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 In this research, a new model development and innovation of conventional 

boat named plug-in hybrid electric recreational boat (PHERB) was 

introduced to overcome the fuel economy nowadays. This paper focus on the 

comparison simulation results of PHERB with advanced vehicle simulator 
(ADVISOR) and an automotive simulation and analysis tool 

(AUTONOMIE) models in terms of electric machine, energy system storage, 

propeller and boat model. The model of the PHERB is consequent and 

applied mathematically in the MATLAB/Simulink environment to study its 
functioning performance. Besides that, fuel economy and emissions of 

PHERB, ADVISOR and AUTONOMIE model are equated and the pros and 

cons were discussed in this paper based on simulation result.  
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1. INTRODUCTION 

Malaysia is a promptly emerging country in Southeast Asia that aims to achieve high-income 

country status by 2050; its economic growth is highly dependent on fuel consumption. The conventional boat 

(CB) is used only internal combustion engine (ICE) to power the boat. Figure 1 Figure 2 and Figure 3 display 

the powertrain diagrams block for a CB, plug-in hybrid electric boat (PHEB) and the proposed plug-in hybrid 

electric recreational boat (PHERB). These block diagrams consist of ICE, electric machine (EM), and energy 

system storage (ESS) [1], [2]. The PHEB has motor and generator in EM, and an ESS without ultracapacitor 

(UC) [3]-[8]. Along these lines, PHERB was proposed in this work for cost sparing which one EM was work 

as either an engine or generator at any given moment. In ESS, there is battery and UC bank for quick 

charging and releasing amid the regenerative braking and quick increasing speed. The ICE is required when 

the condition of charge (SOC) of the ESS is low, then ICE only mode is activated. The ICE in PHERB can 

drive the boat while charging the ESS until the ESS SOC achieves an abnormal state and the EM will assume 

control to move the boat. Energy management strategy (EMS) for the PHERB is expected to spare the 

weight, space and cost in addition to enhance the fuel economy and emission.  

Modeling and simulation are the important part in development model [9]-[12]. Currently, 

researchers focus on understanding the progressing system of the hybrid vehicles by developing the 

simulators [13], [14]. The results can be used to optimize the design of hybrid vehicles before prototype 

https://creativecommons.org/licenses/by-sa/4.0/
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structure begins. Besides that, power flow management, optimization of the fuel economy and reducing the 

emissions are part of the current research [15]-[18]. Several computer programs have been developed to 

describe the operation of hybrid electric powertrains [19] including advanced vehicle simulator (ADVISOR) 

and an automotive simulation and analysis tool (AUTONOMIE) which compare with proposed recreational 

boat named PHERB.  

 

 

 
 

Figure 1. Block diagram of the CB powertrain 

 

 

 
 

Figure 2. Block diagram of the PHEB powertrain 

 

 

 
 

Figure 3. Block diagram of the proposed PHERB powertrain 

 

 

2. METHOD 

The method conducted in this research is divided by five phases which is model by software, 

PHERB vehicle model, and PHERB energy management system. 

 

2.1.  ADVISOR and AUTONOMIE 

In this research, ADVISOR and AUTONOMIE shown in Figure 4 is the established software can be 

used as the reference to build the vehicle such as car, boat, bus, truck and so on. U.S. department of energy 

(DOE) and the national renewable energy laboratory (NREL) was developed ADVISOR as shown in Figure 
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4 as a software based on the MATLAB/Simulink environment used to simulate and analyze conventional, 

electric, hybrid electric and plug-in hybrid electric vehicle [20]-[21]. AUTONOMIE was developed by 

argonne national laboratory (ANL) and sponsored by the DOE. The MATLAB/Simulink environment-based 

simulation toolbox supports rapid vehicle powertrain modeling and analysis of various powertrain and 

control systems through the evaluation of vehicle’s fuel economy, performance, and energy efficiency under 

various dynamic or transient testing conditions [22]-[23]. The ADVISOR and AUTONOMIE models have 

been approved and utilized as a benchmark of reference display because ADVISOR and AUTONOMIE is 

the established software. To mimic the PHERB, the model has determined and tried by contrasting the re-

enactment results and ADVISOR and AUTONOMIE. Likewise, PHERB was produced as forward-looking 

vehicle simulation architecture comparable with AUTONOMIE show however ADVISOR uses in reverse 

looking vehicle simulation architecture.  

