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 Interior permanent magnet motors (IPMMs) have been increasing in 

popularity, since the emergence of permanent magnet material with high 

energy products, i.e., rare earth permanent magnet material. This paper 

analyses the performances of IPMMs having different rotor iron pole shapes 

including eccentric, sinusoidal and sinusoidal with 3th order harmonic 

injected rotor pole arc shapes IPMMs. Cogging torque, static torque, torque 

ripple, torque-speed and power-speed curves of the mentioned motors have 

been compared. It must be noted that the mentioned motors have been 

designed with the same stator, PM shape and the same dimensions, in order 

to highlight the effect of the rotor pole arc shape on the performance of the 

such motors. Two-dimensional (2D) finite element analysis (FEA) has been 

utilized to design and analyze the mentioned machines. It has been found that 

rotor iron pole shape of the IPM has notably influence on the machine 

performance, practically on output electromagnetic torque and its ripple. The 

highest value of average electromagnetic torque as well as torque capability 

in the constant torque reign is delivered by 3th order harmonic injected rotor 

pole arc shapes machine, while the lowest torque ripple is obtained by the 

sinusoidal rotor pole arc machine. 
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1. INTRODUCTION  

Interior permanent magnet motors (IPMMs) have been considered as prospective candidates for many 

applications, because of the evident advantages of such machines [1]-[6]. As IPMMs are manufacturing with 

buried PM in the rotor iron, the reliability of the machines would be boosted by enhancing the mechanical 

strength and increasing the demagnetization withdraw capability. Besides, such structure results in higher 

electromagnetic torque compared to other PM machines configurations, due to the present of the reluctance 

torque [7]-[13]. Enhancing average torque capability of the IPMMs have been of interesting in many literatures. 

Some researches focus on the position as well as the configuration of the magnet, as such parameters have a 

critical role on the performances of the IPMMs [14]. It is worth mentioning that IPMMS have been introduced 

with four different PM configurations, i.e., I-type, spoke-type, V-type and U-type. Literatures reveled that each 

configuration has advantages and disadvantages compared to the other [15], [16]. While the V-type machine 

delivered the highest torque capability, rotor iron saturation is the main problem in such structure. On the other 

hand, the spoke-type machine is characterized by the advantage of flux focusing, whereas flux leakage is the 

main demerit. Moreover, the I-type machine shows the lowest torque capability, however it has the best magnet 
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utilization among the other configurations. Furtnermore, Yoon and Baek [17] have introduced IPM with flared 

PM shape. It was deliverd higher effecinecy and lower noise have been obtained by the introduced 

configuration compared to the conventional spoke configuration. Another area of improving the IPMMs torque 

capability is considering the winding configuration of such machines. Tangudu and Jahns [18] compared IPM 

machines with fractional slot (FS) concentrated windings and integral slot (IS) distributed windings. It was 

stated that both configurations deliver comparable torque, however the fractional-slot concentrated windings 

offer the merits of less copper usage and low copper losses, while the integral-slot distributed windings possess 

the advantage of higher reluctance torque, lower magnet usage as well as less rotor losses at high speed. 

Moreover, Abdel-Khalik et al. [19] introduced an IPMM with dual three-phase four-layer fractional-slot 

concentrated windings. Although the machine offers the same torque capability when it is compared to the 

conventional machine, it possesses lower iron and magnet losses, which help to improve the efficiency of the 

machine. Furthermore, rotor iron pole shape of the IPMMs is another aspect to be considered to improve the 

torque capability of such machines.  

Recently, Wang et al. [20] discussed rotor iron pole shape technique to enhance the torque of the 

IPMM. Three different rotor pole shapes including conventional, sinusoidal and sinusoidal+3th order harmonic 

injected were designed and compared. It was revealed that the sinusoidal+3th order harmonic injected topology 

showed the highest average torque among the investigated topologies. It must be mentioned that torque ripple 

has not been of interested in the mentioned study, i.e., the authors focused on the torque capability enhancement 

only. Generally, torque fluctuating, which is mainly contributed by cogging-torque could be seen as an essential 

demerit of the PM machines [21]. It has been shown that reduction of such inherit feature of the PM machines 

would result in reducing of their average torques. Hence, unlike the above-mentioned literatures, the current 

study focuses on evolution the performances of IPMMs having different rotor iron pole shapes considering the 

cogging torque and consequently the torque ripple. The performances including: cogging torque, average 

electromagnetic torque, torque ripple, torque-speed and power-speed curves. In order to carry out a logical 

comparison, three IPMMs, i.e., eccentric, sinusoidal and sinusoidal+3th order harmonic injected rotor pole iron 

shapes are designed and optimized for maximum average torque and minimum torque ripple. It should be noted 

that the design, optimization and the performance analysis of all the understudying motors have been carried out 

using 2-dimentions finite element analysis (2D-FEA) Maxwell Ansoft software. The rests of the paper are 

organized as sjown in: Section 2 introduces the investigated topologies, while machines optimizations are 

discussed in Section 3. Whereas the machines performances are analyzed and compared in section 4, and 

finally, the conclusion is presented in section 5.  

