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 This paper presents a new simplified cascade multiphase DC-DC buck power 

converter suitable for low voltage and large current applications. Cascade 

connection enables very low voltage ratio without using very small duty 

cycles nor transformers. Large current with very low ripple content is 

achieved by using the multiphase technique. The proposed converter needs 

smaller number of components compared to conventional cascade multiphase 

DC-DC buck power converters. This paper also presents useful analysis of 

the proposed DC-DC buck power converter with a method to optimize the 

phase and cascade number. Simulation and experimental results are included 

to verify the basic performance of the proposed DC-DC buck power 

converter.   
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1. INTRODUCTION 

A step-down DC-DC power converter is commonly used in DC power supplies, DC voltage 

regulators, DC welders, and cathodic protection systems. In some applications, the required output voltage is 

very low at very large output current. Moreover, the allowed output current ripple should be very low to not 

damage the internal components. In general, a step-down DC-DC power converter can be classified as 

isolated and non-isolated DC-DC power converter [1]. As efficiency is very important, the non-isolated one 

is the most commonly used. Several DC-DC power converters with very low voltage ratios have been 

proposed in the literature [2]-[10]. The most common method to achieve a very low voltage ratio is by 

cascading several conventional DC-DC buck power converters. However, the number of components is 

increased when the cascaded converters are increased. Different methods to simplify cascade DC-DC buck 

power converters have been proposed in the literature [11], [12]. 

To achieve large output current rating with reduced ripple content, the multiphase technique is 

commonly used [13]-[21]. If several multiphase DC-DC buck power converters are connected in cascade 

then, both very low voltage ratio and very small ripple content can be achieved. In this case, however, the 

required active and passive components number will be very high. This paper presents a new simplified 

cascade multiphase DC-DC buck power converter for very low output voltage and large output current 

applications. Very low voltage ratio is obtained by cascading several DC-DC buck power converters. In order 
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to reduce the required components, the simplified version of cascade single-phase DC-DC buck power 

converter is used. In order to increase the current capability and to reduce the ripple content, several 

simplified cascade single-phase are connected in parallel and operated as a cascade multiphase DC-DC buck 

power converter. In order to reduce further the required number of components, the resulting cascade 

multiphase DC-DC buck power converter is then simplified. Output voltage analysis of the proposed 

converter is analyzed by considering voltage drops across active and passive components. The obtained 

output voltage expressions are useful to determine the conduction losses and, therefore, the efficiency. Based 

on the conduction losses, the required phase number and cascaded number of the proposed DC-DC buck 

power converter can be determined. Several calculated and experimental results are included to show the 

basic performance of the proposed DC-DC buck power converter.  

This paper is arranged into five sections. In section 2, the proposed DC-DC buck power converter 

topologies are derived and explained in detail. Section 3 theoretically analyzes the converter where the output 

voltage, together with the power loss calculation, are discussed. The optimization of the phase number and 

the cascade number is also presented in this section.  The proposed converter chosen design and the 

experimental results are presented in section 4 to prove the analysis in section 3. Finally, the conclusion is 

drawn in the last section. 

 

 

2. PROPOSED DC-DC BUCK POWER CONVERTER 

This section discusses the derivation of the proposed DC-DC buck power converter. The discussion 

is started by discussing the conventional DC-DC buck power converter and cascade DC-DC buck power 

converter. The discussion is then followed by simplified cascade multiphase DC-DC buck power converter 

towards the proposed DC-DC buck power converter. Here, the discussion neglects the effects of voltage 

drops across the active and passive components. 

