 

 

wk = [

0.1 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

]  (16) 

 

vk = [0.01] (17) 

 

 

3.1.  Validation of terminal voltage  

Figure 10 and Figure 11 show the comparison of the terminal voltage of the of LiFePO4 battery for 

9A PDT test and random test. The red line represents experimental voltage while the blue line represents 

estimated voltage by PF algorithm. As a result, the terminal voltage for both tests is nearly same between 

experimental and simulation result. However, noise is observed in simulation result of the PF estimated 

terminal voltage due to the existence of noise measurement in PF algorithm.  

The mean absolute error (MAE), mean square error (MSE) and root mean square error (RMSE) are 

three types of error used for analysis of the performance of the model for terminal voltage of the battery in 

this research. MAE is the average of the difference between estimated and measured value in the test or 

model as expressed in (18). MSE is the average squared difference between estimated and measured value in 

the test or model as defined as (19). While RMSE is defined as the square root of the MSE in (20). 

 

MAE =
1

N
∑ |Measured value − Estimated value|N
i=1  (18) 

 

MSE =
1

N
∑ (Measured value − Estimated value)2N
i=1  (19) 

 

RMSE = √
1

N
∑ (Measured value − Estimated value)2N
i=1   (20) 

 

Table 3 shows the error analysis between experimental voltage and PF estimated voltage for both 

tests. The MAE, MSE and RMSE of terminal voltage in 9A PDT test are 0.0091V, 0.0014V and 0.0373, 

respectively, which are 0.284%, 0.044% and 1.166% to the nominal voltage of LiFePO4 battery. Whereas the 

MAE, MSE and RMSE of voltage in random test are 0.0456V, 0.0184V and 0.1357V respectively which are 

1.425%, 0.575% and 4.241% to the nominal voltage of LiFePO4 battery, respectively. It shows that PF has 

good performance to determine the terminal voltage during relaxation time even though the noise appear 

across PF estimated voltage especially during transient; both in PDT and random test. The proposed model 

by PF proves that PF algorithm can estimate the terminal voltage precisely. 
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Figure 10. Comparison between experimental voltage and PF estimated voltage for PDT test 

 

 

 
 

Figure 11. Comparison between experimental voltage and PF estimated voltage for random test 

 

 

Table 3. Error analysis between experimental voltage and PF estimated voltage for PDT and random test. 
Test Mean Absolute Error 

(MAE) 

Mean Square Error 

(MSE) 

Root Mean Square Error 

(RMSE) 

Pulse Discharge test (9A) 0.0091 V 0.0014 V 0.0373 V 

Random test 0.0456 V 0.0184 V 0.1357 V 

 

 

3.2.  Validation of SOC estimation 

The Coulomb counting method is used to measure the discharging current of the LiFePO4 battery 

and integrates the discharging current over time with the purpose of estimating Real SOC. The Real SOC 

from Coulomb counting for PDT of 9A and the random test is illustrated in Figure 12 (a) and Figure 13 (a), 

respectively. While Figures 12 (b) and 13 (b) show the comparison between Real SOC (red line), EKF 

estimated SOC (yellow line) and PF estimated SOC (blue line). Both methods are able to track and estimate 

the battery SOC accurately, especially when the SOC is higher than 20 %. However, when battery SOC is 

less than 20%, both estimators are departing from real data. RMSE, absolute error, and relative error are used 

as a tool to validate and compare the performance of PF and EKF with real SOC. The RMSE and error 

analysis are denoted as (20) to (24). 

 

Average measured value, VM =
1

N
∑ Measured valueN
i=1  (21) 

 

Average estimated value, VE =
1

N
∑ Estimated valueN
i=1   (22) 

 

Absolute error = |VE − VM |   (23) 

 

Relative error =
|VE−VM|

VM
 x 100%  (24) 
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The absolute error is defined as the difference between the estimated value and the measured value. 

The relative error is the ratio of absolute error to the measured value. Table 4 tabulates the error analysis of 

the SOC estimation algorithm for PDT of 9A and random test. For PDT of 9A, the absolute error and 

percentage error for EKF estimated SOC is 0.0219% and 0.05%, respectively. Whereas the absolute error and 

percentage error for PF estimated SOC is 0.0184% and 0.04%, respectively. The difference in relative error 

for the PDT test between PF and EKF is 0.01%. For PDT of 9A, the RMSE for EKF and PF estimated SOC 

is 4.6153% and 4.9648%, respectively.  

For the random test, the absolute error and relative error of SOC estimation by PF are 1.0622% and 

2.58%, respectively. In comparison, the absolute error and relative error of SOC estimation by EKF are 

1.2099% and 2.94 %, respectively. The difference in relative error for the random test between PF and EKF 

is 0.36%. For the random test, the RMSE for EKF and PF estimated SOC is 2.3830% and 1.0657%, 

respectively. The Table 4 shows that the PF method has a lower absolute error and relative error in both tests. 

For RMSE, EKF is more accurate than PF, leaving it with a small marginal error in PDT while PF is superior 

to EKF in random tests. Thus, it can be summarized that the performance of PF is comparable to the 

performance of EKF. 

 

 

 
(a) (b) 

 

 Figure 12. SOC from coulomb counting, (a) real SOC, (b) comparison between real SOC, EKF and PF for 

PDT of 9A 

 

 

 
(a) (b) 

 

Figure 13. SOC form random test, (a) Real SOC (b) Comparison between real SOC, EKF and PF for random 

test 

 

 

Table 4. Error analysis of SOC estimation 
 Methods Absolute Error (%) Relative Error (%)  Root Mean Square Error (%) 

Pulse Discharge 

test (9A) 
EKF 0.0219 0.05 4.6153 

PF 0.0184 0.04 4.9648 

Random test EKF 1.2099 2.94 2.3830 

PF 1.0622 2.58 1.0657 

 

 

4. CONCLUSION  

This paper presents battery modeling and development of particle filter (PF) algorithm to estimate 

the state of charge (SOC) of 18Ah LiFePO4 battery. At the first stage, constant discharge test (CDT) and 
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pulse discharge test (PDT) are performed to investigate the characteristics of the LiFePO4 battery. Then, the 

performance of the PF-SOC estimation method is assessed by comparing it with experimental data of 

dynamic behaviors of LiFePO4 lithium cell. Additionally, the performance of PF and extended Kalman filter 

(EKF)-SOC estimation is compared by error analysis. From the analysis, the PF is more accurate than EKF 

due to a robust procedure to undertake inference for non-linear or non-Gaussian models as compared to the 

EKF. From PDT and random test, it can be concluded that the PF method is accurate to determine the 

terminal voltage of the battery with an average error of less than 5% even though the noise appears across PF 

estimated voltage. Absolute error and relative error, which represent as error analysis of SOC for PDT test 

and the random test, show that the performance of PF-SOC estimation is more accurate and more precise 

than EKF-SOC estimation of battery. However, slow responses of the filter, particularly over relaxation time 

and the dynamic characteristics in terms of the open-circuit voltage (OCV)-SOC relationship of the LiFePO4 

battery, may restrict the performances of PF as shown in PDT. In general, it can be concluded that the PF 

performance is on par with EKF and worth applied for battery SOC estimation. 
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