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 This paper is devoted to the state of the art in photovoltaic (PV) conversion 

chains and their architectures. Two major characteristics are considered to 

classify these chains. These are the galvanic isolation and the number of 

stages; characteristics generally localized around the DC-AC converter 

(inverter) at the end of the PV conversion chain. Therefore, this paper deals 

with a comprehensive review of the different inverter topologies that can be 

integrated into PV conversion chains, distinguishing between the transformer 

based and the transformer-less conversion chains. The paper demonstrates 

that to this date, transformer-based inverters are very common and widely 

used, have a long record of accomplishment as a component of solar energy 

systems, in particular for residential applications because of their greater 

efficiency, smaller size, and lower costs. Nevertheless, transformer-less 

chains are touted with some problems and shortcomings.  Moreover, solar 

energy storage devices, wireless charging systems in stations and along the 

highways require the re-examination of the existing solar PV conversion 

chains, their architectures and possibly new conversion chains suitable for all 

distributed generation including electric cars and storage devices. 

Keywords: 

Conversion chains 

DC-AC inverter 

Galvanic isolation 

leakage current 

Solar photovoltaic 

Transformer-less inverters 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mounir Bouzguenda  

Department of Electrial Engineering 

College of Engineering, King Faisal University 

P.O. Box 380, Al Ahsa PC 31982, Kingdom of Saudi Arabia 

Email: mbuzganda@kfu.edu.sa 

 

 

1. INTRODUCTION  

Solar radiation is the largest flow of energy entering the earth system. After reflection and absorption in 

the atmosphere, much of it can be converted into various forms of energy used by mankind. Nowadays, 

according to [1], the actual power of the PV system is less than 60-75% of the estimated electricity 

production. The ALCEN Corporate Foundation for Energy Knowledge [2] reported that this energy 

corresponds to nearly 6,000 times the energy consumed by the entire world population. As a result, solar 

energy has the potential to develop into a major component of the sustainable energy family. This renewable 

energy was used by ancient civilizations for heating water, desalination, and food drying. 

a. Since the nineteenth century, solar energy has been the scope of a growing number of research projects 

and developments. Key and developments are the discovery of the photovoltaic effect by Bequerel in 

1839 [3]. 

b. Discovery of the photoconductivity of selenium by Willoughby Smith in 1873. 

c. The development of the first working solar cell by Charles Fritts with a 1 percent efficiency in 1883. 

https://creativecommons.org/licenses/by-sa/4.0/
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d. The development of the first solar cell with an efficiency of 6 percent in 1954.  This was followed by the 

development of solar cell with an 8 percent in 1957, 14 percent in 1960, 32.3 percent in 1999 and 42.8 

percent in 2007. 

e. Solar cells cost dropped from $76 in 1977 to $0.25 per Watt in 2017. 

f. DC to AC inverter is as important as the solar panels and they at the heart of domestic solar power 

systems, converting the DC to AC.  Inverters have been experiencing continued development since late 

nineteenth century. In 2000 Sandia Laboratories invented the modern inverter paving the way to 

residential solar systems deployment   

g. Apart from the above developments, the widespread smart grids have been dictating additional 

requirements on solar PV inverters such as autonomy, adaptivity, cooperation, plug-and-play functions, 

communication, and self-awareness [4]. Such requirements are expected to affect the inverter topology 

and physical properties. However, these additional requirements can be addressed in a separate study.  

h. However, the global production of photovoltaic energy has so far remained low compared to the potential 

of this resource. This is mainly due to the high production cost of this energy, which is still dominated by 

that of fossil energy. As a result, the main challenge is finding low-cost and high-efficiency solutions for 

developing new photovoltaic power systems. 

i. Improving the efficiency of the photovoltaic generator by integrating new cell technologies such as 

organic cells or light-concentration cells. 

j. Improving the efficiency and cost of the entire system by setting up new architectures of photovoltaic 

conversion chains. 
Given the fact that the global market for solar PV grew about 44% in 2019 [5], the fact that the 

global total of 627 GW including on- and off-grid systems [5] and the fact that the solar solar efficiency has 

been witnessing marginal improving, other alternatives should be investigated to maximize the power from 

solar photovoltaic systems. In particular and it is without doubt that the architecture of the DC-AC 

conversion chains shall be evaluated, and it is in this context that comes the work developed in this paper. 

