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 This paper deals with the modeling and control of an advanced static var 

compensator (ASVC) using a five-level neutral point-clamped (NPC) voltage 

source inverter (VSI). The nonlinear state space model of the five-level 

ASVC is obtained from the d-q axis frame. The effectiveness of this 

compensator highly depends on the choice of the control strategy. The 

proposed state feedback control (SFC) technique is applied to adjust the 

ASVC Var flow with the AC transmission network and achieve DC voltage 

capacitor balance. The dynamic performance of the ASVC based SFC 

controller is evaluated under several operating conditions. The simulation 

results demonstrate that the proposed SFC control strategy is highly robust 

compared to the conventional Proportional-Integral (PI) control. 
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1. INTRODUCTION 

The static compensators (STATCOM)s are important reactive compensation devices that have been 

used in power systems to maintain bus voltage at a constant level, improve the transient stability, damp the 

systems and suppress voltage flicker [1]-[4]. 

The introduction of modern semiconductor devices in the design of power electronic converters has 

resulted in a solid-state Var source with a simpler structure, namely the ASVC [5]-[7]. An ASVC is a fully 

controlled switch based converter, which is an upgrade version of The Static Var Compensators (SVCs), a 

thyristor-based converter. Like an SVC, the ASVC provides a controllable parallel compensation. The 

reactive power generation or absorption by an ASVC is the same as that of an SVC. The ASVC has 

advantages over a conventional SVC [8]-[11]. 

The ASVC use a Pulse Width Modulation (PWM) controlled DC-AC VSI with a capacitor as a DC 

power storage device. Recently, the multilevel PWM converter topology has drawn tremendous interest in 

the power industry since it can easily provide the high power required for high power applications for such 

uses as static VAR compensation, active power filters, and the control of large motors by high power 

adjustable frequency drives. The most popular structure proposed as a transformerless voltage source inverter 

is the diode clamped converter based on the neutral point clamped (NPC) converter proposed by Nabae [12], 

[13]. It has the advantages that the blocking voltage of each switching device is one half of DC-link voltage, 

and the harmonics contents output voltages are lower than those of a two-level inverter for the same 

switching frequency. The NPC inverter has the drawback of the unbalance DC capacitors voltage when used 
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as a static var compensator. Different methods were proposed to solve this issue. Some researchers have 

proposed to insert two inductors in one leg to balance the capacitors voltage [14], [15]. Others have 

introduced a modified switching pattern and improved the optimized PWM technique [16], [17]. 

This paper presents a modeling and analysis of this new type of five-level inverter used for static 

VAR compensation. The control design is based on the conventional proportional-integral (PI) controller and 

the state feedback controller (SFC) controllers to adjust the ASVC Var flow with the AC system. The SFC 

controller also has the ability to balance the total DC capacitors voltage without any extra device or design of 

a complex circuit or optimizing control method. Finally, some simulation results under various transient 

conditions of the proposed ASVC model and its control are given to prove their effectiveness. 

 

 

2. OVERVIEW AND MODELING OF THE ASVC-BASED FIVE-LEVEL INVERTER 

The ASVC circuit consists of twenty four-pulse VSI with four DC capacitors and a PWM 

modulator. The ASVC is connected to the transmission line is via a coupling transformer where Rs and Ls 

are the coupling transformer active losses and leakage respectively, as shown in Figure 1 [18]-[22]. 

 

 

 
 

Figure 1. Power circuit of the ASVC-based five-level NPC-VSI inverter 

 

 

where,  

Is,abc , IL,abc : Supply and load currents. Ic,abc : ASVC currents. 

Vs,abc : Supply voltages. Vo,abc : Inverter output voltage. 

Vdc,i : Capacitor voltages at different levels. Vdc : Total DC side voltage of the Inverter. 

Idc,i : DC side current. Cs : DC side capacitor. 

 

2.1.  PWM control strategy of the five-level NPC-VSI inverter 

In this work, the PWM control strategy for a five-level inverter uses a single reference and four 

carriers signals as depicted in Figure 2(a) where a sinusoidal reference signal is continuously compared to 

four (N-1 in general) triangle waveforms where N is the number of level of the inverter. One of advantages of 

this technique is that the significant harmonics are concentrated at the carrier frequency [23]-[26]. 

The frequency modulation index and the amplitude modulation index are given by (1) 

 

{
𝑚𝑓 =

𝑓𝑐

𝑓𝑠

𝑚𝑎 =
2 𝐴𝑠

𝐴𝑐 (𝑁−1)

 (1) 

 

where 

fc : Frequency of carries. Ac : Peak-to-peak amplitude of carries.  
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fs : Frequency of reference. As : Peak amplitude of reference. 