 

 

 

 

 

(a) 

 

(b) 

 

Figure 4. (a) ADVISOR and (b) AUTONOMI software 

 

 

2.2.  PHERB vehicle model 

Design specifications, requirements, sizing and selection for EM, ICE and energy storage system 

(ESS) are carried out in order to identify the main components of PHERB powertrain. The EM, ICE and ESS 

are sized according to boat parameter, specifications, and performance requirements as shown in Table 1, 

based on the boat power requirement for steady state velocity using dynamic equation boat [24]-[28]. The 

boat type selected is a recreational boat. In simulation, the length of boat used is 12.4 m and density of water 

is 1000 kgm-3.  

The enlargement of boat model starts with the estimations of boat energy and power needed for 

common driving situations based on the parameters and target specifications of the boat based on PHERB 

specification, parameter and requirement. Through a power flow analysis, the size and limit of each 

component are decided accordingly to get the necessities. Table 2 displayed the size and specifications used 

for PHERB [29]-[34].  

 

 

Table 1. PHERB parameters, specifications and performance requirements 
Parameter and Specifications 

Configuration Series-Parallel Configuration Series-Parallel 

Length overall, L 12.4 m Length between perpendicular, LPP 10.67 m 

Length at waterline, LWT 11.0 m Density of water, ρ 1000 kgm-3 

Breath, B 1.8 m Total propulsive efficiencies, ηT 0.9 

Draught, T 0.64 m   

Performance Requirement 

Maximum speed Over 30 km/h 

EV range 10 km 

 

 

Table 2. PHERB component specification 
Component Specifications 

ICE 20 kW @ 3000 rpm 

EM 30 kW AC induction motor 

Battery Li, 5 kWh, 6 Ah 
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All parts in PHERB obtain a mathematical model is combined. The boat performance is simulated in 

the MATLAB/Simulink environment with a special EMS and different driving cycle. Overall structure of 

PHERB model is illustrated in Figure 5.  

 

 

 
 

Figure 5. Overall structure of the PHERB model in MATLAB/Simulink 

 

 

2.3.  PHERB energy management strategy 

EMS is dependable of choosing in which mode that the boat is working. A few working methods of 

the proposed EMS appeared in Figure 6 to control the flow of power among the ESS, EM, and ICE, including 

the mechanical braking, regenerative braking, motor only, engine recharge, motor and engine, and engine 

only mode refer to the boat demand in forward and reverse cruising and SOC level of ESS [35], [36].  

The mechanical braking mode is started if the SOC of both ESS and the throttle position is high. 

Amid the regenerative braking mode, the distribution of absorbed regenerative power be determined by on 

the percentage of throttle position as well as on the SOC level of both storage units. EM only mode can be 

activated when the SOC level is high. When the ESS SOC and the speed are low, the ICE will drive the boat 

for charging the ESS. If the boat is cruising and the ESS has a moderate SOC, then the boat can be either ICE 

recharge or EM only mode refer to previous mode. If the boat acceleration is high, then the ICE will not have 

an opportunity to charge the ESS because the ICE only mode is activated.  

 

 

 
 

Figure 6. PHERB EMS modes of operation 

 

 

3. RESULT AND DISCUSSION 

This section is divided to two phases which is PHERB model verification and PHERB fuel economy 

and emission analysis.  
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3.1.  PHERB model verification 

For model verification, PHERB model is modified to incorporate the plug-in hybrid electric vehicle 

(PHEV) model and EMS. The PHERB model is verified using ADVISOR model and AUTONOMIE model. 

 

3.1.1.  Drive cycles 

Two standard U.S. environmental protection agency (EPA) drive cycles: the highway fuel economy 

test (HWFET) and urban dynamometer driving schedule (UDDS) are simulated to verify the model of 

PHERB as plug-in hybrid vehicle. Figure 7 and Figure 8 illustrated the HWFET and UDDS drive cycles 

which is finishes at 765 seconds and 1369 seconds, respectively. 
 