 

 

2. PHOTOVOLTAIC CONVERSION CHAIN ARCHITECTURE 
A solar photovoltaic conversion chain consists of several subsystems [6] that provide various 

functionalities as illustrated in Figure 1. Such functions include production, conversion, and interface. These 

functions are common in all photovoltaic conversion chains. Auxiliary functions include control, protection, 

and storage and differ from one chain to another. Grid connected conversion chains do not require storage 

batteries as the conversion chain is fed directly from the solar panels and produce alternating voltage and 

supports the customer load.  

 

 

 
 

Figure 1. General architecture of solar photovoltaic conversion chains 

 

 

Solar PV chains can be classified by different families according to the number of power processing 

stages, the use and of a transformer and otherwise the elimination a transformer.  

a. The galvanic isolation between the source and the grid consists of an isolation transformer designed at 

high frequencies (HF) on the source side via a high frequency of 1 kHz or higher. Alternatively, a 

transformer is placed on the grid side and operates at a low frequency (LF) of 50 to 60Hz. 

b. The number of stages in the chain. In one hand, the conversion of the energy is achieved straight from 

direct current (DC) the alternating current (AC). Otherwise, the conversion is done through a buck-boost 

DC-DC stage to regulate the DC voltage before the DC to AC conversion. 

c. Additionally, solar photovoltaic chains architecture is characterized by constraints such as efficiency 

improvement, the input power fluctuations reduction, production optimization during irradiation 
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intermittency and the reliability improvement and extension of the lifetime of key components such as the 

electrolytic capacitors, inductors, etc. 

As a result, various topologies of photovoltaic conversion chains have been developed and reported 

in the literature. In the following, a special focus will be given to the topologies that have caught the attention 

of most researchers in the field of photovoltaic systems. This study focuses on the essential function of any 

chain which is the “conversion” function as well as the auxiliary functions such as protection, connection 

with the grid and others. 

 

2.1. Galvanic conversion lines of high frequency type 

Galvanic isolation is ensured by means of a compact HF transformer. However, the transformer 

exhibits extra losses penalizing therefore the efficiency of the conversion chain [7]-[10]. The diagram in 

Figure 2 shows the galvanic isolation principle. This type of isolation is based on the flyback approach that 

uses high value capacitors at the input stage. This approach tends to significantly reduce the entire conversion 

chain lifetime. 

The input voltage, generally of the order of 12V, is converted into very high AC voltage (HF pulses 

of the order of 400V). This voltage is rectified and filtered to provide a high DC voltage that is applied to the 

input of the inverter to produce “consumable” AC voltages. The use of HF galvanic isolation applies to 

systems having few PV modules in series producing few hundred Watts. The current waveforms are quasi-

sinusoidal due to the adopted control strategies. 

 

2.2. Conversion chains with low-frequency galvanic isolation  

The schematic diagram of such chains is shown in Figure 3. In this case, the DC input voltage is 

converted into AC voltage through the inverter. The LF transformer amplifies this voltage to standard values 

(110/220V, 50-60Hz). This type of isolation is the least used because of their relatively high prices, weight 

and size compared to conversion with HF transformers [7]-[10]. 

 

 

 

 

Figure 2. Galvanic isolation using HF transformer 

 
 

Figure 3. Galvanic isolation using LF transformer 

2.3. Non-isolated conversion chains 

In this galvanic isolation chains, the non-isolated dc–dc converters are designed to step-up or step-

down the voltage. As a result, the size, the weight and the volume of the chains.are compact and the 

conversion efficiency is enhanced. 

  

2.3.1. Non-isolated mono-stage conversion chains 

 In this case, the conversion is done in a single step without a voltage amplification stage. As shown 

in Figure 4, many photovoltaic modules are required to generate a voltage at the output of the inverter that is 

sufficiently high, close to that of the grid. The additional functions (MPPT and protection) are all integrated 

in a single stage of the conversion chain. 

 

2.3.2. Non-isolated two-stage conversion chains 

In this case of photovoltaic systems, the conversion chain consists of two cascaded stages. The first 

stage is a DC-DC converter to boost the DC voltage generated by the photovoltaic panel while the second 

stage is DC-AC type, allowing the generation of an AC voltage to interface the photovoltaic system with the 

grid as shown in Figure 5. In this case, the additional functions could be distributed between the DC-DC 

converter and the DC-AC converter. 

