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 In recent days switched reluctance motor is widely used for numerous 

industrial applications due to its simple structure, minimum cost and 

maximum efficiency. Regardless of numerous exclusive benefits of the 

switched reluctance motor (SRM), acoustic noise of this motor is high and it 

is important to accomplish more analysis on the noise lessening, which is the 

primary goal of this paper. The major causes of acoustic noise in a SRM are 

torque ripple and radial magnetic force. Since radial magnetic force is highly 

influential by the design of motor, torque ripple control is analysed in this 

article for acoustic noise control. Torque ripple control of SRM is proposed 

using optimization in direct torque control (DTC) method. Nowadays, 

optimisation plays a crucial role in motor drives for enhanced control. In this 

paper, artificial raindrop algorithm is proposed in DTC of SRM to minimise 

torque ripple. Performance of proposed ARA based DTC of four-phase 8/6 

SRM is analysed using Matlab and compared with the performance of fuzzy 

gain scheduling PI controller based DTC. 
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1. INTRODUCTION 

Simple and strong structure, maximum efficiency, extensive speed range, flexible control and speed-

torque characteristic of switched reluctance motor make it easier to meet various demands [1]. Because of the 

exclusive features of the SRM, it has been considered for different applications such as an electric vehicle 

[2]-[4], aerospace[5], [6], renewable energy [7]-[9], wheelchairs [10] and other automotive applications. In 

this analysis switched reluctance motor is proposed for electric vehicle application. Nevertheless, because of 

its rotor doubly salient structure and switching power source, torque ripple is enormous, and the noise and 

vibration are self-evident. Every one of these imperfections limit the use of the switched reluctance motor for 

electric /hybrid electric vehicles. Reduction in torque ripple leads to a reduction in acoustic noise of electric 

vehicle [11], [12] 

Torque ripple of Switched Reluctance Motor is controlled using various strategies like Indirect 

torque control method, Direct Torque Control Method, Torque Sharing Function, Intelligent Control 

Techniques, Sliding Mode Control, Optimization Method, Converter Control and so on [13]. Among the 

numerous methods, DTC is an effective method of torque control which offers minimum torque ripple [14]. 

Hence in this paper DTC method is analysed for torque ripple control of 8/6 SRM.  

https://creativecommons.org/licenses/by-sa/4.0/
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Many researchers analysed direct torque control of SRM using conventional PI and PID controller. 

Compared to traditional PI, PID controller artificial intelligent fuzzy logic controller in DTC offered 

improved dynamic performance of SRM presented a control approach depends on model predictive flux 

control is applied in the direct torque control (DTC) procedure for three-phase 12/8 SRM GA tuned PI in the 

DTC reduced the torque ripple effectively in comparison with DTC using PI and various other control 

methods. The survey states that advanced controllers in the application of DTC reduce torque ripple 

compared to a conventional controller [15-18]. Hence in this paper novel optimization artificial raindrop 

algorithm (ARA) is proposed in DTC to reduce maximum torque ripple to attain minimum noise. 

Performance of the proposed algorithm is compared with the fuzzy gain scheduling PI controller-based DTC 

under various speeds and load. Since both speed and torque performance of motor decides the quality of 

electric vehicle, in this article DTC based SRM drive along with noise control concentrates on above said 

parameters also. 

 

 

2. PROPOSED METHODOLOGY  

An asymmetrical converter is popularly used for the SRM drives as it has more switching states than 

the conventional converters [19]. In a direct torque control method, speed, and torque of SRM are controlled 

by a change in the sequence of a vector of the asymmetrical converter [20], [21]. Conventional PI controller 

in DTC results in reasonable torque ripple in SRM. Hence in this article, gains of PI controller are tuned 

using a fuzzy logic controller and proposed Artificial raindrop algorithm to attain precise torque reference. 

 

 

 
 

Figure 1. Schematic diagram of proposed controller 

 

 

 
 

Figure 2. Schematic diagram of FGS in DTC 

 

 

The electromechanical torque developed by the SRM [22] is given by 

 

T ≈ i 𝛛𝚿 (𝚹, i) / 𝛛𝚿 (𝚹) (1) 

 

where 𝚿 (𝚹) are the phase flux linkages as a function of rotor position θ and stator current i.  