 

 

 

 

Figure 7. UDDS driving cycle 

 

Figure 8. HWFET driving cycle 

 

 

3.1.2.  Boat performance 

Figures 9-12 outlined the simulation regarding the boat speed and force via ADVISOR and 

AUTONOMIE. As appeared in Figures 9-12, the real boat force and speed of the HWFET and UDDS drive 

cycles reproduced by the ADVISOR or AUTONOMIE (blue lines) and the PHERB show (red lines) concur 

well with each other.  

 

3.1.3.  Energy system storage 

From the ESS output power, voltage and current in Figures 9-12, can assume that to attain speed 

boat during that period, the high-power demand is due to the highest current. The regenerative braking 

happens when the negative value on the graph display in the cycle. For ESS voltage, when ESS recharging in 

the regenerative braking mode, the voltage increases and decreases when the power needed from EM is high 

during current peak discharge. While the two-model configuration during HWFET and the UDDS drive 

cycles for SOC of the battery are represented in Figures 9-12.  

The whole pattern of two models and energy depletion equals sensibly well. Nevertheless, there is 

some difference with the battery SOC aftereffects of the PHERB demonstrate and ordinary PHEV show in 

the UDDS and HWFET drive cycle utilizing ADVISOR and AUTONOMIE. This is because the PHERB 

model has a detention more regenerative braking energy and a better EMS. 

 

3.1.4.  Electric machine 

The result of ADVISOR, AUTONOMIE and PHERB in term power, speed and torque used EM 

using the HWFET and UDDS drive cycles are included in Figures 9-12. So that, when the boat accelerates, 

the required EM torque increments rapidly, and when the boat achieves the moderately stable interstate speed 

level, a smaller torque is required to beat the resistance and air drag to the boat. The speed, torque and power 

results from the two model compare sensibly fit. 

 

3.1.5.  Propeller 

Figures 11 and 12 delineates the wheel torque and speed necessity for the HWFET drive cycle of the 

two models 600Nm happens when the boat is accelerating from stop to the acceleration. The needed torque at 

that point lessens since the HWFET drive cycle just comprises of gentle increasing velocities and 

decelerations. The general outcomes and patterns coordinate intently. Figures 9 and 10 demonstrates the 

haggle required amid the UDDS drive cycle and the outcomes from ADVISOR, AUTONOMIE and PHERB 

show coordinate exceptionally well. 
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3.1.6.  Acquired and required speed 

Figures 9-12 show that the acquired and required speed concur sensibly well. The PHERB model 

followed the desired drive cycle speed very well for both standard drive cycles match with ADVISOR and 

AUTONOMIE. 

In combination with the previous discussion, it can be concluded that the results of the components 

of the vehicle subsystems of PHERB model are correctly sized as the boat is capable of achieving 

performance to a target velocity. 

 

 
 

Figure 9. Simulation results of UDDS driving cycle using AUTONOMIE (Blue: ADVISOR, Red: PHERB) 

 

 

 
 

Figure 10. Simulation results of UDDS driving cycle using ADVISOR (Blue: ADVISOR, Red: PHERB) 
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Figure 11. Simulation results of HWFET driving cycle using AUTONOMIE (Blue: ADVISOR, Red: 

PHERB) 

 

 

 
 

Figure 12. Simulation results of HWFET driving cycle using ADVISOR (Blue: ADVISOR, Red: PHERB) 

 

 

3.2.  Pherb fuel economy and emission analysis 

This analysis compared the fuel economy (FE) and emissions shown in Tables 2-3 which is hydro-

carbon (HC), carbon-monoxide (CO), nitrogen-dioxide (NOx) and carbon dioxide (CO2) using PHERB, 

ADVISOR and AUTONOMIE, for the HWFET driving cycle, UDDS driving cycle and a few water drive 

cycles. The water driving cycle used are Kuala Terengganu (KT), Seberang Takir (ST), Kampung Laut (KL), 

Tasik Kenyir (TK), and Pulau Kapas (PK) presented in Figure 13. The FE and FE improvement can be 

determined using (1) and (2) (37-39) where D is distance in miles and Vfuel is volume of fuel in consumed in 

gallons.  
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𝐹𝐸 (𝑚𝑝𝑔) =
𝐷

𝑉𝑓𝑢𝑒𝑙
 (1) 

 

Percentage of FE improvement =
𝐵𝑒𝑓𝑜𝑟𝑒−𝐴𝑓𝑡𝑒𝑟 

𝐵𝑒𝑓𝑜𝑟𝑒
 x 100% (2) 

 

 

  

  

(a) (b) 

  

  

  

(c) (d) 

  

 
 

(e) 

 

Figure 13. Water driving cycle used, (a) KT driving cycle, (b) ST driving cycle, (c) KL driving cycle, (d) PK 

driving cycle, (e) TK driving cycle 

 

 

The different pattern of driving cycle and models were given the different value of FE and emission. 

