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 In this paper, the closed loop speed controller parameters are optimized for 

the permanent magnet synchronous motor (PMSM) drive on the basis of the 

indirect field-oriented control (IFOC) technique. In this derive system under 

study, the speed and current controllers are implemented using the fractional 

order proportional, integral, and derivative (FOPID) controlling technique. 

FOPID is considered as efficient techniques for ripple minimization. The 

hybrid grey wolf optimizer (HGWO) is applied to obtain the optimal 

controllers in case of implementing conventional PID as well as FOPID 

controllers in the derive system. The optimal controller parameters tend to 

enhance the drive response as ripple content in speed and current, either 

during steady state time or transient time. The drive system is modeled and 

tested under various operating condition of load torque and speed. Finally, 

the performance for PID and FOPID are evaluated and compared within 

MATLAB/Simulink environment. The results attain the efficacy of the 

operating performance with the FOPID controller. The result shows a fast 

response and reduction of ripples in the torque and the current. 
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1. INTRODUCTION  

Recently, a wide popularity of the applications of permanent magnet synchronous motor (PMSM) 

has been gained due to many advantages when compared with the other electric motors. These advantages 

are such as the significant increase of the machine efficiency, the power density, and the torque-current ratio 

for a wide speed range. These advantages make the PMSM more suitable for many applications such as 

electric vehicles and hybrid electric vehicles which require motor with light weight and occupying less space. 

Both the direct torque control (DTC) and the indirect field-oriented control (IFOC) are the most efficient 

controller techniques, which are used in the PMSM and voltage source inverter for many industrial 

applications. The IFOC theory depends on decoupling the current-torque component and flux-current 

component. In case of PMSM, it is equivalent to separately excited direct current motor which can be 

controlled easily. The main advantage of IFOC is the maximum torque which can be extracted from PMSM 

by controlling the direct current component to be zero. The IFOC with proportional-integral (PI) controller is 

easy to implement [1], [2]. 

It is commonly desired to ascertain the three-phase voltage source with variable voltage magnitude 

and frequency from direct current (DC) voltage source, in which the SVPWM is used in motor drive systems 

to enhance the required drive performance due to its advantageous as low harmonic content, fixed switching 

https://creativecommons.org/licenses/by-sa/4.0/
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frequency, and 15% increase in utilization of the DC voltage source as compared to pulse width modulation 

(PWM) [3], [4]. 

For wide applications in the industry such as automotive applications, and home appliances control, 

the most popular control methodology in the control systems of industrial processes, the most applicable 

control approach is the proportional-integral-derivative controller. PID is simple configuration and easy 

implementation in the field. One of the disadvantages of PID controllers is the sensitivity to the variations in 

the system parameters and set point variations of speed and load. Therefore, the PID controllers are not 

completely efficient for nonlinear variable speed drive systems as electric vehicles and motor drive system 

[5]. 

Recently, the fractional order PID (FOPID) controllers, which are in the form PI^ʎ D^µ, have 

received widespread attention since there are many physical systems can be accurately modeled and 

represented using partial calculus [6]. The FOPID is distinguished over the conventional PID controller by 

less steady state error, less over-shot, less ripples, less affected by variations in the controlled plant 

parameters and system disturbances [7]. The FOPID controller is used in many applications such as induction 

motor, PMSM and direct current motor drives [8]-[10]. FOPID control system concept introduced by 

Oustaloup and Podlubny with integrator and differentiator of fractional order ʎ and µ, respectively [11]-[13]. 

The presence of additional control parameters (ʎ, µ) in fractional order controller (FOC) improves nonlinear 

system performances. However, the presence of these more control parameters in FOPID controller makes 

the selection of the optimal parameters more difficult. Therefore, the optimization techniques are required to 

obtain the optimal controller parameters. 