The mathematical model of the converter is developed using switch connection function Fki , 

(k=a,b,c) : names of arms and (i=0,1,2,3,4) : number of the function. The switching function, is either 1 or 0 

corresponding to on and off states of switch Ski , (k=a,b,c) : names of arms and (i=1,2,3,4,5,6,7,8) : number 

of the switches of one arm. Table 1 lists the switch connection function of one leg and output voltage. 

 

 

Table 1. A possible switch combination of one phase leg for the NPC-based five-level inverter 
Fki Sa1 Sa2 Sa3 Sa4 Sa5 Sa6 Sa7 Sa8 Voa 

Fa1 1 1 1 1 0 0 0 0 Vdc/2 

Fa2 0 1 1 1 1 0 0 0 Vdc/4 

Fa0 0 0 1 1 1 1 0 0 0 

Fa3 0 0 0 1 1 1 1 0 -Vdc/4 

Fa4 0 0 0 0 1 1 1 1 -Vdc/2 

 

 

Using the upper arm of the phase-leg ‘a’ as an example shown by Figure 2(b). Note that the switch 

states Sa1, Sa2, Sa3 and Sa4 are complementary to Sa5, Sa6, Sa7 and Sa8 respectively [27], [28].  

 

 

 
(a) 

 

 
(b) 

 

Figure 2. (a) Five-level PWM control (mf=12 and ma=0.8), (b) States of switch 

 

 

2.2.  Mathematical model of the ASVC system 

The simplified three-phase equivalent circuit of the ASVC connected to a transmission line is shown 

in Figure 3. The ASVC supplies reactive power to the AC transmission system if the magnitude of the output 

inverter voltage is greater than the AC terminal voltage and absorb reactive power from the AC transmission 

system if the magnitude of the AC terminal voltage is greater than the output inverter voltage. The Var 

exchange is zero when the two voltages are equal [29], [30]. 
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(a) 

 

 
(b) 

 

Figure 3. ASVC closed-loop control system, (a) With SFC controller, (b) With PI controller 

 

 

a : Three-phase source voltage, b : Coupling transformer. 

c : PWM voltage source inverter, d : DC side capacitors. 

It is assumed that the AC side is a balanced sinusoidal three-phase voltage supply. Using matrix 

form, the mathematical model of the ASVC system is given by (2): 

 

 
𝑑

𝑑𝑡
[
𝑖𝑐𝑎
𝑖𝑐𝑏
𝑖𝑐𝑐

] =

[
 
 
 
 −

𝑅𝑠

𝐿𝑠
0 0

0 −
𝑅𝑠

𝐿𝑠
0

0 0 −
𝑅𝑠

𝐿𝑠]
 
 
 
 

[
𝑖𝑐𝑎
𝑖𝑐𝑏
𝑖𝑐𝑐

] +
1

𝐿𝑠
[

𝑉𝑠𝑎 − 𝑉𝑜𝑎
𝑉𝑠𝑏 − 𝑉𝑜𝑏
𝑉𝑠𝑐 − 𝑉𝑜𝑐

] (2) 

 

The output inverter voltages relative to the point n and the DC side currents of the inverter using the 

connection functions are given in (3)-(7):  

 

[

𝑉𝑜𝑎
𝑉𝑜𝑏
𝑉𝑜𝑐

] =
1

3
[
2 −1 −1
−1 2 −1
−1 −1 2

] (𝐹𝐴. 𝑉𝑑𝑐1 + 𝐹𝐵. 𝑉𝑑𝑐2−𝐹𝐶 . 𝑉𝑑𝑐3 − 𝐹𝐷. 𝑉𝑑𝑐4) (3) 

 

[

𝐼𝑑𝑐1
𝐼𝑑𝑐2
𝐼𝑑𝑐3
𝐼𝑑𝑐4

] = [

𝐹𝑎1 𝐹𝑏1 𝐹𝑐1
𝐹𝑎2 𝐹𝑏2 𝐹𝑐2
𝐹𝑎3
𝐹𝑎4

𝐹𝑏3
𝐹𝑏4

𝐹𝑐3
𝐹𝑐4

] [
𝑖𝑐𝑎
𝑖𝑐𝑏
𝑖𝑐𝑐

] (4) 

 

𝐼𝑑𝑐𝑜 = 𝐼𝑑𝑐1 + 𝐼𝑑𝑐2 − 𝐼𝑑𝑐3 − 𝐼𝑑𝑐4 (5) 

 

with:  
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{
 
 

 
 𝐹𝐴 = [𝐹𝑎1 𝐹𝑏1 𝐹𝑐1]