 

2.1. Conventional DC-DC buck power converters 

Figure 1 (a) shows a conventional single-phase DC-DC buck power converter. Though a MOSFET 

has been used as the active switching device, in practice we can use other active switching devices depending 

on the application. Under continuous conduction mode, the voltage ratio is (1), 

 
𝑉𝑜

𝐸𝑑
= 𝛼 (1) 

 

with 

 

𝛼 =
𝑇𝑂𝑁

𝑇𝑆
 (2) 

 

where Vo is the output voltage, Ed is the input voltage, and α is the duty cycle, TON is the ON-period of the 

switch and TS is the switching period of the transistor, respectively. The duty cycle α can be varied from zero 

to unity and, therefore, the output voltage can be varied from zero to Ed. In practice, however, the duty cycle 

cannot be made too low due to the minimum turn-off time of the switching device. Thus, the minimum 

voltage ratio is limited.  

In order to increase the output current rating and to decrease the ripple content, several single-phase 

DC-DC buck power converters can be connected in parallel and operated as a multiphase DC-DC buck 

power converter, as shown in Figure 1 (b). If the phase number is N, both current rating and ripple frequency 

will increase N times compared to single-phase DC-DC buck power converter. 

 

2.2. Cascade DC-DC buck power converters 

In order to improve the voltage-ratio capability, several DC-DC buck power converters can be 

connected in cascade as shown in Figure 2 (a), in which the grey-colored shows the cascade configuration. If 

all transistors are operated at the same duty cycle, the voltage ratio is (3), 

 
𝑉𝑜

𝐸𝑑
= 𝛼𝑀 (3) 

 

where M is the number of cascaded converters. For the same duty cycle, the obtained voltage ratio will be 

smaller compared to a single-stage DC-DC buck power converter. The method in Figure 2 (a) can be 

extended into the multiphase one and the result is shown in Figure 2 (b). This topology is named 

conventional cascade multiphase (CCM) DC-DC buck power converters. The CCM DC-DC buck power 
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converters have the same average output voltage as (3), with each switch is activated by similar carrier 

signals on phase difference of 2π/N, where N is the number of phases. Nevertheless, the phase numbers of 

each stage do not have to be the same. Moreover, the duty cycle of each stage does not have to be the same. 

Both cascade number and phase number can be optimized to achieve a certain criterion. 

 

2.3. Simplified cascade multiphase (SCM) DC-DC buck power converters 

In order to reduce the required active switching devices, a simplified version of cascade single-

phase DC-DC buck power converter shown in Figure 3 (a) was proposed [11]. This converter can also be 

configured into the multiphase one, as shown in Figure 3 (b). The obtained output voltage expression is still 

the same as given by (3). This converter can produce a very low voltage ratio with very low ripple content.  

Even though the component number of active switching devices in Figure 3 (b) is lower than the one 

in Figure 2 (b), the requirement of electrolytic capacitors is higher. It has been shown in the literature [22]-

[25] that electrolytic capacitors are the most unreliable component in power electronic system and, therefore, 

the used of electrolytic capacitors must be minimized. 

 

 

 
(a) 

 
(b) 

 

Figure 1. (a) conventional single-phase DC-DC buck power converter, (b) conventional multiphase DC-DC 

buck power converter 

 

 

 
(a) 

 
(b) 

 

Figure 2. (a) conventional cascade single-phase DC-DC buck power converter, (b) conventional cascade 

multiphase (CCM) DC-DC buck power converter 
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(a) 

 
(b) 

 

Figure 3. (a) simplified cascade single-phase DC-DC buck power converter, (b) simplified cascade 

multiphase (SCM) DC-DC buck power converter 

 

 

2.4. New simplified cascade multiphase (NSCM) DC-DC buck power converters 

Since the duty cycle of switches per phase is equal, all average voltages of capacitors on Figure 3(b) 

will be equal. When the voltages are identic, all capacitors that are installed in parallel can be replaced with 

only a single capacitor. Consequently, all diodes DON, diodes DOFF and inductors LP can also be replaced with 

only a single component each. This simplified scheme is named as a new simplified cascade multiphase 

(NSCM) DC-DC buck power converter, which is shown in Figure 4. The voltage ratio of the new scheme is 

shown by (4), 

 
𝑉𝑜

𝐸𝑑
= 𝑁𝑀−1𝛼𝑀 (4) 

 

where N is the number of phases. In this case, the maximum duty cycle is limited to 1/N.  