 

 

2. MACHINES CONFIGURATIONS 

Figure 1 depicts stator and rotor configurations of the understudying machines, and Table 1 

illustrates the dimensions of the machines. Apparently, the machines have the same stator, PM configuration 

and winding layout. The only different is the rotor iron pole structure. Machine 1 has eccentric rotor iron 

pole, machine 2 has sinusoidal rotor iron pole, while machine 3 represents sinusoidal with 3th order harmonic 

injected rotor iron pole. The machines are designed with fractional-slot concentrated winding, which offers 

the advantage of less copper usage leading to efficiency enhancement [22]. The stator has 12 slots, while the 

rotor has 4-pole pairs. To obtain sinusoidal flux density in the air-gap, the length of the air-gap is determined 

by (1) [ 32 ]. 

 

𝑙𝑔 =
𝑙𝑔𝑚𝑖𝑛

𝑐𝑜𝑠(𝑝𝜃)
 (1) 

 

where 𝑙𝑔 indicts air-gap length, 𝑙𝑔𝑚𝑖𝑛  is the minimum air-gap length, 𝑝 is an integer (the pole pair number), 

and 𝜃 represents the pole arc angle.  

On the other hand, the general equation to determine the air-gap length of the sinusoidal+3th 

harmonic shape rotor is expressed by [ 42 ]. 

 

𝑙𝑔 =
𝑘(𝑎)𝑙𝑔𝑚𝑖𝑛

𝑐𝑜𝑠(𝑝𝜃)+𝑎𝑐𝑜𝑠(3𝑝𝜃)
 (2) 

 

where 𝑘(𝑎) is a variable, which varies with the amplitude of the injected 3th harmonic, while 𝑎 represents the 

amplitude of the injected 3th harmonic. Unlike the sinusoidal rotor shape machine in which minimum length 

of the air-gap is located on the d-axis, the location of the minimum air gap length of the sinusoidal+3th 

harmonic rotor shape machine varies with the amplitude of the injected 3th harmonic. Since both d- and q-

axis lengths of the air gap are varied with the amplitude of the injected 3th harmonic, optimal amplitude of 
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such feature exists for maximum air gap flux density, and consequently the highest torque density. According 

to [20] it has been found that the optimal value of the 3th harmonic was 1/6. Thereby, the amplitude of the 

injected 3th harmonic for machine 3 is 1/6.  

 

 

 
(a) 

 

   

(b) (c) (d) 
 

Figure 1. Machines structures; (a) stator structure and winding layouts, (b) eccentric (machine 1),  

(c) sinusoidal (machine 2), (d) sinusoidal with 3th order harmonic injected (machine 3) 

 

 

Table 1. Specifications of the machines 
Items Values Unites 

Outer stator diameter 85 mm 

Inner stator diameter 26 mm 

Minimum air gap length 0.6 mm 
Shaft diameter 8 mm 

Z-direction length 38 mm 
Slot open 3 mm 

Number of trues per coil 13  

Magnet Br 1.38 Tesla 

 
 

3. ROTOR OPTIMIZATION 

With the aid of the Maxwell Ansoft software and based on genetic algorithm (GA), global 

optimization of the rotor iron rotor shape has been carried out aiming minimum torque ripple and maximum 

torque for the understudying machines. Unchanging parameters through the optimization process are iron 

bridge dimensions, PM dimensions, minimum air gap length. Otherwise, the changed parameters during the 

optimization are listed in Table 2, while Table 3 shows the optimal values of such parameters. 

 

 

Table 2. Restriction, optimal values of globally optimized parameters 

Items 
Restrictions 

Machine 1 Machine 2 Machine 3 

Current angle (Deg.) 5-25  5-25  5-25  

Pole arc angle (Deg.) - 12-18  12-18  
Eccentric distance (mm) 11-18 - - 

 

 

Table 3. Optimal values of globally optimized parameters 
Items Machine 1 Machine 2 Machine 3 

Current angle (Deg.) 13.2 13.6 14.8 
Pole arc angle (Deg.) - 17.2 16.5 

Eccentric distance (mm) 11.9 - - 

A1

A2

A3

A4
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4. PERFORMANCE ANALYSIS  

4.1. Open circuit and on-load  

The performances of the globally optimized machines will be examined in this section. Magnetic 

flux lines distributions are shown in Figure 2. while, predicated air gap flux density for one mechanical cycle 

at no load for all the machines are compared in Figure 3. Cleary, the peak of this feature is shaping according 

to the rotor iron pole. Machine 3 possesses the highest air gap flux density among the other machines. 