The optimization algorithms are classified into rule-based group, numerical group, and analytical 

group. The numerical optimizations include particle swarm optimization (PSO), genetic algorithm (GA), and 

ant colonies (AC) [14]-[18]. These optimization algorithms are called heuristic optimization techniques. The 

ability of heuristic algorithms to search a random and wide region of the solution domain is the main 

advantageous that sets it apart from other methods, which leads to converge to the optimum solution and can 

be used in FOPID controller optimization process [19]. The FOC parameter optimization become an 

interesting point for research to enhance the operating performance of the derives [20]. The optimal FOC 

parameters using GA is introduced in [21], [22]. The results showed that the FOPID controller is superior 

when compared to the conventional one at the same conditions. A recent design and controller parameters 

tuning algorithms are reported in [23], the author shows that there are some difficulties in the conventional 

PID systems which still need to be solve. Control of heat diffusion system using FOC is appeared in [24], 

[25], the results showed that the FOC can handle a case of low temperature dynamic and superior system 

performance. DC rotor control in flight system based on fractional order (FO) system is proposed in [26], the 

controller parameters are tuned online using the stochastic multi-parameters divergence optimization. The 

response of the real non-linear system is comparable to the response of the FO reference model and PID 

controller with parameter optimization. The optimal FOPID controller parameters are obtained by using the 

chaotic atom search optimization for speed control in DC motor. The result shows that the system response in 

case of FOPID controller is better in transient as it performs with smaller settling time, overshoot, and rise 

time [27]. In [28], the FOPID controller and the conventional PID controller gains are optimized using four 

different objective functions. The optimization was processed using PSO algorithm. The results showed that 

PSO-FOPID attained better performance than PSO-PID controller. The optimal parameters of FOPID 

controller and conventional PID controller are obtained by using grey wolf optimizer (GWO). The 

performance shows that the FOPID controller is the best when compared to the performance of traditional 

PID in terms of settling time, rise time and overshoot [29]. The hybrid grey wolf optimizer (HGWO) is 

implemented as a hybrid algorithm from GWO, PSO and GA. HGWO is considered as accurate and fast 

optimization technique which takes the advantages of GWO ability for finding out the search space, 

memorization, experience exchange among particles from PSO, and mutation and crossover in GA [30]. 

In this paper, HGWO is used to obtain optimum parameters (k_p,k_i,k_d,ʎ and µ) for FOPID 

controller and (k_p,k_i,k_d ) for conventional PID controller in PMSM drive based IFOC technique and 

SVPWM inverter. The PMSM, IFOC, and FOPID equations are derived, then the drive system is 

implemented using MATLAB-SIMULINK for PID and FOPID. HGWO is used to generate the optimal 

controller parameters which minimize the speed error and reduce the ripples in torque and current. The 

optimization process is applied for both PID and FOPID under the same objective function and variables 

limit value. The system performance is tested with PID controller and FOPID controller under various 

operating conditions of setpoint speed and load torque. 

 

 

2. MODEL OF PMSM AND FIELD-ORIENTED CONTROL SYSTEM 
The surface mounted PMSM can be modeled in the rotating d-q reference frame as [31], [32]: 
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𝑢𝑑 = 𝑅𝑠. 𝑖𝑑 +
𝑑𝜓𝑑

𝑑𝑡
− 𝑤𝑟𝜓𝑞 (1) 

 

𝑢𝑞 = 𝑅𝑠. 𝑖𝑞 +
𝑑𝜓𝑞

𝑑𝑡
+ 𝑤𝑟𝜓𝑑 (2) 

 

𝜓𝑑 = 𝐿𝑑 . 𝑖𝑑 + 𝜓𝑚 (3) 

 

𝜓𝑞 = 𝐿𝑞 . 𝑖𝑞 (4) 

 

𝑇𝑒 =
3

2
𝑃 (𝜓𝑑. 𝑖𝑞 − 𝜓𝑞 . 𝑖𝑑) (5) 

 

𝑇𝑒 =
3

2
𝑃(𝜓𝑚. 𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑞. 𝑖𝑑) (6) 

 

in the surface mounted PMSM 𝐿𝑑=𝐿𝑞,therefore: 

 

𝑇𝑒 =
3

2
𝑃𝜓𝑚𝑖𝑞 (7) 

 

𝑇𝑒 = 𝑇𝐿 + 𝐽𝑚
𝑑𝑤𝑟

𝑑𝑡
+ 𝐵𝑚𝑤𝑟 (8) 

 

where 𝑢𝑑, 𝑢𝑞, 𝑖𝑑 and 𝑖𝑞 are the voltage and the current of stator in the d-q frame, respectively. 𝑅𝑠 , 𝜓𝑠, 𝜓𝑑, 

and 𝜓𝑞 are the stator resistance, stator flux, and flux in d-q frame, respectively. 𝐿𝑑 and 𝐿𝑞are the d-q 

inductance, respectively. 𝑤𝑟 is the motor speed. 𝜓𝑚 is the permanent magnet flux, 𝑇𝑒 is the electromagnetic 

torque, P is the pole pairs, is the stator flux, 𝑇𝐿 is the load torque, 𝐽𝑚 is the inertia of motor, and load and 𝐵𝑚 

is the coefficient of friction. 