Fuzzy gain Scheduling PI Controller in DTC: The fuzzy logic controller is an artificial intelligent 

controller works like human thinking, capable of dealing nonlinear system and vague data [23-24]. Fuzzy 
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gain scheduling controller offers online tuning of gains of the PI controller [25]-[30]. Mamdani method of 

fuzzy is proposed in this analysis with forty-nine rules to tune the gains of a PI controller and is shown  

Figure 2. Error (E) in speed and rate of change in error (Ec) are the two inputs to FGS to produce two outputs 

of kp and ki. Both input and output variables comprise of seven triangular distributive functions. Negative big 

(NB), negative medium (NM), negative small (NS), zero (ZE), positive small (PS), positive medium (PM) 

and positive big (PB), are the functions of input and output variables. Fuzzy rules are shown in Table 2. 

Based on input error with the help of rules in Table 2, FGS-PI controller changes kp and ki, which 

decides the reference torque and results in the reduced torque ripple.  

 

Table 2. Fuzzy rules 
Control rules for kp Control rules for ki 

 Ec 
NB NM NS ZE PS PM PB 

 Ec 
NB NM NS ZE PS PM PB 

E Ki E Kp 

NB NB NB NM NM NS ZE ZE  B PB PB PM PM PS ZE ZE 

NM NB NB NM NS NS ZE ZE  NM PB PB PM PS PS ZE NS 

NS NB NM NS NS ZE PS PS  NS PM PM PM PS ZE NS NS 

ZE NM NM NS ZE PS PM PM  ZE PM PM PS ZE NS NM NM 

PS NM NS ZE PS PS PM PB  PS PS PS ZE NS NS NM NM 

PM ZE ZE PS PS PM PB PB  PM PS ZE NS NM NM NM NB 

PB ZE ZE PS PM PM PB PB  PB ZE ZE NM NM NM NB NB 

 

 

2.1. Artificial raindrop algorithm tuned PI controller in DTC 

Artificial raindrop algorithm follows the varying procedure of a raindrop [31]. In this procedure 

raindrops are assumed as objects and function of object is evaluated by relating elevation. The position of the 

lowermost altitude relates to the best solution. In this analysis minimisation of ITAE of speed error is 

considered as the fitness function to find optimum values kp and ki. The entire recurring procedure of this 

algorithm is classified into six steps: raindrop generation, raindrop descent, raindrop collision, raindrop 

flowing, RP updating and vapour updating.  

ARA initiates with the preliminary population by arbitrarily employing N vapours in a hunting 

space, and each vapour has a consistent position stated below: 
 

𝑉𝑎𝑝𝑜𝑟𝑖 = (𝑥𝑖
(1), . . . , 𝑥𝑖

(𝑑), . . . 𝑥𝑖
(𝐷)), 𝑖 = 1,2, . . . 𝑁 (2) 

 

In (2) size of population is N, problem dimension is D, and in the dth dimension, location of the ith vapour is 

𝑥𝑖
(𝑑)

  

 

 

 
 

Figure 3. Schematic diagram of ARA controller. 

 

 

2.1.1.Raindrop generation 

It is expected, for effortlessness, that the raindrop location is the mathematical focus of ambient 

water vapour. In this way, its location can be characterized as: 

 

𝑅𝐷 = (
1

𝑁
∑ 𝑥𝑖

(1)𝑁
𝑖=1 , . . . ,

1

𝑁
∑ 𝑥𝑖

(𝑑)𝑁
𝑖=1 , . . .

1

𝑁
∑ 𝑥𝑖

(𝐷)𝑁
𝑖=1 ) (3) 
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2.1.2.Raindrop descent 

At the point when the impact of outside elements is disregarded, the RD falls from the raincloud to 

the earth over descend. This suggests that one part of RD location is altered and the RD transfers to another 

position signified New RD. Consequently, the New RD is expressed as in (4): 

 

𝑁𝑒𝑤𝑅𝐷(𝑑) = 𝑅𝐷(𝑑2) + 𝜑 ⋅ (𝑅𝐷(𝑑3) − 𝑅𝐷(𝑑4)), 𝑖𝑓𝑑 = 𝑑1; 𝑁𝑒𝑤_𝑅𝐷(𝑑) = 𝑅𝐷(𝑑) (4)  

 

In an expression (4) φ is a arbitrary number in the boundary of (-1, 1), d = 1, 2, · · ·, D. 

