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 In this paper, the artificial neural network (ANN) has been utilized for 

rotating machinery faults detection and classification. First, experiments 

were performed to measure the lateral vibration signals of laboratory test rigs 

for rotor-disk-blade when the blades are defective. A rotor-disk-blade system 

with 6 regular blades and 5 blades with various defects was constructed. 

Second, the ANN was applied to classify the different x- and y-axis lateral 

vibrations due to different blade faults. The results based on training and 

testing with different data samples of the fault types indicate that the ANN is 

robust and can effectively identify and distinguish different blade faults 

caused by lateral vibrations in a rotor. As compared to the literature, the 

present paper presents a novel work of identifying and classifying various 

rotating blade faults commonly encountered in rotating machines using 

ANN. Experimental data of lateral vibrations of the rotor-disk-blade system 

in both x- and y-directions are used for the training and testing of the 

network. 
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1. INTRODUCTION 

For competitiveness and high quality operating requirements in industries, the need for effective 

rotating machines has been significant. This can be achieved in part through continuous monitoring of 

operating conditions to detect any fault before the rotating machines break down. Faults in rotating blades are 

very difficult to detect by direct blade vibration measurements and evaluation. This is because blades often 

operate in very harsh environments. In addition, no significant results have been obtained in the quest for a 

more efficient artificial intelligence system for real time monitoring of these faults yet. 

The performance and reliability of spinning machines are maintained by constantly tracking their 

working conditions in order to detect any defects before causing a significant problem or failure of the 

system that may impact output targets. There are research articles on the rotor vibration response [1]-[3], that 

are usually monitored in the industry and analysed for identification of faults. These efforts have resulted in 

the development of knowledge base and standard procedures to identify machine faults such as shaft 

misalignment and unbalance, rotor eccentricity, blade crack, twisting, and rubbing. Many industrial rotating 

machines have rotors, disks, blades, and vanes. Hence, it is important to monitor the dynamic response of the 

machine parts such as rotor-disk-blade system that potentially can develop machine faults contributed by 
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blade defects. Despite the fact that vibration response of rotor can be easily measured with the help of 

proximity probe and accelerometer, direct measurement of vibration response of the blades sometimes 

becomes very difficult and expensive since blades sometimes operate at very extreme conditions of 

temperature and pressure encountered in gas and steam turbines. Also, strain gauges mounted on the blades 

to measure blade deflection have short operating life due to these extreme conditions, blade aerodynamics 

interference. As a result, non-contacting and non-intrusive techniques to measure the blade vibrations due to 

blade defects have been developed. One such technique is used by Lawson and Ivey [4], in which blade tip 

timing is measured using tip clearance capacitance probes. 

Many researchers have extracted the blade dynamic response from coupled responses of rotor-disk-

blade systems [5], [6]. For this, they established a relationship between rotor torsional vibration and blade 

dynamic response. However, one study shows blade fault detection from rotor torsional vibrations. There are 

few studies that exhibit relationship between the rotor-blade system and blade vibration [7]. Few studies 

exhibit relationship between the rotor-blade system and blade vibration [6], [8]. One of these studies 

measured [8], analytically and experimentally, the blade vibrations through the lateral vibration of the 

support of a rotor-blade system. Even though specific blade faults were not investigated in this study, they 

provided the basis for blade fault detection from rotor lateral vibration. 

A Substantial amount of work on the detection of various rotating machine faults such as blade 

distortion, shaft misalignment, rotor unbalance, rotor crack. using machine learning algorithms has been 

undertaken. A number of review articles are found on fault diagnosis of rotating machinery using the 

artificial intelligence (AI). Liu et al. [9] presented a comprehensive review of previous research on such 

faults using naïve Bayes, support vector machine, deep learning algorithms and the k-nearest neighbor 

(KNN). The benefits, constraints, and practical implications of such AI algorithms were also discussed. 

Another review paper by Lei et al. [10] presented the machine learning algorithms utilized over the years to 

detect machine faults. They categorized the algorithms coined as intelligent fault diagnosis (IFD) into (a) 

traditional machine learning theories such as the probabilistic graphical method (PGM), artificial neural 

network (ANN), support vector machine (SVM), k-nearest neighbor (KNN), (b) convolutional neural 

network (CNN), ResNet and deep learning theory such as deep belief network (DBN), and (c) transfer 

learning theories such as transfer component analysis (TCA) and the generative adversarial network (GAN). 

They indicated that almost all the IFD could be utilized to diagnose rotating machinery faults. Both review 

papers focus on different machine learning algorithms and state-of-the-art techniques useful in diagnosing 

different rotating machine faults rather than on the faults or any specific machine fault. Sánchez et al. [11] 

used the random forest and KNN machine learning algorithms as classifiers of the gearbox and bearing 

faults. Through these, a methodological structure for detecting multiple faults in rotating machinery was 

discussed. From the vibration signal, they calculated thirty features in the time domain through function 

ranking techniques such as relief, information gain and the chi-square. 