The IFOC theory is based on regulating the stator current represented by the quadratic current iq and 

direct axis current id in the rotating reference frame. The electromagnetic torque is represented as a function 

in the current component, id and iq as included in (6). In the surface mounted PMSM, Ld equals to Lq, the 

electromagnetic torque equation can be reduced to (7) and the torque can be directly controlled by regulating 

the iq current component [33], [34]. 

 

 

 
 

Figure 1. FOC of PMSM   

 

 

The IFOC system shown in Figure 1, consists of two current controllers and one speed controller. 

The speed controller is designed concerning the torque (7) and (8), while the (1) and (2) represent current 

controllers in the d-q reference frame. Phases A and B of PMSM current are measured then accordingly 

phase C current is calculated. The Clarke and Parke transformations are used to transform the current 𝐼𝐴, 𝐼𝐵, 

and 𝐼𝐶 to current component 𝑖𝑑 and 𝑖𝑞 which represent the feedback to the current controllers. The speed 

controller input is considered the speed error (∆𝑤𝑟) which represents the difference between the setpoint 

(𝑤𝑟
∗) and measured mechanical (𝑤𝑟) speeds. The reference current 𝑖𝑞

∗  is created based on the regulated speed 

error using the speed controller. The current error signal ∆𝑖𝑞 is the difference between 𝑖𝑞
∗  and 𝑖𝑞, while ∆𝑖𝑑 is 

the difference between 𝑖𝑑
∗  and 𝑖𝑑. The error signals ∆𝑖𝑞 and ∆𝑖𝑑 are represent the input for the current 

controllers. These current error signals are regulated by the current controllers to produce the output voltage 
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components 𝑢𝑞 and 𝑢𝑑. The signals 𝑢𝑞, 𝑢𝑑, and the rotor position θ𝑟 are used to generate the SVPWM 

signals. The voltage vector is created using the SVPWM toward diminishing the speed error. 

As the controller parameters selection is key performance of the drive system, HGWO is used to 

generate the optimum controller parameters that attain the minimum error. The GWO inputs are 

𝑟𝑚𝑠(∆𝑤𝑟), 𝑟𝑚𝑠(∆𝑖𝑑), 𝑟𝑚𝑠(∆𝑖𝑞), 𝑎𝑛𝑑 max(𝑖𝑞) and the outputs are the optimal parameters of the speed and 

current controllers.  

 

 

3. CONCEPT OF FRACTIONAL ORDER CALCULUS 

The FO calculus is the general form of differentiation and integration with fractional differential-

integral order operator 𝐷𝑡
𝛼

𝑎
 

 
which can be defined as. 

 

𝐷𝑡
𝛼

𝑎
 

 
= {

𝑑𝛼

𝑑𝑡α
 ,          𝑅(α) > 0

    1                  ℜ(α) = 0

∫ 𝑑(𝜏)−𝛼𝑡

𝑎
, 𝑅(α) < 0

 (9) 

 

Where a, and t are real values that determines the fractional operator domain, the fractional order α 

is a non-integer real or complex number.  

The most famous definitions of differential-integral order controller are Grunwald–Letnikov and 

Riemann–Liouville definition [35], [36]. The definition of Grunwald–Letnikov can be written as [37]. 

 

𝐷𝑡
𝛼

𝑎
 𝑓(𝑡) = lim

ℎ→0
ℎ−𝛼 ∑ (−1)𝑛

⟦
𝑡−𝑎

ℎ
⟧

𝑛=0
(  𝑛

𝛼 )  𝑓(𝑡 − 𝑛ℎ) (10) 

 

where (  𝑛
𝛼 ) is defined as. 

 

(  𝑛
𝛼 ) =  

Г(𝛼+1)

Г(𝑛+1)Г(𝛼−𝑛+1)
 (11) 

 

The form of Riemann–Liouville definition is. 

 

𝐷𝑡
𝛼

𝑎
 𝑓(𝑡) =

1

Г(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛 ∫
𝑓(𝜏)

(𝑡−𝜏)𝛼−𝑛+1

𝑡

𝑎
 𝑑𝜏 (12) 

 

where h is the time interval, Г(.) is Gamma function [38]  

 

 

4. FRACTIONAL PID CONTROLLER 

FOC (𝑃𝐼ʎ𝐷µ) is a general representation of the traditional PID controller, its differentiation order ʎ 

and integration order µ are real values which make the controlled system more robust [39], [40]. The FOPID 

transfer function is defined by (13). 