𝑇

𝐹𝐵 = [𝐹𝑎2 𝐹𝑏2 𝐹𝑐2]
𝑇

𝐹𝐶 = [𝐹𝑎3 𝐹𝑏3 𝐹𝑐3]
𝑇

𝐹𝐷 = [𝐹𝑎4 𝐹𝑏4 𝐹𝑐4]
𝑇

 (6) 

 

{
 

 
𝑉𝑑𝑐1 = 𝑉𝑑𝑐 2⁄

𝑉𝑑𝑐2 = 𝑉𝑑𝑐 4⁄

𝑉𝑑𝑐3 = −𝑉𝑑𝑐 4⁄

𝑉𝑑𝑐4 = −𝑉𝑑𝑐 2⁄

 (7) 

 

The model of the DC side capacitors voltages is given by (8): 

 

 
𝑑

𝑑𝑡
[

𝑉𝑑𝑐1
𝑉𝑑𝑐2
𝑉𝑑𝑐3
𝑉𝑑𝑐4

] =
1

𝐶𝑠
[

𝐼𝑑𝑐1
𝐼𝑑𝑐2
𝐼𝑑𝑐3
𝐼𝑑𝑐4

] (8) 

 

Therefore, by using the d-q frame transform, the nonlinear state-space model of the ASVC based on 

the five-level inverter combined the DC circuit equation can be expressed by (9):  

 

 
𝑑

𝑑𝑡
[

𝑖𝑞
𝑖𝑑
𝑉𝑑𝑐

] =

[
 
 
 
 −

𝑅𝑠

𝐿𝑠
−𝜔 0

−𝜔 −
𝑅𝑠

𝐿𝑠
−
𝑚

𝐿𝑠

0 −
𝑚

4𝐶𝑠
0 ]
 
 
 
 

[

𝑖𝑞
𝑖𝑑
𝑉𝑑𝑐

] +
𝑉𝑠

𝐿𝑠
[
sin 𝛼
cos 𝛼
0

] (9) 

 

where m is the ratio relating the AC to the DC voltage.  

The modulation index relates the maximum phase voltage Vo,Peak to the total DC side voltage Vdc is 

given by (10): 

 

𝑀𝐼 = √
2

3
 𝑚 =

𝑉𝑜,𝑃𝑒𝑎𝑘

𝑉𝑑𝑐
 (10) 

 

The obtained state equation is non-linear, with respect to the control variable  which is related to 

the phase difference between the source voltage and inverter output voltage. In the range of small values of  

(||< 5°), the small-signal equivalent state equations and the reactive power delivered by the ASVC-based 

five-level inverter system in the d-q frame is expressed as (11) and (12) [18]: 

 

𝑑

𝑑𝑡
[

∆𝑖𝑞
∆𝑖𝑑
∆𝑉𝑑𝑐

] =

[
 
 
 
 −

𝑅𝑠

𝐿𝑠
−𝜔 0

−𝜔 −
𝑅𝑠

𝐿𝑠
−
𝑚

𝐿𝑠

0 −
𝑚

4𝐶𝑠
0 ]
 
 
 
 

[

∆𝑖𝑞
∆𝑖𝑑
∆𝑉𝑑𝑐

] +
𝑉𝑠

𝐿𝑠
[
−1
0
0
] ∆𝛼 (11) 

 

∆𝑄𝑐 = [−𝑉𝑠 0 0][∆𝑖𝑞 ∆𝑖𝑑 ∆𝑉𝑑𝑐]𝑇 (12) 

 

from (11) and (12), the transfer function of the ASVC-based five-level inverter system is given by: 

 

𝐺𝑝(𝑠) =
∆𝑄𝑐(𝑠)

∆𝛼(𝑠)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 =

𝑁(𝑠)

𝐷(𝑠)
 (13) 

 

with  

 

𝑁(𝑠) = 𝑉𝑠
2 (

𝑠2

𝐿𝑠
+

𝑅𝑠

𝐿𝑠
𝑠 +

𝑚2

4 𝐿𝑠
2 𝐶𝑠

𝑠) (14) 

 

𝐷(𝑠) = 𝑠3 + 2
𝑅𝑠

𝐿𝑠
𝑠2 + (𝜔2 +

𝑅𝑠
2

𝐿𝑠
2 +

𝑚2

4 𝐿𝑠 𝐶𝑠
) 𝑠 +

𝑚2𝑅𝑠

4 𝐿𝑠
2 𝐶𝑠

 (15) 

3. CONTROL SCHEME OF THE ASVC SYSTEM 
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3.1.  PI controller design 

Figure 4 shows the block diagram of the ASVC-based five-level inverter system controlled by PI 

controller. The transfer function of the controller is expressed as (16): 

 

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
 (16) 

 

The PI parameters are calculated using root locus design for a damping factor 0.7. 