 

 

 
 

Figure 4. Non-isolated single-stage structure 

 
 

Figure 5. Non-isolated two-stages structure  
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3. CONFIGURATIONS OF PHOTOVOLTAIC CONVERSION CHAINS 

This section reviews the various configurations of the photovoltaic conversion chains according to 

their DC-to-AC conversion stage. 

 

3.1. Photovoltaic conversion chains based on central inverters 

The central inverter configuration system is shown in Figure 6 [11]-[15]. It is frequently used for 

high power applications. In this type of configuration, photovoltaic modules are mounted in rows with each 

end of a non-return diode. The rows are connected in parallel to the input of the central inverter. It is a simple 

configuration characterized by low installation and maintenance cost. However, the central inverter chain is 

penalized by losses due to the phenomenon of asymmetry, also known as mismatch phenomenon, which is 

linked to the use of a single MPPT strategy implanted in the said inverter. In addition, in case the inverter is 

faulty, the entire conversion chain is isolated, and no continuity of service is possible. Moreover, the use of 

long cables connecting the photovoltaic modules compromises the efficiency of the conversion chain. 

 

3.2. Photovoltaic conversion chains based on string inverters  

Nowadays, as per the “system technology for photovoltaics” [16], the string inverter configuration 

the most used system configuration. The schematic diagram of this configuration is given in Figure 7 [17], 

[18]. It involves connecting an inverter to each row of photovoltaic modules and paralleling the outputs of the 

different inverters. 

The inverters need certain synchronization to avoid any exchange of power. Each inverter has its 

own MPPT which allows better control of the power. In addition, in case of failure of an inverter, only the 

row associated with it is isolated which allows continuity of service. Finally, such an arrangement offers a 

modularity that allows an easy chain extension. 

 

 

 
 

Figure 6. Block diagram of the central inverter 

system configuration 

 
 

Figure 7. String inverter system configuration 

 

 

3.3. Multistring system configuration 

The efficiency and reliability of the conversion chain could be improved by connecting the DC-DC 

converter to each row or string [19], [20]. The converters’ outputs are connected in parallel to the input of a 

central inverter as shown in Figure 8. This configuration combines the advantages of the central inverter 

configuration with those of the string inverter configuration. Indeed, the maximum power point trackers 

(MPPT) are integrated at the converter level, which makes it possible to overcome the losses due to the 

phenomenon of mismatch. This configuration is certainly more economical than the string configuration but 

cannot ensure the continuity of the service offered by the latter in case of failure of the central inverter. 

 

 

 
 

Figure 8. Multi-string inverter conversion chain 
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3.4. Integrated system configuration  

This category includes the following three configurations, namely [21]-[23], i) parallel converter 

configuration, ii) series converter configuration, and iii) microinverter configuration. The three 

configurations listed above are respectively shown in Figure 9, Figure 10 and Figure 11. As shown in  

Figure 9, each of the parallel or the parallel converter configuration shown in Figure 9, each converter is 

connected to a photovoltaic module having its own MPPT which improves the power generation 

management. In addition, this configuration allows a more precise control system and a quick response in the 

event of a fault. 

However, this configuration requires high amplification gain of the voltage to match the required 

voltage at the input of the inverter, which significantly increases the losses and thus penalizes the efficiency 

of the entire conversion chain. 

To reduce this gain, series converter configuration shown in Figure 10 is recommended. Indeed, this 

configuration allows access to the parallel converter configuration options except that the gain of 

amplification is reduced as the number of converters increases. The drawback of this configuration lies in 

connecting several converters which results in the dependence of the MPPT of different converters. 

Another configuration considered in the literature is the microinverter system design shown in 

Figure 11. This configuration consists in connecting the inverter directly to the photovoltaic module via a 

voltage amplification stage. This design would reduce losses due to the mismatch phenomenon and would 

allow flexible extension through the “plug and play” technique. 