 

𝐺(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 + 𝑘𝑖𝑠

−ʎ + 𝑘𝑑𝑠µ (13) 

 

where 𝑘𝑝, 𝑘𝑑, 𝑘𝑖, and are proportional, differential, and integral coefficienta, respectively. ʎ and µ are the 

integration and differentiation degrees. 

Figure 2 introduces the general representation of the FOPID controller. The integral and derivative 

orders (ʎ and µ) are located on the x and y-axis, respectively. The transfer function represents a FOPID 

controller where the values of ʎ and µ are extended from integer values on the axis to a fractional value on 

the x-y plane as shown in Figure 3. The traditional PID controller is used as a specific case of a FOPID when 

the value of ʎ and the value of µ equal to one. The transfer function represents the PI controller if ʎ equals 

one and µ equals zero. The model represents a traditional PD controller when ʎ equals zero and µ equals one. 

Finally, if the value of ʎ and µ becomes zero the transfer function represents proportional (P) controller [41]. 
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Figure 2. The general model of the FOPID controller 

 

Figure 3. Fractional order PID controller 

 

 

5. OBJECTIVE FUNCTION FORMULATION  

The drive system quality depends on the value of controller parameters. Best adaptations of the 

controller parameters are the key to optimize the drive performance. The optimal parameters selection is 

attained using the optimization algorithms that ascertain the selected objective function at minimum values. 

The objective function in the current research is the root mean square error in the speed deviation 

(𝑟𝑚𝑠(∆𝜔)) from reference speed as in (14) considering the constraints in (15) to (18). The optimization 

algorithm proposes the parameters of the speed and current controller to attain the minimum error in speed 

within drive constrain limits as ripples in current and maximum current of the motor. 

 

speed error = 𝑟𝑚𝑠(∆𝜔) = 𝑟𝑚𝑠(𝜔 
∗ − 𝜔𝑟 

)        (14) 

 

−20 ≤ max(𝑖𝑞) ≤ 20                         (15) 

 

0 ≤ 𝑟𝑚𝑠(∆𝑖𝑞) ≤ 0.02                   (16) 

 

0 ≤ 𝑟𝑚𝑠(∆𝑖𝑑) ≤ 0.5  (17) 
 

𝑎𝑏𝑠(𝑚𝑒𝑎𝑛(∆𝑖𝑑)) ≤ 0.02    (18) 

 
where ∆𝜔 is the speed tracking error in rad/sec, ∆𝑖𝑞 is the error in q-component of the current, ∆𝑖𝑑 is the 

error in d-component of the current, rms is the root mean square, and abs is the absolute value. 

 

 

6. HYBRID GREY WOLF OPTIMIZER (GWO) 

GWO is an optimization algorithm on the basis of imitation of the gray wolves’ social attitude 

toward searching and hunting of prey. Wolf hunting behavior can be simulated mathematically by (19) to 

(26). 

 

𝑥1 = 𝜒𝛼 + 𝑘1𝑑𝛼 (19) 

 

𝑥2 = 𝜒𝛽 + 𝑘2𝑑𝛽 (20) 

 

𝑥3 = 𝜒𝛿 + 𝑘3𝑑𝛿 (21) 

 

𝑥𝑘+1 =
𝑥1+𝑥2+𝑥3

3
  (22) 

 

𝑑𝛼 = |𝑐1𝜒𝛼 − 𝑥𝑖| (23) 

 

𝑑𝛽 = |𝑐2𝜒𝛽 − 𝑥𝑖| (24) 

 

𝑑𝛿 = |𝑐3𝜒𝛿 − 𝑥𝑖| (25) 

 

𝑎(. ) = 2𝑟2 = 2𝑙𝑟1 − 𝑙. 𝑐(. ) (26) 
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where (𝜒𝛼 , 𝜒𝛽 , 𝜒𝛿) represent the fittest three locations of prey in iteration (i), (𝑥1, 𝑥2,   𝑥3) are the adjusted 

locations of the wolfs, 𝑙 is a constant which varies from 0 to 2, the parameter 𝑎(. ) takes a random value in 

the domain [0,1]. GWO has been developed to enhance the performance for attaining optimum system 

parameters, several modifications are presented to improve the GWO performance [42], [43]. The 

optimization strategy of GA was added to obtain HGWO which improves the performance of the basic GWO 

algorithm [44]. 