 

2.1.3.Raindrop collision 

At the point when the 𝑁𝑒𝑤_𝑅𝐷 reaches the floor; it is separated into various little RDs because of 

the speed and quality. At that point, these small raindrops (𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖, i= 1, 2, ·, N) are flying in entire 

possible directions. Hence, 𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖 can be planned beneath: 

 

𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖 = 𝑁𝑒𝑤_𝑅𝐷 + 𝑠𝑖𝑔𝑛(𝛼 − 0.5) ⋅ 𝑙𝑜𝑔( 𝛽) ⋅ (𝑁𝑒𝑤_𝑅𝐷 − 𝑉𝑎𝑝𝑜𝑟𝑘) (5) 

 

where k is arbitrarily selected index from the set {1, 2, · · ·, N}, α and β both are regularly dispersed arbitrary 

numbers in the boundary of (0, 1) and sign () defines for sign function. 

 

2.1.4.Raindrop flowing 

As per the activity of gravity, these Small_ RDi (i= 1, 2, ·, N) passes from topmost height to low 

elevation course, and the majority of them will inevitably stop at the areas with lower height (for example the 

better arrangements). In the procedure of algorithm development, these better arrangements can give extra 

data about the hopeful advancement direction. Therefore, the raindrop pool (RP) is intended to follow these 

lower locations found up to now throughout the pursuit, and the refreshing of RP is implemented as follows: 

1) RP is started to be any attainable result of hunt space. 

2) The best result of the present population is accumulated to RP subsequently every repetition. 

3) On the off chance that the size of RP surpasses the limit given, at that point a few solutions in RP 

will be arbitrarily erased to retain the extent of RP unchanging and diminish computation sum. 

Furthermore, the streaming direction of raindrop di for Small_RDi (i= 1, 2, ·, N) is built dependent on 

the linear mix of dual vectors d1i and d2i, in which di, d1i and d2i are portrayed as: 

 

𝑑1𝑖 = 𝑠𝑖𝑔𝑛(𝐹(𝑅𝑃𝑘1) − 𝐹(𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖)) ⋅ (𝑅𝑃𝑘1 − 𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖) (6) 

 

𝑑2𝑖 = 𝑠𝑖𝑔𝑛(𝐹(𝑅𝑃𝑘2) − 𝐹(𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖)) ⋅ (𝑅𝑃𝑘2 − 𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖) (7) 

 

𝑑𝑖 = 𝜏1 ⋅ 𝑟𝑎𝑛𝑑1𝑖 ⋅ 𝑑1𝑖 + 𝜏2 ⋅ 𝑟𝑎𝑛𝑑2𝑖 ⋅ 𝑑2𝑖 (8) 

 

In an expressions (11- 12) RPk1 and RPk2 are any deuce of applicant solutions in RP (k1, k2 ∈ {1, 2, · 

· ·, |RP|}), τ1 and τ2 are two-step parameters of Small_RDi flowing, rand1i and rand2i both are consistently 

disseminated arbitrary numbers within a boundary of (0, 1), F (·) denoted fitness function.  

Consequently, New Small_RDi (i= 1, 2, · · ·, N) is stated as: 

 

𝑁𝑒𝑤𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖 = 𝑆𝑚𝑎𝑙𝑙_𝑅𝐷𝑖 + 𝑑𝑖 (9) 

 

Be that as it may, the Small_RDi not able to pass in an actual atmosphere. It is essential to present a 

constraint max flow number to regulate the extreme quantity of flows. Subsequently, they will remain in the 

areas with a moderately lesser height or dissipate subsequently a few streaming. 

 

2.1.5.Vapour updating 

Eventually, the vapour disappears in the air by vanishing and additionally develop the new raindrop. 

To enhance the working recital and convergence proportion of ARA, in the process of vapour apprising, the 

N finest results from new small RD ∪ vapour are nominated by means of the sorting technique as the 

subsequent vapour population. Flowchart of ARA is shown in Figure 5 
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Figure 5. Flowchart of ARA 

 

 

For SRM control, the means of utilizing ARA for the ideal tuning of PI are as per the following: 

Stage 1: Arbitrarily introduce the hunt space with a populace of 'n' number of Vapours. The relating position 

of every Vapour is presented in (7). Chosen estimations of control boundaries are as per the 

following n = 2, most extreme emphasis cycle = 200, venture boundaries τ_1 = τ_2 = 2, 

Max_Flow_Number = 6, greatest estimation of coefficient = 4, and least estimation of coefficient = - 1. 