Considering some specific rotating machine faults, one of the faults is the shaft unbalance. Out of 

many papers on this type of fault, a representative paper by Gohari and Eyadi [12] presented a comparative 

study of two machine learning algorithms namely the decision tree algorithms and the KNN to identify the 

shaft unbalance parameters such as eccentric radius, disc number and the eccentric mass value. They 

concluded on the basis of their results that KNN estimates the faults better than the Decision Tree algorithm. 

Another fault is the blade rub-impact. Prosvirin et al. [13] identified this fault in turbines using a deep neural 

network (DNN) and the Auto encoder-based nonlinear function approximation. They used a two-step process 

for the diagnosis. First, they used a deep under-complete de-noising auto encoder for determining the 

nonlinear function of the system and then they used the resulting residual signals from the original signals as 

input to the DNN to find the current state of the blade-rotor system. 

Classical ANN algorithms have been utilized by many researchers in the past to diagnose various 

rotating machine faults. Zhong et al. [14] utilized single back-propagation (BP), single ellipsoid 

backpropagation, and hierarchical diagnostic artificial neural network (HDANN) algorithms to classify 

different rotor system faults. They showed that HDANN required only known fault patterns instead of 

training the entire network. The fault data were collected experimentally through a motor and test rig rotor 

system and then fed into the three algorithms for fault identification. They concluded that HDANN classified 

the faults most accurately. Nahvi and Esfahanian [15], used multi-layer feed forward neural network with 

nonlinear neurons (sigmoidal activation function) to identify 40 rotating machine faults. They could train the 

neural network from selected data and then utilize it to identify the faults. Adewusi and Albedoor [16] used 

multi-layer feed-forward ANN to detect crack in a rotor. Two- and three-layer networks with different 

number of neurons in each layer were tested to determine an optimal ANN configuration. Vibration signals 

of a normal rotor and that with a propagating crack were used to train and test the ANN using back-

propagation (BP) algorithm. The results showed that the performance of a three-layer ANN was better than 

that of two-layer ANN in detecting the severity of the propagating crack in the rotor. Nguyen et al. [17], on 
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the other hand, worked on the gearbox system and developed a deep neural network based diagnosis model to 

diagnose and classify multi-level tooth cut gear faults operating under variable shaft speeds. They first 

implemented the adaptive noise control approach to remove any unwanted noise in the original vibration 

signal and then employed the stacked sparse autoencoder based deep neural network to diagnose and classify 

the gearbox faults.  

In addition to the application of ANN to diagnose specific rotating machine faults, some previous 

works are reported here identifying rotor-bearing system faults using multi-layer BP neural network [18], 

rolling element bearing faults using time-domain features in ANN [19], minor faults such as scratch and hole 

in the bearings of induction motors using five machine learning algorithms and convolutional neural network 

[20], and compound bearing defects such as inner race, outer race and roller defect for embedded systems 

under varying rotational speeds using MobileNet-v2; a light state-of-the-art convolutional neural network 

model [21]. In addition, two articles related to rotating shafts addressed the the detection of ball bearing 

faults producing vibrations in Rotating shafts using multi-layer feed forward neural network [22] and 

induction motor shaft misalignments using multi-scale entropy (MSE) coupled with back-propagation neural 

network [23]. 

Related to the present study of utilizing ANN for blade faults identification, some previous work can 

be found. Rao and Srinivas [24] used single layer neural network to locate the optimal position of rotational 

constraint along the length of a pre-twisted blade on a rotor system in order to increase the lowest natural 

frequency undergoing torsional vibration. Two papers are found that address the blade faults of variable 

rotational speed wind turbines. First is by Chen et al. [25] in which they used the deep learning approach by 

embedding attention mechanism into long-short-term memory neural network to identify the wind turbine 

blade imbalance fault due to the accumulation of ice on the blades. Second paper by Joshuva et al. [26] 

presented a study investigating various wind turbine blade faults using first variational mode decomposition 

(VMD) for experimental data signal pre-processing and then multi-layer perceptron (MLP) for blade fault 

classification. The experimental data of lateral vibrations of the shaft in only vertical axis, i.e., y-axis was 

acquired specific to wind turbines. 

 

 

2. EXPERIMENT AND ESTABLISHMENT OF THE SIMULATION MODEL 

2.1. Experimental set-up and data measurement 

Figure 1 shows the experimental test rig, consisting of a variable speed electric motor, a rotor, a 6-

blade disk and 2 ball bearing supports. The disk and the 6 normal blades were designed and fabricated in a 

workshop. In addition to the 6 normal blades, more blades were designed and fabricated and the following 

defects were introduced on the blades: twisted, bent, bulged, cracked, slotted bulged, cracked and slotted 

blades. Some of the blades with defects are shown in Figure 2 (a). Four accelerometers are attached to the 

two supports along the x- and y-axes to measure the lateral vibration of the rotor-disk-blade system. The 

signals of the accelerometers are connected to a six-channel B&K data acquisition system and then to a 

laptop with Pulse software (Figure 2 (b)). The Pulse software is capable of measuring, analysing and storing 

vibration signals from the accelerometers and the signals can be exported to excel file for further processing. 