Furthermore, cogging torque waveforms for one electrical cycle are depicted in Figure 4. Obviously, machine 

3 shows the highest cogging torque followed by machine1, while machine 2 delivers the lowest cogging 

torque. Cogging torque may be considered as the main inheriting problem of the PM machine. Such demerit 

feature caused by the interaction between the stator teeth and rotor permanent magnet. It is leading to torque 

ripple, noise and vibration. Additionally, the electromagnetic torques of the understudying machines for one 

electrical cycle and the torque ripple are displayed in Figures 5 and 6, respectively. Notably, the highest 

torque capability is delivered by machine 3 followed by machine 2, while machine 1 has the lowest torque. 

Additionally, machine 3 shows the lowest torque ripple among the other machines, while the highest value is 

for machine 3. 

 

4.2. Torque-speed curve 

Generally, output electromagnetic torque of IPM machine can be described by (3), 

 

𝑇 =
3

2
𝑁𝑅[𝜓𝑑𝐼𝑞 − 𝜓𝑞𝐼𝑑] =

3

2
𝑁𝑅[𝜓𝑚𝐼𝑞 + (𝐿𝑑 − 𝐿𝑞)𝐼𝑑𝐼𝑞] (3) 

 

where 𝑁𝑅, 𝜓𝑚, 𝜓𝑑, 𝜓𝑞 ,𝐿𝑑,𝐿𝑞,𝐼𝑑 , 𝑎𝑛𝑑𝐼𝑞  represent rotor pole pair number, PM flux-linkage, dq-axis flux-

linkage, inductances and current, respectively, the output torque consist of electromagnetic(𝜓𝑚𝐼𝑞) and 

reluctance torque ((𝐿𝑑 − 𝐿𝑞)𝐼𝑑𝐼𝑞) this results from the difference between d-axis and q-axis inductances. 

Torque-speed characteristics of the understudying machines are obtained by utilizing the method that was 

explained in [25] in which both d- and q-axis inductances are calculated for different values of 𝐼𝑑 , 𝑎𝑛𝑑𝐼𝑞 

currents. Putting the predicted values of inductances and the PM flux in (3), the torque-speed curve will be 

obtained. The torque-speed performances of the mentioned machines are illustrated in Figure 7. Although 

machine 3 shows the highest torque capability in the constant torque section, it has the lowest weakening flux 

capability compared to other machines. This is because such machine possesses the highest airgap flux 

density and consequently the highest PM flux-linkage.  

 

 

 
(a) 

 

  
(b) (c) 

 

Figure 2. Field distribution at no load condition; (a) machine 1, (b) machine 2, (c) machine 3 
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(a) (b) 

 

 
(c) 

 

Figure 3. Air gap flux density comparison; (a) variation of the air gap flux density with rotor position,  

(b) zoom in on the air gap flux density peaks, (c) FFT 

 

 

 
 

Figure 4. Cogging torque comparison 

 
 

Figure 5. Electromagnetic torque comparison 

 

 

 

 
 

Figure 6. Torque ripple comparsion 

 

 
 

Figure 7. Torque-speed curve comparison 
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5. CONCLUSION  

The impact of rotor iron pole profile on the performance of the torque of IPM machine has been 

explored. In order to highlight the effect of such feature, three IPM machines having the same stator strucutres 

and the same specififcations with different rotor iron pole shape, i.e., eccentric rotor iron pole, sinusoidal rotor 

iron pole and sinusoidal with 3th order harmonic injected rotor iron pole shapes have been designed. The rotor 

iron poles of the machines are globally optimized to obtain maximum average output electromagnetic touque 

and minimum torque ripple. 2D-FEA is used to design and analysie the understudying machines. Cogging 

torque, electromagnetic torque, torque ripple and torque, power-speed curves of the mentioned machines have 

been investigated and comapred. It is shown that the IPM machine, which has sinusoidal with thrid order 

harmonic injected rotor iron shape delivers the highest average torque and the highest torque at constant torque 

region. Incontast, it has the lowest flux weakening capability compared to other machines. Moreover, the 

sinusoidal rotor pole iron shape machine exhibts the lowest cogging torque and consequently the lowest torque 

ripple. While, the eccentric rotor iron pole shape machine has the highest power on power constant region. 
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