Stage 2: Govern the fitness of entire Vapours. Assume gbest = best Vapour and RP = gbest. 

Stage 3: Produce RD as indicated by (3) as the function of Vapour. 

Stage 4: Create New_RD as per (4) as the role of RD. 

Stage 5: Estimate Small_RD as an element of New_RD and Vapour as per (5). 

Stage 6: Decide the moving track, d as per (13), and compute New_Small_RD as per (9) as the capacity of 

Small_RD and d. 

Stage 7: Govern the aptness value of New_Small_RD and Small_RD. On the off chance that the error 

aptness of the previous is greater than the last mentioned, the streaming direction (d) is not right, 

and the New_Small_RD is disregarded. Be that as it may, all the Small_RDs are permitted to stream 

dependent on the fixing of Max_Flow_Number. 

Stage 8: Based on the fitness standards of vapour and Small_RD, choose the finest 'n' amount of applicant 

resolutions as the new vapour. Additionally, apprise the gbest and RP.  

Stage 9: Switch to stage 3 till maximum repetitions are touched. 

Stage 10: Announce the gbest as the best solution. 

 

 

3. SIMULATION RESULTS AND ANALYSIS  

Performance of the proposed drive is analysed using 8/6 SRM built-in matlab. Parameters of 

analysed motor is presneted in Table 3. Torque ripple of SRM is analysed under various speeds and various 
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loads. The speed performance of SRM is analyzed in the aspects of peak overshoot, Steady-state error, speed 

ripple, speed drop during change in load and restoration time after change in load. Torque performance of 

SRM is analyzed in the aspects of steady-state error and torque ripple. Settling time of speed and torque is 

also discussed. In the aspect of electric vehicle performance of drive is analyzed under various speeds and 

variable load.  

 

 

Table 3. Parameters of the motor analysed 
Parameters Values 

Number of stator poles 8 

Number of rotor poles 6 

Stator resistance 3.1Ω 

Maximum current 10A 

Maximum flux linkage  0.486  

 

 

Case 1, in this case, motor speed is set to 1000 RPM and starts with the no load then load is 

increased to 7Nm at 2s. Speed and torque Performance of FGS-PI based DTC of SRM under Case 1 is shown 

in Figure 6.  

 

 

  
(a) (b) 

  

Figure 6. (a) Speed and (b) Torque performance of FGS-PI based DTC of SRM under case 1 

 

 

From Figure 6, it is analyzed that the FGS controlled drive settles to the speed of 1000.74 RPM at 

0.45s, which produces a steady state error of 0.074%. Oscillation in speed is known to be ripple exists in the 

range of 0.005%. At the time of starting peak overshoot produced by FGS is 14.9%. The influence of online 

tuning of torque reference using FGS settles torque around 7.061Nm at 0.55s, produces steady state error as -

0.87% with the torque ripple ratio of 3.14%. On the time of change in load, speed drops to 12.4% and the 

restoration time after change in load is 0.6s. Compared to DTC with PI torque ripple produced by FGS is 

reduced.  

 

 

  
(a) (b) 

  

Figure 7. (a) Speed and (b) Torque performance of ARA based DTC of SRM under case 1 
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In Figure 7(a) performance of ARA in the aspect of speed shows that the ARA settles the speed of 

1000 RPM at 0.4s, whereas the settling time by FGS is 0.45s. It shows that FGS takes more time for settling 

the speed than ARA. The steady state error produced in ARA is 0 which is absolutely error free compared to 

FGS. Moreover, the ripple ratio of the speed by ARA is 0.004% which is also reduced than the FGS. 

Furthermore, the peak overshoot is 14.83% whereas the FGS produces 14.9%. On the time of change in load, 

speed drops to 12.38% which is 0.02% less than the FGS and the restoration time after load change is 0.49s 

which is also better than FGS. The analysis shows the ARA has better performance in all the considered 

aspects. 