NSCM DC-DC buck power converters have switching mechanisms as follows: 

1) When switch S1 is ON (other switches are OFF), all diodes DON and secondary diodes (excluding 

DSEC1) will be forward biased, meanwhile the remaining diodes will be reverse biased. Current will 

flow in two directions: from DC source Ed to inductor LP and from diode DON to capacitor C.  Then, 

both currents sum up and charge inductor LS1, before reaching the load. Other secondary inductors will 

discharge their currents to the load.  

2) When switch S1 is OFF (other switches are also OFF), all diodes DOFF and secondary diodes will be 

forward biased. Diodes DON will be reverse biased. The load will only receive discharged currents 

from the secondary inductors. Both mechanisms will be repeated for other switches. 

A comparison of components among conventional cascade multiphase DC-DC buck power 

converters/CCM (Figure 2 (b)), simplified cascade multiphase DC-DC buck power converters/SCM (Figure 

3(b)), and the proposed cascade multiphase DC-DC buck power converters/NSCM (Figure 4) is represented 

in Table 1. The proposed converter has the least number of components compared to two other cascade 

multiphase topologies. It should be noted that this converter is the dual of the converter that has been 

proposed in [26]. 
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Figure 4. New simplified cascade multiphase (NSCM) DC-DC buck power converter 

 

 

Table 1. Comparison of number of components in each cascade multiphase converter (2-cascade N-phase) 

Converter Name 
No. of Components 

Inductors Capacitors Diodes Switches 

CCM 2N N 2N 2N 

SCM 2N N 3N N 

NSCM N+1 1 N+2 N 

 

 

3. CONVERTER ANALYSIS 

This section discusses the output voltage analysis of the cascade multiphase DC-DC buck power 

converters topologies, which are conventional cascade multiphase (CCM), simplified cascade multiphase 

(SCM), and the new simplified cascade multiphase (NSCM) DC-DC buck power converters. The discussion 

is then followed by deriving the conduction losses of NSCM DC-DC buck power converters. This section 

ends after the optimization of the number of cascades and the number of phases desired for the NSCM DC-

DC buck power converter, based on conduction losses. 

 

3.1. Output voltage analysis 

All output voltage equations in section 2 have been derived by neglecting voltage drops across the 

diodes, inductors, and switching devices. In fact, the voltage drops across switching devices, diodes, and 

inductors will reduce the maximum output voltage that can be obtained. 

In the derivation of average output voltage, it is assumed that the voltage drop across the transistor 

during conduction can be represented as (5) 

 

𝑣𝑄 = 𝑉𝑄 + 𝑅𝑄𝑖𝑄 (5) 

 

and the voltage drop across the diode during conduction as (6) 

 

𝑣𝐷 = 𝑉𝐷 + 𝑅𝐷𝑖𝐷 (6) 

 

where VQ is the on-state drop voltage of the active switch, RQ is the on-state drain-to-source resistance, iQ is 

the current flowing in the switch, VD is diode forward voltage, RD is the diode internal resistance and iD is the 

current flowing in the diode. The resistances of inductors are assumed the same as RL. Note that all capacitors 

are assumed ideal with no parasitic components. 

By using the state-space averaging method, the average output voltage under continuous conduction 

mode can be determined. The results are shown in Table 2, where it is assumed that the number of stages is 

equal to two. This concept can be extended easily for cascaded number more than two.  

Output voltage expressions in Table 2 are then plotted in Figure 5. It is assumed that the active 

switching devices are MOSFETS (model FCH023N65S3). According to the datasheet, the resistance of 

FCH023N65S3 is 18 mΩ. All diodes are model MUR1560G with a constant voltage drop of 0.6 V and a 

resistance of 18.4 mΩ. Inductor resistances are assumed equal to 30 mΩ. It is assumed that the DC input 

voltage is constant at 312 V.  