 

 

 
 

Figure 9. Parallel converter configuration 

 
 

Figure 10. Series converter configuration 

 

 

 
 

Figure 11. Microinverter system configuration 

 

 

4. INVERTER TOPOLOGIES OF PHOTOVOLTAIC CONVERSION CHAINS 

4.1. Categories of inverters 

The inverter is the major element of any photovoltaic conversion chain. Inverters could be classified 

into two categories, namely: 

a. “Line-switched” inverters which are usually of high powers. They are made of thyristors whose switching 

frequency is controlled from the line current. However, the thyristor requires forced switching circuits to 

bring the current to zero to turn them OFF. In addition, inverters made up of thyristors require 

complicated filtering circuits. For these reasons, this type of inverter is rarely used as reported in the [24]. 

b. “Self-commutated” inverters that are based on power transistors such as bipolar transistors, field effect 

transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). Those inverters are controlled 

using simple switching techniques implemented in analog or digital integrated circuits [25]. They could 



Int J Pow Elec & Dri Syst ISSN: 2088-8694  

 

Review of DC-AC converters for photovoltaic conversion chains (Mounir Bouzguenda) 

891 

be voltage controlled called “voltage source inverter” (VSI), or current controlled called “current source 

inverter” (CSI). 
c. VSI inverters are the most used because a high-power factor could be achieved by a simple pulse width 

modulation (PWM). 

d. The use of CSI inverters is generally limited to medium and high-power applications. CSIs have a series 

of inductors at the DC bus to maintain constant current. These inverters have the following advantages 

[26], i) in the event of a short-circuit, the current remains limited within the inverter which, thanks to the 

inductances of the DC bus, cannot exceed the short-circuit current of the PV panel, and ii) the use of 

sensors is not necessary because the connection of the inverter to the grid does not use any control loop. 
 

4.2. Inverter specifications 

For all inverters categories, there are technical specifications that must be taken into consideration 

when developing a PV conversion system. Among these specifications, the total harmonic distortion (THD) 

and power factor (PF) are retained [27]. 

The “929-1988-IEEE Recommended Practice for Utility Interface of Residential and Intermediate 

Photovoltaic (PV) Systems (1987)” [28] has stated that the total harmonic distortion is defined as the ratio of 

the square root of the sum of the squares of the rms values of the analyzed signal to the rms value of its 

fundamental term. This value is always given in percent as indicated in (1). 

 

𝑇𝐻𝐷  (%) = 100
√∑ 𝐻𝑛

2∞
𝑛=2

𝐻1
  (1) 

 

where Hn is the rms value of the nth harmonic and H1 is the rms value of the fundamental term.  According to 

US IEEE P929 [28], the THD of the currents must always be less than 5%.  Table I shows the THD limits 

adopted by most standards [29]. 

 

 

Table 1. THD limit of the current according to the order of the harmonics 
Order of harmonics Limit of the THD 

2-9 4% 

10-15 2% 

16-21 1.5% 

22-33 0.6% 

THD up to the 50th harmonic 5% 

 

 

The second specification is the power factor which is of dominant importance. A unit power factor 

is often required where it is associated with low values of current. This results in a reduction of losses within 

the chain and consequently a better profitability of the photovoltaic conversion. 

The effective value of the current is expressed as (2). 

𝐼𝑟𝑚𝑠  = √∑ 𝐼𝑛
2∞

𝑛=1  (2) 

Where In is the amplitude of the harmonic of order n. 

Similarly, the rms value of current could be expressed as a function of THD as (3). 

 

 𝐼𝑟𝑚𝑠  = 𝐼1√1 + 𝑇𝐻𝐷2 (3) 

 

In addition, the power factor PF is described in the “1547.1-2005 - IEEE Standard Conformance 

Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems (2011)” 

[30], [31] as (4). 

 

𝑃𝐹 =
𝑃

𝑆
=

𝐼1 𝑐𝑜𝑠 𝜙

𝐼𝑟𝑚𝑠
 (4) 

 

with  is the back-phase shift of the current fundamental term with respect to the fundamental term of the 

voltage.  

Rewriting (4) while considering (3), makes it possible to express the power factor as a function of 

the THD as shown in (5). 
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𝑃𝐹 =
𝑐𝑜𝑠 𝜙

√1+𝑇𝐻𝐷2
 (5) 

 

In addition to the two specifications described above, any photovoltaic system is characterized by 

further specifications related to security and coupling to the grid. These specifications are dictated by the 

following standards, a) IEC 60364-7-2005: Electrical installations of buildings section 712: photovoltaic 

power systems (2016) [30], b) IEEE 1547-1-2005: Standard IEEE conformance test procedures for 

equipment connecting distributed sources to electrical grids (2011) [29], c) IEEE 929-2000: Practical 

interfacing of photovoltaic systems (2000) [32], d)IEC 61727: Photovoltaic systems: characteristics of the 

interface (2004) [33], and e) DS / EN 61000-3-2: EMC, limits for harmonic emissions (Input current of 

equipment that can wait 16A per phase) (2019) [34]. 