PSO loop has been added to the hybrid algorithm of GWO and GA to save the best local and global 

positions. The local best positions of individuals (𝑥𝑙𝑏
𝑘 ) and global best position of the swarm (𝑥𝛼) are used to 

adjust the location of individuals using velocity (𝑣𝑘+1) depending on space between locations of individuals 

and best positions of the gray wolf as in (27) to (29). The fittest modified positions are saved for the use in 

the upcoming GA loop [45]. 

 

𝑥𝑘+1 = 𝑥𝑘+1 + 𝜒𝑣𝑘+1  (27) 

 

𝑣𝑘+1 = 𝑤 𝑣𝑘 + 𝐴 𝑟3(𝑥𝑙𝑏
𝑘 − 𝑥𝑘+1) + 𝐵𝑟4(𝑥𝛼 − 𝑥𝑘+1) (28) 

 

𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤min ) × (
𝑘

(𝑚𝑎𝑥.  𝐼𝑡𝑟𝑎𝑡𝑖𝑜𝑛)
) (29) 

 

where the constants A and B belongs to the period [1.2, 2], the value of 𝑟3 and 𝑟4 belong to the period [0, 1], 

and 𝜒 is used to change the diversity. 

The loop of GA is used to update the individuals by selection, intersection, and mutation processes 

as in (30) and (31). GA algorithm is used to modify the best individuals which are obtained by the GWO and 

PSO loops, to preserve diversity and covering the search area in the best solution domain. The best 

individuals (parents) are chosen to produce new solutions (offspring). The best individuals survive and are 

the selected individuals for the upcoming iteration of GWO. The goal is to modify the values of 

𝑥𝛼  𝑥𝛽, 𝑎𝑛𝑑 𝜒𝛿 to enhance the algorithm effectiveness toward reaching an optimal solution [30]. The vector of 

the variables is presented in (32). 

 

𝑥𝑖𝑗
𝑘+1 = 𝑥𝑙𝑗

𝑘    (30) 

 

𝑥𝑖𝑗
𝑘+1 = 𝑥𝑖𝑗

𝑘+1  + 𝛾(𝑥𝑖𝑗
𝑚𝑎𝑥   − 𝑥𝑖𝑗

𝑚𝑖𝑛 ) (31) 

 

𝑥 = |

(𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 , ʎ, µ)1

(𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 , ʎ, µ)2

(𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 , ʎ, µ)3

| (32) 

 

where γ is a random number ∈ [0,1], x is a vector of the controlled parameters, 𝑥𝑖𝑗
𝑚𝑎𝑥    𝑎𝑛𝑑 𝑥𝑖𝑗

𝑚𝑖𝑛 are the limits 

of the variable x, and (𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 , ʎ, µ)1 is the speed controller parameters, (𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 , ʎ, µ)2 and 

(𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 , ʎ, µ)3 are the current controllers parameters. 

Figure 4 presents the main steps of the optimization procedure to minimize the error in the motor 

speed signal. The procedure starts with initialization of the GWO, PSO and GA parameters. Therefore, an 

iterative process is continued with three loops of GWO, PSO, and GA to optimize the control parameters. 

Table 1 presents the HGWO parameters that are used during optimization process. 

 

 

Table 1. HGWO parameters 
 PID FOPID 

No. of variables 9 15 

wmax 0.98 0.98 

wmin 0.4 0.4 

A 1.8 1.8 

B 1.8 1.8 

Constrains 4 4 

Crossover percentage  0.5 0.5 

Mutation rate 0.05 .05 

Mutation operator  Random  Random  

Crossover operator  Two point Two point 

Number of offspring 30 30 
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Figure 4. HGWO procedure 

 

 

7. RESULTS AND DISCUSSIONS  

Table 2 shows the PMSM model parameters as presented in Figure 1. The drive system performance 

is assessed in case of convention PID and FOPID in terms of steady state error, rise time, over shot, torque 

ripples and current ripples. The system is represented and simulated in MATLAB/Simulink environment. 