 

 

 
 

Figure 4. Block diagram of the ASVC system with PI control 

 

 

3.2.  The State feedback controller 

The overall closed loop control of the ASVC-based five-level inverter with SFC control technique is 

shown in Figure 3(a) and the cascade control system of the state-feedback configuration is given in Figure 5 

[31], [32]. The controlled variable Qc is compared with the set-point value Qref and the control error is fed 

back to an integrator. The former feed forward gain k1 is now the gain of the integrator. This configuration 

shows that the gain K in the internal closed-loop is a feedback parameter. 

The basic principle of the designed system is to insert an integrator in the feed forward path between 

the error comparator and the process [31]. 

 

 

 
 

Figure 5. Block diagram of the ASVC system with SFC control 

 

 

From the block diagram of Figure 5 we get: 

 

{
𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑄𝑐 = 𝐶𝑥

 (17) 

 

𝑢 = −𝐾𝑥 + 𝑘1𝑥𝑒 (18) 

 

𝑥𝑒̇ = 𝑄𝑟𝑒𝑓−𝑄𝑐 = 𝑄𝑟𝑒𝑓 − 𝐶𝑥 (19) 

 

We assume that the state equation given by (17) is completely state controllable. The augmented dynamic 

system can be described by an equation that is combination of (17) and (19). 

 

[
𝑥̇(𝑡)
𝑥̇𝑒(𝑡)

] = [
𝐴 0
−𝐶 0

] [
𝑥(𝑡)
𝑥𝑒(𝑡)

] + [
𝐵
0
] 𝑢(𝑡) + [

0
1
]𝑄𝑟𝑒𝑓(𝑡) (20) 
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𝑄𝑐 = [𝐶 0] [
𝑥(𝑡)
𝑥𝑒(𝑡)

] (21) 

 

𝑢 = [−𝐾 𝑘1] [
𝑥(𝑡)
𝑥𝑒(𝑡)

] (22) 

 

where:  

 

𝐴̂ = [
𝐴 0
−𝐶 0

] ; 𝐵̂ = [
𝐵
0
] ; 𝐶̂ = [𝐶 0] (23) 

 

We shall design an asymptotically stable system such that x(∞), xe(∞), and u(∞) approach constant 

values, respectively. Then, at steady state 0)( =ex , we get Qc(∞)=Qref . 

The aim of the proposed SFC controller is to regulate the total DC side voltage Vdc which is the sum 

of the four capacitors voltages on the DC side of the inverter, the AC-current components Idq and the reactive 

power response Qc. 

The state space representation of the ASVC based upon five-level inverter controlled by SFC-

controller can be described by an equation that is combination of (11) and (12). 

 

 
𝑑

𝑑𝑡
[

∆𝑖𝑞
∆𝑖𝑑
∆𝑉𝑑𝑐
∆𝑥𝑒

] =

[
 
 
 
 
 −

𝑅𝑠

𝐿𝑠
 − 𝜔 0 0 

–𝜔 −
𝑅𝑠

𝐿𝑠
 −

𝑚

𝐿𝑠
 0

 0 −
𝑚

4𝐶𝑠
 0 0

 𝑉𝑠 0 0 0 ]
 
 
 
 
 

[

∆𝑖𝑞
∆𝑖𝑑
∆𝑉𝑑𝑐
∆𝑥𝑒

] + [

−
𝑉𝑠

𝐿𝑠

0
0
0

]∆𝛼 (24) 

 

∆𝑄𝑐 = [−𝑉𝑠 0 0 0][∆𝑖𝑞 ∆𝑖𝑑 ∆𝑉𝑑𝑐 ∆𝑥𝑒]𝑇 (25) 

 

To achieve a good dynamic response of the closed loop system, the poles are determined by the Ackermann 

algorithm where: 

 

𝑝1 = −500, 𝑝2 = −450, 𝑝3 = −300 + 305.65𝑖, 𝑝4 = −300 − 305.65𝑖   

 

The necessary state feedback gain matrix K̂ are determined using the pole placement technique, where 

 

𝐾̂ = [𝐾 ⋮ 𝑘1] = [−0.0320 − 0.0174 − 0.0023 − 0.0382]  

 

 

4. SIMULATION RESULTS AND DISCUSSION 

A digital simulation is done based on the detailed ASVC system shown by Figure 3. The PI and the 

SFC controllers’ parameters are listed in Appendix.  