Table 2 shows a comparison of forth mentioned standards in terms of current injected into the grid.  
The VDE 0126-1-1 standard is the only one that imposes a disconnection time from the grid in the order of 

200 ms if a direct current greater than 1A is injected into the grid [35]-[37]. This standard also requires the 

disconnection of the conversion system if a leakage current occurs, as shown in Table 3 [38]. Considering the 

technical specifications of photovoltaic systems, several inverter topologies that more closely meet these 

specifications have been studied and are presented within this paper that mainly focuses on, a) inverters with 

galvanic isolation, and b) inverters without galvanic isolation. 

 

 

Table 2. Injected direct current limit for different 

standards 
Standard DC injected 

IEC 61727 ≤1% of the output current 

VDE 0126-1-1 ≤1 A 

IEEE 1547  ≤0.5% of the output current 

EN 61000-3-2 ≤0.22 A 

IEEE 929-2000 ≤0.5% of the output current 
 

Table 3. Maximum disconnection time according to 

VDE 0126-1-1 
Leakage current (mA) Disconnection time (s) 

30 0.30 

60 0.15 

100 0.04 
 

 

 

4.3. Flyback mono-transistor inverter 

The schematic diagram of this topology is shown in Figure 12. This is a galvanically isolated 

topology using a high frequency (HF) transformer. It is a low power inverter (around 100W) based on a 

single-transistor flyback converter whose outputs feed a mid-point transformer [39]-[42]. Both outputs of the 

transformer are connected to the grid through two diodes, two transistors and a filter. This configuration 

allows the Flyback converter to provide two currents of opposite signs. The two output transistors 

synchronously switch with the single transistor of the flyback converter in the high frequency regime. The 

Flyback converter operates in a discontinuous conduction mode (DCM) which implies that the current 

through the transformer reaches zero before the start of each switching cycle. 

The major disadvantage of this topology lies in the fact that the decoupling of the power in parallel 

with the photovoltaic module is generally carried out using electrolytic capacitors of high values. Moreover, 

the two stages of this topology must be sized for a power equal to twice the nominal power. Finally, another 

drawback of this topology is the low power factor due to the existence of a zero-crossing distortion.  

 

4.4. Flyback inverter with high power decoupling 

This topology consists of the flyback inverter with a buck-boost converter [43]. The circuit of this 

topology is given in Figure 13. 

 

 

 
 

Figure 12. Flyback mono-transistor inverter 

 
 

Figure 13. Flyback inverter with high power decoupling 
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The topology is a modified version of the one presented in Figure 12 in order to avoid the use of 

high value electrolytic capacitors. Indeed, the decoupling capacitor is eliminated using a buck-boost 

converter. This is a topology where the transistor Spv, the diode Dpv, the primary winding of the transformer, 

the freewheeling diode of the transistor SDC and the capacitor CDC form the buck-boost converter operating in 

the discontinuous conduction mode. 

Each cycle begins with the conduction of the transistor SPV which results in a linear increase of the 

magnetization current. When this current reaches a so-called reference value, the transistor SPV is blocked 

and the energy stored in the magnetization inductance is transferred to the capacitor CDC. The transistor SDC 

must be active when the current is being discharged to the capacitor which implies the state of zero voltage 

switching. 

In addition, one of the two output transistors is simultaneously activated with the transistor SDC. 

Thus, the transistors on the secondary side of the inverter switch at high frequency regime unlike the 

topology of the Flyback inverter. The magnetization current continues to decrease until reaching a second 

reference. At this time, the transistor SDC will turn OFF and the energy stored in the inductor is transferred to 

the secondary side of the transformer and then to the grid. The diode DPV is used to eliminate the reverse 

voltage across the capacitor CPV when the energy is being transferred to the secondary side. 

 

4.5. The modified “SHIMIZU” inverter 

The previous topology shows voltage spikes at the leakage inductance included in the transformer 

[44]. Such voltage spikes exist between the terminals of the transistor SDC during its transition to the OFF 

state. Also, this topology has been improved by replacing the single-transistor converter with a bi-transistor 

converter as shown in Figure 14. 