The motor is considered to suddenly start at speed set point of 175rad/sec at fixed load 3.0N.m. The motor 

speed is suddenly decreased to 87.5rad/sec at t=1 sec and increased again to 175rad/sec at t=2 sec. HGWO is 

used to obtain the optimal controller parameters. The optimization procedures are done at the same operating 

conditions. Table 3 illustrates the limits of controller parameters, while the optimal controller parameters 

which obtained from HGWO algorithm are listed in Table 4 and Table 5 for conventional PID and FOPID, 

respectively. 

 

 

Table 2. PMSM parameters 
Parameter R (ohm) Ld (mH) Lq (mH) P (pole pairs) J (kg-m2) Ym (Wb) 

value  0.0068 0.482 0.482 4.0 0.0015 0.1413 

 

 

Table 3. Controllers’ parameters limits 
Parameter Speed controller q-component of current  d-component of current 

 min max min max min max 

kp 0.01 2.0 0.01 2.0 0.01 2.0 

ki 0.01 2.0 0.01 100 0.01 600 

kd 0.001 1.0 0.01 10.0 0.01 50 

 

 

Table 4. PID Controllers optimal parameters 
Parameter Speed controller q-component of current  d-component of current 

kp 0.3530 0.4286 1.2308 

ki 1.4851 0.010000 760.8519 

kd 0.0015 0.0013 0.0408 
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Table 5. FOPID Controllers optimal parameters 
Parameter Speed controller q-component of current  d-component of current 

𝑘𝑝 0.3954 1.0827 0.6437 

𝑘𝑖 1.8000 0.0011 399.0496 

𝑘𝑑 0.0012 2.1739 44.2067 

ʎ 0.7132 0.9298 0.5751 

µ 0.9967 0.0076 0.0012 

 

 

The drive system speed response concerning the FOPID and PID controllers is depicted in  

Figure 5 (a). The motor starts from stationary at t=0 to track the reference speed. Figure 5 (b) shows the 

speed response at starting when the speed changed from zero to steady state value (175rad/sec). The FOPID 

generates a response which was able to reach the steady state faster with less rise time, less steady state time 

and less overshot when compared to PID response. The overshot is reduced form 4.8% in case of 

conventional PID controller to 0.6% in case of FOPID controller. The rise time is reduced from 0.0153 sec 

PID controller to 0.0061 sec in FPID controller as reported in Table 6. 

 

 

Table 6. Response of PID and FOPID 
 PID FOPID 

Overshot (%) 4.8 0.6 

Rise time (sec) 0.0153 0.0061 

Steady state error (%) 0.0 0.0 

 

 

  
 

(a) 

 

(b) 

 

Figure 5. Comparison of speed responses for the controllers 

 

 

The torque variations for the FOPID and PID controllers are shown in Figure 6, the motor is loaded 

with constant torque of 3N.m from starting and remain unchanged during the simulation. The variation of the 

produced torque with the FOPID controller produces less ripples than torque variation when compared to the 

response with implementing the PID controller. The reduction was approximately 60% reductions in peak-

peak torque ripples. Figure 7 (a) and Figure 7 (b) show the three-phase currents waveforms concerning both 

controllers in the time domain from 1.5 to 1.6 sec. The FOPID generates a current response with 60% less 

ripples content in the current signal as compared to PID response. Figure 8 shows the response of current 

component id when the drive is controlled with PID and FOPID. The results show that, the current id is 

controlled to be zero with ripples band. The ripples band in id current are less in case of FOPID than in case 

of PID. 
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Figure 6. Comparison of the torque response for the controllers   

 

 

  
 

(a) 

 

(b) 

 

Figure 7. Three phase current response for the controllers  

 

 

 
 

Figure 8. Direct axis (id) current response comparison for the controllers 

 

 

8. CONCLUSION  

FOPID controller and conventional PID controller for speed control in PMSM has been proposed in 

this paper. The controller parameters were obtained using hybrid grey wolf optimizer (HGWO) to minimize 

the speed error and generate fast response with less ripples in the drive response. The drive model, FPOID, 

and HGWO were modeled within MATLAB software. The optimization process was done under the same 

limits and constrains for FOPID and conventional PID controllers. The evaluated results proved the 

enhancement of drive system using the FOPID controller when compared to the traditional PID controller in 

terms of overshot, and response time. The overshot was reduced from 4.8% in case of PID controller 

response to 0.6% in FOPID response. The rise time is reduced from 0.0513 sec in PID-based controller 

performance to 0.0061 sec in FOPID performance. Furthermore, the drive response with FOPID controller 

was found competitive as attributed to less ripples in current and torque when compared to PID controller. 
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