From Figure 7(b), it is noted that the torque settles in 7.05 Nm at 0.5s, whereas the FGS takes 0.55s 

to settle the torque. The steady state error produced in ARA is -0.71% which is comparatively less  

than the FGS. ARA based optimal tuning of PI for torque reference reduces the ripple ratio to 2.54%, which 

is also less than the FGS. In this case, the torque performance of ARA is better than FGS in all the  

considered aspects. Comparative performance of FGS and ARA based DTC of SRM under case 1 is 

presented in Table 4.  

 

 

Table 4. Comparative performance of FGS and ARA based DTC of SRM under case 1 

Parameters 
Speed (1000rpm) Torque (0 to 7 NM) 

FGS ARA FGS ARA 

Settling time (s) 0.45 0.4 0.55 0.5 

Ripple ratio (%) 0.005 0.004 3.14 2.54 

Steady state error (%) -0.074 0 -0.87 -0.71 

Peak overshoot (%) 14.9 14.83 - - 

Restoration time after load change (S) 0.6 0.49 - - 

Speed drop during change in load (%) 12.4 12.38 - - 

 

 

From an analysis of Case 1 both in speed and torque, the performance of ARA is better in all the aspects 

such as settling time, ripple ratio, steady state error, peak overshoot, Restoration time after load change and 

Speed drop during change in load. 

Case 2, in case 2, motor speed set to 1000 RPM and starts with the load of 4Nm then raised to7Nm 

at 2s. Speed and torque Performance of FGS-PI based DTC of SRM under Case 2 is shown in Figure 8.  

 

 

  
(a) (b) 

  

Figure 8. (a) Speed and (b)Torque performance of FGS -PI based DTC of SRM under case 2 

 

 

From Figure 8, it is observed that the speed and torque are settled to 1001.7 RPM and 7.055 Nm at 

0.65s and 0.6s. In the aspect of speed, the FGS produces a steady state error of -0.17% and on the aspects of 

the torque, FGS produces -0.78% steady state error. Ripple ratio of speed and torque is reduced to 0.01% and 

2.54% by FGS. In this case, the peak overshoot of the speed by FGS is 5.95%. During change in load, speed 

drops to 3.7% and the restoration time after change in load is 0.5s. Speed and torque performance of ARA 

based DTC of SRM under case 2 is shown in Figure 9.  

In Figure 9(a) the performance of ARA in the aspect of speed shows that the ARA settles the speed 

around 1000 RPM at 0.5s. The steady state error produced in ARA is absolute zero which is error free in 

contrast with FGS. Moreover, the ripple ratio is reduced to 0.004% by the influence of ARA, which is also 

better the FGS. Furthermore, the peak overshoot of the speed is 5.9%, whereas the FGS produced 5.95%. 

Speed drops during change in load is 3.7% which is similar to FGS and the restoration time after load change 

is 0.4s which is improved than FGS. In this case, both FGS and ARA performed similarly in aspect of speed 

drop. 
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From Figure 9(b), it is noted that the torque settles in 7.053 Nm at 0.5s, whereas the FGS takes 0.65s 

to settle the torque. It shows that the settling time of speed and torque by ARA is same. The steady state error 

produced in ARA is -0.76% which is comparatively less than the FGS. The ARA reduces the ripple ratio up 

to 2.04%, which shows improved performance of optimization. In this case, the torque performance of ARA 

is better than FGS in all the considered aspects. Comparative performance of FGS and ARA based DTC of 

SRM under case 2 is presented in Table 5.  

 

 

  
(a) (b) 

  

Figure 9. (a) Speed and (b) Torque performance of ARA based DTC of SRM under case 2 

 

 

Table 5. Comparative performance of FGS and ARA based DTC of SRM under case 2 

Parameters 
Speed Torque 

FGS ARDA FGS ARDA 

Settling time (s) 0.65 0.5 0.62 0.5 

Ripple ratio (%) 0.01 0.004 2.54 2.04 

Steady state error (%) -0.17 0 -0.78 -0.76 

Peak overshoot (%) 5.95 5.9 - - 

Restoration time after load change (S) 0.5 0.4 - - 

Speed drop during change in load (%) 3.7 3.7 - - 

 

 

The speed and torque performance of both the controllers are observed for Case 2. Performance of 

ARA is better in ripple ratio, steady state error and peak overshoot. Both controllers possess the same 

performance in settling the time for speed and torque. 