Figure 5 shows the output voltage as a function of output current. As the load increases, NSCM 

converter has higher steepness compared to SCM and CCM, indicating that NSCM produces high conduction 
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losses. This steepness decreases as the number of phase decrease. The average output voltage of NSCM 

decreases faster than the others because it was assumed that all inductors are the same. In practice, the current 

rating of the primary inductor (LP) of NSCM must be lower and, therefore, has the smallest resistance. 

Based on the same voltage ratio, Figure 6 shows that NSCM has smaller duty cycle compared to two 

other figures. As the number of phases increases, the maximum duty cycle decreases. Fortunately, a small 

duty cycle is enough to achieve the desired low output voltage. This small duty cycle can be increased by 

adjusting the switching technique, which is left for future investigation. 

 

Table 2. Output voltage expressions of CCM, SCM, and NSCM 
Converter Name Output Voltage Expression 
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Figure 5. Output voltage as a function of output 

current 

 
 

Figure 6. Voltage ratio as a function of duty cycle 

 

 

 

3.2. Converter power loss analysis 

3.2.1.  Conduction losses 

The output power of a DC-DC buck power converter is mentioned in (7) 

 

𝑃𝑜 = 𝑉𝑜𝐼𝑜  (7) 

 

where Po is the output power, Vo is the average output voltage, and Io is the average output current of the 

converter. 

By using the output voltage expression in Table 2 and (7), the output power of the new simplified 

cascade multiphase (NSCM) DC-DC buck power converter, as shown in Figure 6, is (8) 
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The input current (Id) of the DC-DC power converter is written in (9) 

 

𝐼𝑑 = 𝑁𝛼2𝐼𝑜 (9) 

 

By substituting (9) into (8), the (10) is obtained  

 

( )

( ) ( )

2

2 2 2 3

2

1 2

1 1 2

do d D o S o

L S D

o

P E i N V I V I

N R R N N R
I

N

  

   

= − + − −

 + + + + − −

 (10) 

 

The power loss (Ploss) of the converter is the difference between the input and output power, which is shown 

in (11) 

 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑖 − 𝑃𝑜  (11) 

 

Meanwhile, the converter input power (Pi) is mentioned in (12) 

 

𝑃𝑖 = 𝐸𝑑𝐼𝑑  (12) 

 

By using (10)-(12), the (13) is obtained 
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( ) ( )
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loss D o S o
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o

P N V I V I

N R R N N R
I

N

  

   

= + − +

 + + + + − +

 (13) 

 

The (13) shows that voltage drops across the inductors, diodes, and power switches cause the 

conduction losses to occur. Figure 7 plots the comparison of conduction losses between CCM, SCM, and the 

NSCM. NSCM has higher conduction losses compared to two other cascade multiphase topology, due to 

larger number of used diodes. In practice, the resistance of the primary inductors (LP) of the proposed 

converter is lower than the others because the current rating is higher and the required inductance is smaller. 

Thus, the total conduction losses will be just the same as the others, or even lower. 

  

3.2.2.  Switching losses 

Switching losses of the converter depend on some parameters, which are: input voltage (Ed), 

switching frequency (fs), current flow on the switch (Isw), and the internal switch characteristics (rise time/tr 

and turn-off crossover time/tcf). 

Based on the literature review [27], [28], the switching losses equation for CCM, SCM and NSCM 

is shown in (14). In this expression, K1 is the sum of tr and tcf, while K2 is the sum of current-linear dependent 

rise time and current-linear dependent turn-off crossover time.  

 

𝑃𝑠𝑤 =
1

2
𝐸𝑑𝑓𝑠(𝐾1𝐼𝑠𝑤 + 𝐾2𝐼𝑠𝑤

2 )  (14) 

 

The (14) shows that all DC-DC buck power converters have the same switching losses. 

 

3.3. Converter optimization 

Comparison between the number of phases and cascades is done to find the optimum topology of 

the proposed converter. Table 3 shows the variants to be optimized. The optimization is done based on the 

requirements of the converter as in Table 4, with the specification of the components in Table 5. 