 

 

 
 

Figure 14. Modified “Shimizu” inverter 

 

 

Initially, the input energy of the inverter is converted using the boost converter and is saved in the 

intermediate capacitor. This energy is then converted using the Flyback converter. Finally, the energy stored 

in the magnetization inductance is returned to the grid through the transformer. 

 

4.6. The isolated inverter with parallel-parallel configuration 

The inverter made in the parallel-parallel configuration is shown in Figure 15. It delivers a power of 

the order of 200W [45]. It is an inverter that is designed to operate in the discontinuous conduction mode, 

DCM. This results in a discontinuous current in one of the inductances Lpv or L. The advantage of this 

topology lies in the fact that the discontinuous conduction mode is generally associated with: a) a simple 

control, b) a reduced size of the inductance LPV, and c) a current injected into the grid free of HF 

ripples/fluctuations. 

At the output of the transformer, there are two conversion stages whose outputs are connected in 

quasi-parallel. One stage is responsible for producing the positive alternation of the current, the second stage 

is responsible for the negative alternation. 

 

4.7. The bi-transistor flyback inverter  

This inverter topology is shown in Figure 16. Its output power is around 160W. The operating 

principle is detailed in [46]. At the beginning of a period of the grid current, the transistors S1 and S4 (S2 and 

S3 for the negative half-period) are activated. This will generate a current and the energy produced will be 

saved in the magnetization inductance. When these two transistors are deactivated, the energy will be 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 12, No. 2, June 2021 :  886 – 901 

894 

transferred to the secondary side of the transformer and will subsequently be transmitted to the grid through 

the transistor S5, the freewheeling diode of the transistor S6 and the filter. 

 

 

 
 

Figure 15. Isolated inverter with parallel-parallel 

configuration 

 
 

Figure 16. Inverter type flyback bi-transistor 

 

 

4.8. Isolated flyback inverter in parallel-series connection 

The topology is shown in Figure 17. It is built around two independent flyback converters [47]. In 

this case, the grid is connected in series with the outputs of the two converters while the photovoltaic module 

is connected in parallel with the inputs of the converters.  Producing a power of 160W, the inverter operates 

in continuous conduction mode, CCM, which results in a more complicated control. It produces an output 

voltage of AC type by modulating two sinusoidal voltages shifted by 180 ° across the capacitors C1 and C2. 

 

4.9. Low frequency inverter associated with a flyback converter 

This inverter topology is shown in Figure 18. It is built around a Flyback converter connected to a 

thyristor-based inverter. It is dedicated to produce a power of about 150W. In some cases, this power is 

limited to 100W. The use of thyristors instead of power transistors can cause some switching problems as the 

thyristors are current controlled [48]. 

 

 

 
 

Figure 17. Isolated flyback inverter in parallel-series 

connection 

 
 

Figure 18. Low frequency inverter associated 

with a flyback converter 

 

 

4.10. Inverter with series resonance converter 

The topology of this inverter associated to a converter is shown in Figure 19. It is built around a 

series resonance converter connected to a high frequency galvanically isolated inverter. It is designed to 

produce a power of about 110W [49] and can reach 250W in some cases [50]. Moreover, the transformer 

leakage inductance and the capacitor connected in series form a resonance circuit that reduces the switching 

losses of the inverter. 

The DC-DC converter switches at 100KHz with a duty cycle slightly less than 50% and it operates 

with a fixed conversion ratio, which makes it possible to overcome the power decoupling between the 

photovoltaic module and the grid. The losses within the converter are quite small while those of the 

transformer are considerable. 
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The inverter uses two types of switching frequency: high frequency and low frequency. Indeed, the 

left arm of the inverter operates at frequencies between 20 and 80KHz while the right arm switches to 100Hz. 

In this case, the switching losses are halved compared to those of the inverters whose two arms switches at 

high frequencies. 

 

 

 
 

Figure 19. Inverter with series resonance converter 

 

 

4.11. H-bridge inverter 

This inverter is whose topology is shown in Figure 20. Made up of two transistor arms and having 

no transformer, this topology is satisfactory in variable speed drives for AC motors and in UPS. About 

control strategy, different PWM techniques could be implemented [51]. 