Case 3, in this case, the motor speed set to 1300 RPM and starts with the load of 4Nm then raised 

to7Nm at 2s. Speed and torque Performance of FGS-PI based DTC of SRM under Case 3 is shown in Figure 

10. It is observed that the speed and torque are settled to 1002.9 RPM and 7.38 Nm at 0.71s and 0.6s. Steady 

state error produced in this case for speed is -0.29% and in the torque is -5.31%. Ripple ratio of speed and 

torque is 0.015% and 2.97%. In this case, the peak overshoot of the speed is 4.05% by FGS. Speed drop 

during change in load is 2.92% and the restoration time after change in load is 0.4s.  

 

 

  
(a) (b) 

  

Figure 10. (a) Speed and (b)Torque performance of FGS -PI based DTC of SRM under case 3 

 

 

Speed and torque Performance of ARA based DTC of SRM under case 3 is shown in Figure 11. 

From Figure 11(a), it is obvious that the ARA settles the speed in 1300 RPM at 0.66s, whereas the FGS 

settles the speed at 0.71s. It shows that settling time of speed is reduced by proposed ARA compared to FGS. 
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The steady state error and ripple ratio produced in ARA is absolute zero and 0.0092% which is better than the 

FGS. The peak overshoot of the speed by ARA is 3.98% whereas the FGS produced 4.05%. On the time of 

change in load, speed drops to 2.92% which is similar to FGS but the restoration time after load change is 

0.35s which is better than FGS. It shows the ARA has improved performance in almost all the aspects. 

From Figure 11(b), it is noted that the torque settles in 7.368 Nm at 0.55s, whereas the FGS takes 

0.6s to settle the torque. It shows that the ARA settles the speed in a quick manner. The steady state error and 

ripple ratio produced by an ARA in torque is -5.31% and 2.5%. Both are comparatively less than the FGS 

based DTC. In this case, the torque performance of ARA is improved compared to FGS. 

From case 3, the overall performance of FGS and ARA is analysed. Both in speed and torque, the 

performance of ARA is better in all the considered aspects such as settling time, ripple ratio, steady state 

error and peak overshoot. Compared to previous cases peak overshoot in speed is reduced in case 3, while 

steady state error in torque is increased. Comparative performance of FGS and ARA based DTC of SRM 

under case 3 is presented in Table 6.  

 

 

  
(a) (b) 

  

Figure 11. (a) Speed and (b) Torque performance of ARA based DTC of SRM under case 3 

 

 

Table 6. Comparative performance of FGS and ARA based DTC of SRM under Case 3 

Parameters 
Speed Torque 

FGS ARDA FGS ARDA 

Settling time (s) 0.71 0.66 0.6 0.55 

Ripple ratio (%) 0.015 0.0092 2.97 2.5 

Steady state error (%) -0.29 0 -5.31 -5.26 

Peak overshoot (%) 4.05 3.98 - - 

Restoration time after load change (S) 0.4 0.35 - - 

Speed drop during change in load (%) 2.92 2.92 - - 

 

 

Case 4, in case 4, motor speed is set to 1500 RPM and starts with the load of 4Nm then raised 

to7Nm at 2s. Speed and torque performance of FGS-PI based DTC of SRM under case 4 is shown in Figure 

12.  

 

 

  
(a) (b) 

  

Figure 12. (a) Speed and (b)Torque performance of FGS -PI based DTC of SRM under case 4 
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From Figure 12, the settling value of speed is 1504 RPM at 0.7s with the peak overshoot is 3.21%. FGS 

based system settles torque to 7.588Nm at 0.65s. Steady state error of speed and torque are -0.27% and -

8.4%. From Figure 12(a) it is observed that the FGS reduces the ripple ratio of the speed is known to be 

0.0333%. Ripple ratio developed in torque by using FGS is 2.7%, which is slightly higher compared to case 

2. During change in load, speed drops to 2.53% and the restoration time after change in load is 0.5s 

Figure 13(a) shows that the ARA settles the speed in 1500 RPM at 0.62s, which is 0.12s less than 

FGS speed settling time. It reveals that ARA has offered improved performance in settling the speed. The 

steady state error produced by ARA is absolute zero. In all the cases the steady state error of the ARA is 

absolute zero which is error free compared with FGS. Ripple ratio of the speed by using ARA is 0.0100% 

which is comparatively better than the FGS. Furthermore, the peak overshoot of the speed is 3.13%, whereas 

the FGS produced 3.21%. Speed drops during change in load is 2.53% which is similar to FGS and the 

restoration time after load change is 0.4s which is improved than FGS. 