The FE and emission of PHERB, ADVISOR and AUTONOMI model are listed in Tables 2-3 is analysed 

using model analysis in MATLAB/Simulink environment. 

From the Tables 2-3, a significant improvement in the fuel economy and emissions were achieved 

by the PHERB model. Based on the analysis results, the following observations can be made. The FE of the 
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model and 15% higher than the AUTONOMIE model. Hence, for KL, TK and PK driving cycles show the 

increasing in FE of PHERB such as 42%, 77%, and 20% than ADVISOR model and 14%, 18%, 11% higher 

compared to AUTONOMIE model. Besides that, the FE of the PHERB for UDDS and HWFET driving cycle 

presented 17% and 10% for ADVISOR model, while for AUTONOMIE model, PHERB was improved about 

8% and 7% respectively.  
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In emission studied, PHERB and ADVISOR model show the result of three type emission such as 

HC, CO, and NOx. The results displayed PHERB model has a lower emission compared to ADVISOR 

model. It differences for AUTONOMIE, AUTONOMIE model only given the result for CO2 emission. This 

happens because ESS model in PHERB model have battery and UC bank but in ADVISOR and 

AUTONOMIE model has only the battery in the ESS. UC be the important role to improve the FE and 

emissions. Besides that, a special EMS is used in PHERB model that can increase the FE and reduced the 

emission.  

 

 

Table 2. Fuel economy and emission using ADVISOR and AUTONOMIE 

Driving Cycle 

ADVISOR AUTONOMIE 

Fuel Economy 

(mpg) 

Emission (g/m) Fuel Economy 

(mpg) 

Emission (g/m) 

HC CO NOx CO2 HC CO NOx CO2 

KT 73.5 0.462 0.492 0.107 - 95.5 - - - 42.171 

ST 43.0 1.757 1.734 0.121 - 56.8 - - - 21.097 

KL 41.9 1.018 1.319 0.340 - 62.5 - - - 46.080 

TK 40.7 0.565 0.587 0.175 - 145.5 - - - 112.045 

PK 35.0 0.684 0.859 0.274 - 38.8 - - - 155.416 

UDDS 62.3 0.561 0.743 0.195 - 68.9 - - - 18.980 

HWFET 87.6 0.394 0.602 0.183 - 90.4 - - - 22.910 

 

 

Table 3. Fuel economy and emission using PHERB 

Driving Cycle 

PHERB 

Fuel Economy (mpg) 
Emission (g/m) 

HC CO NOx CO2 

KT 109.8 0.547 0.279 0.000 - 

ST 66.7 1.046 0.534 0.000 - 

KL 72.6 0.878 0.448 0.000 - 

TK 178.0 0.711 0.474 0.057 - 

PK 43.7 0.296 0.151 0.000 - 

UDDS 74.7 0.415 0.215 0.000 - 

HWFET 97.3 0.224 0.203 0.047 - 

 

 

4. CONCLUSION 

The boat subsystems in terms of ESS current, voltage, output power and SOC, EM speed and 

torque, boat speed and force and propeller speed and torque are within reasonable and expected range of 

actual typical behavior of these subsystems. The components of the boat subsystems are correctly sized as the 

vehicle can achieve performance to a target velocity. The fuel economy and emissions for the driving cycle 

used shown similarity based on software used because ADVISOR and AUTONOMIE have different 

characteristic and focused on different part in modelling and simulation. It can be concluded that results of 

the PHERB model are the most precise compared to ADVISOR and AUTONOMIE. So that, it can be used as 

reference to build the prototype of hybrid electric recreational boat in Malaysia environment. 
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