The H-bridge inverter is characterized by a low efficiency compared to other transformerless 

topologies due to the use of high frequency PWM control signals. The output voltage of the inverter exhibits 

significant fluctuations which are at the origin of a relatively large leakage current depending only on the 

value of the parasitic capacitances CPV-G that exist between the photovoltaic module and the ground.  One 

solution for reducing the leakage current, in the case of bipolar PWM, is to use an LCL filter whose two 

inductors are located on either side of the load as shown in Figure 21. Such a filter makes it possible to solve 

the problem of leakage current for the bipolar PWM H-Bridge inverter provided that the two inductors, on 

either side of the load, are perfectly symmetrical. Although the problem of leakage current is solved, the 

energy efficiency remains low compared to the transformerless topologies. 

The unipolar PWM strategy could also be applied to H-Bridge inverter topology. In this case, the 

voltage of the inverter takes three different values, namely: + VIN, 0 and -VIN. Also, the filter becomes 

simpler and the fluctuations of the output voltage are reduced. This strategy is characterized by a high 

efficiency. However, the leakage current is quite high so that the H-Bridge topology cannot be used for 

transformerless topologies. 

 

 

 
 

Figure 20. H-Bridge inverter 

 

 

 

 
 

Figure 21. LCL filter configuration for the 

bipolar PWM H-Bridge inverter 
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4.12. The HERIC inverter topology 

The HERIC topology that was firstly introduced by Sunways is shown in Figure 22 [52]. It is a 

transformerless inverter topology designed to combine the advantages of bipolar modulation (low leakage 

current) with those of unipolar modulation (high energy efficiency). The inverter is based on the conventional 

full bridge topology with two extras transistors interposed at the AC side, as shown in Figure 22. 

These transistors are used during the freewheeling time. Indeed, during this phase, one of these 

transistors is activated while the four transistors of the H-bridge are all OFF and the grid is completely 

disconnected from the photovoltaic source. the grid current is short-circuited and saved in the load through 

the transistor S5 during the positive alternation and through S6 during its negative half-cycle. The fluctuations 

of the output current are eliminated, and the efficiency of the inverter is significantly improved.  

 

4.13. The H5 inverter 

SMA has also developed a transformerless inverter topology as shown in Figure 23. The idea is to 

disconnect the photovoltaic source from the grid during the freewheeling time of the four main transistors of 

the full bridge topology [53]. 

 

 

 
 

Figure 22. HERIC inverter topology 

 
 

Figure 23. H5 inverter topology 

 

 

In this case, the modulation used is hybrid. Indeed, the transistors S1 and S3 switch at the frequency 

of the grid while S2 and S4 are switching at high frequencies (S1 and S4 for the positive half period and S2 and 

S3 for the negative half one). 

 

4.14. Single phase inverter with dc decoupling 

By still adopting the same idea of decoupling the inverter from the grid, another topology has been 

developed in [54] and is shown in Figure 24. The disconnection is carried out using the two extras transistors, 

S5 and S6, and the two extra diodes, D1 and D2, connected at the DC bus to the input of the inverter. 

The output of the inverter is of the three-level type as in the case of the HERIC and H5 inverters. In 

addition, the level of the leakage current remains within the international standards. This cumulative potential 

makes this topology a good candidate for structures without transformers. 

For this transformerless inverter topology, the modulation is hybrid. Indeed, the two transistors S5 

and S6 switch at high frequency while the other transistors switch at the grid frequency (S1 and S4 for the 

positive half periods and S2 and S3 for the negative half periods). 

 

4.15. Half bridge inverter  

The inverter based on this topology is built using only two transistors as shown in Figure 25 [55].  

For this topology, the two transistors switch at high frequency. As a result, the output of the inverter is of 

two-level type, which requires larger filtering elements. This topology has low leakage current, which makes 

it suitable for structures without transformers. However, the major disadvantage is that it requires a DC input 

voltage equal to twice the input voltages of the other topologies. 

Indeed, for a single-phase system, this topology requires a DC voltage of the order of 650V which 

implies an open circuit voltage of the order of 1000V; a voltage that is not allowed by the standards setting 

the open circuit voltage of photovoltaic panels such as the IEC61216 standard. 
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Figure 24. Inverter based on single-phase topology 

with DC decoupling 

 
 

Figure 25. Inverter based on half bridge topology 

 

 

4.16. The neutral point clamped inverter topology (NPC) 

The NPC inverter topology is very often used for inverters without transformers. Its structure is 

shown in Figure 26 [56]-[58]. The phase and the neutral are clamped through two diodes at the mid-point of 

the two capacitors of the DC bus. The control strategy is hybrid while the transistor S2 being active during the 

positive half-cycle, and the transistor S1 is in the switching state. The current flows from the source to the 

load through the two switches S1, S2 and the diode D1. During the negative half cycle, the transistor S3 is kept 

in the active state while the transistor S4 is in the switched state. 