The PI and SFC controllers were evaluated under more realistic simulation condition when the 

ASVC was controlled by PWM control circuit. 

Figure 6 displays the simulation run for a step change in the Qref reference from 10 Kvar (inductive) 

to -10 Kvar (capacitive) in order to swing the system from leading to lagging mode at time 0.1 sec and 

standby mode at 0.2 sec. 

From Figure 6, a performance comparison between the two controllers is summarized in Table 2. 

The SFC controller has a rise time and settling time of 12.4 msec and 30 msec respectively, where the PI 

controller has a rise time and settling time of 14.2 msec and 45.65 msec respectively. It can be seen that the 

rise time and the settling time of the SFC controller are 12.7 % and 35.5 % respectively less than those of the 

PI controller. Moreover, the SFC controller does not have any overshoot when the PI controller in transient 

state exhibits 5% of overshoot. 

 

 

Table 2. The performance comparison between conventional PI and SFC controllers 
Parameters PI controller SFC controller 

Rise Time (msec) 14.20 12.40 

Settling Time (msec) 45.65 30.00 

Overshoot (%) 5 0 
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Figure 7 shows a phase current waveforms dynamic behavior. It is observed that the current injected 

into the transmission line controlled by the SFC controller is faster that the one controlled by PI. Figure 8 (a) 

and (b) show the source phase voltage and the inverter current waveforms respectively with PI and SFC 

controllers. At first, the ASVC is generating 10 kVar inductive reactive power and at 0.1 sec is fastly 

absorbing also 10 kVar but as a capacitive reactive power. From 0.2 sec the ASVC is in standby mode, it 

provides no reactive power (Qc=0 kVar). Figure 9 and Figure 10 represent transient DC side voltage across 

the four capacitors after a sudden change in reference under PI and SFC controllers respectively, it can be 

noticed that voltage fluctuation of Vdc1,2,3,4 with SFC controller were reduced by 50 % compared to those 

obtained with PI controller. 

Figure 11(a)(b) and Figure 12(a)(b) show the transient response of the total DC side voltage Vdc, and 

Id, Iq AC-current components respectively with PI and SFC controllers. It can be seen that total side voltage 

controlled by the SFC is better that the one controlled by PI. 

The source voltage and inverter output voltage waveforms of the five-level NPC inverter for 

reactive power compensation with PI and SFC controllers are depicted by Figure 13 (a) and (b) respectively. 

 

 

  
 

Figure 6. Reactive power response 

 

Figure 7. a-phase AC current response 

 

 

  
(a) (b) 

 

Figure 8. Source voltage and AC current Waveforms. (a) with PI control, (b) with SFC control 

 

 

 
 

(a) (b) 

 

Figure 9. Capacitor voltage at different levels with PI control, (a) Vdc1 and Vdc4 , (b) Vdc2 and Vdc3 
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(a) (b) 

 

Figure 10. Capacitor voltage at different levels with SFC control, (a) Vdc1 and Vdc4 , (b) Vdc2 and Vdc3 

 

 

 
(a) 

 
(b) 

 

Figure 11. Total DC side voltage Vdc of the Inverter, (a) with PI control, (b) with SFC control 

 

 

 
(a) 

 
(b) 

 

Figure 12. AC current in d-q frame, (a) with PI control, (b) with SFC control 

 

 

  
(a) (b) 

 

Figure 13. Inverter output voltage and source voltage, (a) with PI control, (b) with SFC control 

 

 

 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 12, No. 1, March 2021 :  345 – 355 

354 

5. CONCLUSION 

In this paper, a simulation study of the dynamic performance and robustness of state feedback 

control have been proposed, evaluated and compared to a conventional PI controller applied to an ASVC 

compensator using five-level NPC-VSC inverter. The five-level NPC inverter has been used for its high 

quality waveshaping outputs. 

Simulation results show the effectiveness of the proposed control strategy. The SFC control 

algorithm shows that reactive power compensation is achieved by controlling the exchange of active power 

between DC side of inverter circuit and AC system. It can be concluded that the SFC controller leads to 

improve transient response and hence provide fast reactive power compensation with balancing the total DC 

capacitors voltage. Also the SFC controller is better than the PI controller and can be easily tuned. 

 

 

APPENDIX  

SIMULATION PARAMETERS 

Rs=1Ω, Ls=5×10-3H, Cs=500×10-6F, Vs=220V, m=0.646, ω=100π [rad/sec], Kp=4.156×10-6, Ki=2.4×10-3, 

mf=24, ma= 0.8, Ac=0.5, As= 0.8, fc=1200Hz, fs =50Hz.  
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