From Figure 13(b), it is observed that the torque settles in 7.576 Nm at 0.6s, whereas the FGS takes 

0.7s to settle the torque. It shows the ARA has improved performance in settling the torque. The steady state 

error produced in ARA is -8.23% which is comparatively less than the FGS. Torque ripple ratio is reduced to 

2.32% by the influence of ARA, which is better than the FGS. In this case, the torque performance of ARA 

shows better in almost all the considered aspects. Comparative performance of FGS and ARA based DTC of 

SRM under case 4 is presented in Table 7.  
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Figure 13. (a) Speed and (b)Torque performance of ARA based DTC of SRM under case 4 

 

 

Table 7. Comparative performance of FGS and ARA based DTC of SRM under case 4 

Parameters 
Speed Torque 

FGS ARDA FGS ARDA 

Settling time (s) 0.7 0.62 0.65 0.6 

Ripple ratio (%) 0.0333 0.0100 2.7 2.32 

Steady state error (%) -0.27 0 -8.4 -8.23 

Peak overshoot (%) 3.21 3.13 - - 

Restoration time after load change (S) 0.5 0.4 - - 

Speed drop during change in load (%) 2.53 2.53 - - 

 

 

From the results of Case 4, both in speed and torque, the performance of ARA has improved 

performance in all aspects such as settling time, ripple ratio, steady state error and peak overshoot. From the 

analysis of various of cases of speed and load, it is observed that ARA has better performance than FGS in 

speed in the aspects of settling time, ripple ratio, peak overshoot and restoration time almost under all cases. 

Steady state error in speed is absolutly eliminated with the aid of ARA under all cases with load and without 

load. Speed drop during change in load is almost same in both controllers. Under all cases performance of 

torque using ARA is enhanced compared to FGS in the aspects of settling time, ripple ratio and steady state 

error. Comparative performance of the proposed system with the existing system in the aspect torque ripple 

reduction is presented in Table 8.  

From Table 8, it is clear that analysed ARA-PI and FGS-PI based DTC of SRM offered less torque 

ripple compared to the existing PI and GA-PI based DTC of SRM. FGS tuned PI in DTC reduces 69.32% of 

torque ripple compared DTC with PI, while proposed ARA optimised PI minimises torque ripple around 

74%. Reduction in torque ripple with the help od ARA based DTC minimises acoustic noise of SRM.  
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Table 8. Comparative performance of torque ripple 
Controller Torque ripple (%) 

DTC with PI  8.8 

DTC with genetic PI 6.9 

DTC with FGS- PI  2.7 

DTC with ARA PI  2.32 

 

 

4. CONCLUSION 

In this paper, acoustic noise control of SRM in electric vehicle is analysed by means of torque ripple 

control. Artificial raindrop algorithm is proposed in direct torque control of SRM, to minimise torque ripple. 

Performance of the proposed system is compared with the fuzzy gain scheduling PI based direct torque 

control of SRM under various speeds and various loads. Direct torque control of SRM employs PI controller 

to develop torque reference for converter control, to enhance the performance of a drive, in this article FGS 

and ARA controllers are applied to tune the gains of PI controller. Precise tuning of torque reference in DTC 

results reduced torque ripple. Analysis of proposed system revealed that it reduces around 74% torque ripple 

compared to PI based DTC, which makes drive most suitable for electric vehicles . Various case of analysis 

validates that proposed system not only enhances torque performance it also enriches speed performance, 

while both speed and torque qualities are manditory for electric vehicles. Speed performance in the aspects of 

peak overshoot, settling time, steady state error , ripple and restoration time confirms that under all cases 

proposed ARA based DTC offered improved performance compared to FGS. Therefore by employing 

proposed ARA based DTC, noise control by means of ripple control is achieved with enhanced speed 

performance.  
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