The inverter based on this topology has some advantages such as the low switching losses rate, a 

reduced current ripple, an output voltage having three levels which reduces the size of the filter. In addition, 

the inverter operates with a power factor close to the unit which improves the efficiency of the complete 

system. However, this topology has certain limitations, particularly in the case of single-phase applications. 

Among these limitations, it is necessary to distinguish the high level of the DC bus voltage which should be 

doubled compared to that adopted for the other inverters. Moreover, this topology generates high transient 

voltages at the transistors S2 and S3 because, unlike the two transistors S1 and S4, these two transistors are not 

connected to the coupling capacitors. 

 

4.17. Inverter with floatig inductor “Karshny” 

The floating inductance inverter, “Karschny”, belongs to the “Sitop Solar” family of Siemens [59]-

[61]. The topology is presented in Figure 27. One can highlight a direct connection between the neutral of the 

output and the negative terminal of the photovoltaic module. such a connection helps to, a) eliminate the 

oscillations of the voltage, and b) use thin-film photovoltaic modules. 

 

 

 
 

Figure 26. Inverter based on the NPC topology 

 
 

Figure 27. Inverter based on “Karschny” topology 

 

 

The basic structure of this topology is built around a buck-boost stage with additional transistors to 

define the polarity of the output quantities. The major disadvantage of this topology lies in the fact that the 

current passes through several semiconductor components in its path which results in a reduction in 

efficiency and an increased inverter cost. Table 4 summarizes the differences among between transformer-

based inverters and transformer-less inverters discussed in this paper. 
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Table 4. Differences between transformer based and transformer-less inverters. 
Inverter Advantages Disadvantages 

Line-frequency transformer based 
Easy design, high reliability, safety due to 

galvanic isolation 

Low efficiency, high weight, 

and volume 

inverter High-frequency 

transformer-based inverter  

Easy design, compact, lightweight, high 

efficiency, safety due to galvanic  
Complex, costly technology 

Transformer-less inverter 
isolation complex design, compact, lightweight, 

high efficiency 

Additional safety measures 

required 

 

 

5. CONCLUSION 

 Within this paper, a review of photovoltaic conversion chains architecture has been conducted. Two 

major characteristics have been retained to classify these chains, namely: the galvanic isolation and the 

number of conversion system stages; characteristics usually localized around the DC-AC inverter. For this 

reason, a special focus is granted to the different inverter topologies that can be integrated into photovoltaic 

conversion chains.  

 Apart from the number of stages, photovoltaic inverters are classified into two groups -inverters 

with transformers and inverters without transformers. In the first group, the transformer is of high frequency 

(HF) type and it is located at the DC side, thus making it possible to increase the voltage of the photovoltaic 

module. A low frequency type transformer is placed at the output side of the inverter to amplify the output 

voltage to the local standard voltage values of 110 V or 220 V. In both cases, inverters with HF or LF 

transformers have been reported to have additional losses of at least 2%. Moreover, transformers are bulky 

and big in size, especially the LF ones penalizing the compactness of the conversion chain. 

 The second group includes the inverter topologies without transformer. Indeed, these topologies 

offer advantages in terms of size, mass and efficiency. However, they suffer from certain shortcomings 

related to the absence of galvanic isolation. These disadvantages are essentially the existence of a resonance 

circuit made up of the filter, the photovoltaic module(s) and the parasitic capacitances that appear between 

the photovoltaic module and the ground. This resonance circuit generates a leakage current that can 

sometimes exceed certain standards set by international institutions. 

 As a result, various transformerless inverter topologies with acceptable leakage current level have 

been developed and presented in the literature. The most famous ones have been presented within this paper. 

Although these topologies present an acceptable level of performance, some improvements are required. 

Nonetheless, the transition from centralized structures to other distributed architecture has paved the way to 

develop new structures where the DC-DC power converter includes multi-string structures or DC optimizers 

used significantly in residential photovoltaic installations. 
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