The graph in Figure 8 shows the comparison of conduction losses in each variation of cascades and 

phases under full load and half load conditions. As the number of cascades increases, the losses also increase. 

Meanwhile, when the number of phases increases, the losses decrease. Amongst the variants, the 2-cascade 

4-phase topology has the lowest conduction losses. This topology will then be experimented further. 
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Figure 7. Conduction losses 

 

 

Table 3. Six variations to find the optimum topology 
No. No. of Cascades No. of Phases 

1. 

2 

2 

2. 3 

3. 4 

4. 

3 

2 

5. 3 

6. 4 
 

Table 4. Converter specifications 

No. 
Converter’ 

Specification 
Value 

1. Input Voltage (311.127 ± 10%) V 

2. Output Voltage 10 V 

3. Output Current 50 A 

4. Output Power 500 W 
 

 

 

Table 5. Converter components 
Components Value 

Inductors L = 1 mH; RL = 30 mΩ 

Switches RS= 18 mΩ 

Diodes VD = 0.85 V; RD = 1.84 mΩ 

Capacitor 470 µF; 400 VDC 

Switching Frequency 10 kHz 
 

 
 

Figure 8. Conduction losses of the six analyzed variants 

 

 

4. EXPERIMENTAL RESULTS 

The chosen schematic design from section 3 can be seen in Figure 9. This schematic is then 

experimented, with the setup as shown in Figure 10. The primary inductor (LP) has an inductance of 2.6 mH 

with an internal resistance of 0.9 Ω, while the secondary inductor on each phase (LS1, LS2, LS3, and LS4) is 1.03 

mH with an internal resistance of 0.5 Ω. MOSFETs (FCH023N65S3) with an internal resistance of 18 mΩ 

are used as active switches. To drive the MOSFETs, four drivers model TLP350 are used. Ultrafast diodes 

MUR1560G are used in the topology, which has 0.6 V as the drop voltage with an internal resistance of 18.4 

mΩ. The switching frequency of 10 kHz is used in all the experiments. The input voltage was downscaled to 

100 V, with fixed aluminum resistors as the load resistance. No attempts have been done to select better 

inductors to improve converter performance. 

Figure 11 shows the voltage ratio of the proposed converter, in which the measured results are very 

close to the calculations. Figure 12 shows the output voltage as a function of output current, which is 

obtained from changing the load resistance on fixed duty cycle of 0.125. Measured results are also close to 

the calculation results. Figure 13 shows the conduction losses of the converter as the function of the converter 

voltage ratio. Overall, these figures have shown that the calculation obtained from the formulas in Section 3 

have been proven right. The measured results have small differences with the calculation ones due to 

inaccuracy of measuring inductors’ resistance. Figure 14 shows output current waveform with the ripple 

waveform. These figures prove the converter claim for large output current with low output ripple. 
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Figure 9. Two-cascade four-phase schematic design 

 

 

 
 

Figure 10. Experimental setup 

 

 

 
 

Figure 11. Voltage reduction ratio as a function of 

duty cycle 

 
 

Figure 12. Output voltage as a function of output 

current 
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Figure 13. Conduction losses as a function of voltage 

ratio 

 
 

Figure 14. Output current waveform (orange-

colored) with the enlarged output ripple waveform 

(blue-colored) 

 

 

5. CONCLUSION 

A new simplified cascade multiphase DC-DC buck power converter for low voltage large current 

applications has been proposed in this paper. The proposed converter has very high voltage reduction ratio 

with smaller number of components. Output voltage analysis, useful to estimate the conduction losses, is also 

presented. Even though conduction losses of the proposed converter are higher than the conventional cascade 

multiphase DC-DC buck power converter, the switching losses is lower. Optimum number of cascades and 

number of phases is presented in this paper. Experimental results showing the basic performance have been 

included. Selection of the optimal components for the proposed converters is under investigation. 
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