 

 

 
 

Figure 1. Experimental test-rig for rotor-disk-blade responses at a constant running speed 

 

 

First, the test-rig was operated by running the electric motor and rotor-disk-blade system at a speed 

of 1000 rpm and the vibration signals in time domain for the set-up with 6 normal blades were obtained from 

the four accelerometers and saved in the laptop. One of the 6 normal blades was then replaced with one blade 

with a defect and the set-up was operated again at 100 rpm to obtain the vibration signal of the system with a 

defective blade. The defective blade was later removed and subsequently replaced with other defective blades 

one after the other to obtain the vibration signals for all the defective blades. All the time domain vibration 
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signals of the rotor-disk-blade system were exported to excel file for analysis. The vibration signals from the 

x- and y-axis accelerometers attached to the support that is close to the disk-blade system are considered for 

further analysis. 

 

 

 
(a) 

 
(b) 

 

Figure 2. (a) three defective blades (bent, twisted and broken blades); (b) PC and B&K pulse system and 

vibration data measurement and analysis accessories. 

 

 

2.2. Data collection procedure 

Experiments are conducted on the different blades of a wind turbine by varying the frequency (F) 

from 0 Hz to 2000 Hz. The x- and y-coordinates for different sets of blades „namely‟ the good blades without 

any defects, twisted blades, bent blades, bulged blades, cracked blades, and slotted blades; all of which are 

recorded in an excel file. The dataset so prepared has 13 attributes and 2134 observations. The attributes are 

the frequency, x- and y-axis vibration measurements of the good blades without any defects, twisted blades, 

bent blades, bulged blades, cracked blades, and slotted blades.  

 

2.3. Simulation model 

Python is a high-level programming language. Python is a programming language that can be 

utilized to create desktop graphical user interface (GUI) programs [28]. Furthermore, since Python is a high-

level programming language, it helps you to concentrate on the application's core features while it handles 

the mundane programming tasks. Python was used in this study to develop the ANN for classifying various 

rotating blade faults commonly encountered in rotating machines. Compared to other software‟s, python is a 

general-purpose programming language. Python gives more control over one's code organization and better 

management of namespace. There are three main steps to develop the ANN in python [29], i.e. 1) using the 

provided data as input 2) predicting the output 3) comparison of the prediction with the actual output and 4) 

changing its internal state in order to correctly predict the next time. 

 

 

3. ARTIFICIAL NEURAL NETWORK 

ANN refers to a computational model mimicking the human brain and its information processing 

capabilities [30], [31]. An ANN is an ensemble of highly interconnected processing units known as the 

neurons [32]. There are a number of numerical values between the neurons that shows the strength of the 

connections known as the weights [23], [33]. The ANN is capable of self-organization and acquisition of 

information, i.e., learning [34]. 

 Figure 3 shows a typical three feed forward neural network, comprising of the input layer, hidden 

layer and output layer. In this network, the middle layer nodes only receive information from the nodes of the 

previous layer and forward their outputs to consecutive layer nodes only. The hidden layers are not connected 

with the outside world directly. The computational elements or nodes used in neural network models are 

normally nonlinear and generally analog. As shown in Figure 3, the simplest node sums the weighted inputs 

and transfers the result through nonlinearity. The major part of the ANN is its learning algorithm. The BP, 

which is a supervised learning algorithm, is the most widely used for various applications [35], [36]. 
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Figure 3. Typical feed-forward ANN 

 

 

3.1. Back-propagation algorithm 

A type of supervised learning is the BP algorithm [37], [38]. It takes place in two stages, „namely‟ 

forward propagation of information and backward propagation of errors [14]. It learns by presenting the input 

and output data patterns repeatedly and propagating the error backward each time and adjusting the weights 

until the error minimizes to a reasonable low value. Some of the BP algorithm's fundamental weaknesses 

include longer convergence period and susceptibility to failure of training. One of the modifications 

introduced to resolve this issue include adding a momentum term for faster training, thereby compromising 

additional memory space. The following equation gives the output of the neuron [37]: 

 

  
     (  

 )    ∑    
    

     
        (1) 

  

Where w1j and xj are the associated weights and the inputs of the ANN, respectively. Figure 4 show 

how the BP algorithm is implemented together with the processing elements. Inputs (Xp1.............XpNo) are 

initially propagated and the response is computed via the network. Then the output error (Tp1……….TpNM) is 

propagated backward through the network and the weights are modified according to the algorithm based on 

the gradient descent [30]. This method continues until the average mean square error at the output reaches an 

acceptable minimum value. For this work, the BP algorithm will be implemented in the ANN to classify the 

different blade faults. 

 

 

 
 

Figure 4. Typical implementation of the BP algorithm 

 

 

4. DATA EXPLORATION AND PRE-PROCESSING 

There are several important steps in data exploration and pre-processing. This section gives an 

account of the steps involved in data exploration and pre-processing for vibration faults. 
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4.1. Exploratory data analysis 

The next important step after data collection is the exploratory data analysis. The data is analysed by 

summarizing the basic statistical description of the data for finding anomalies, missing values, duplicate 

values, and patterns or relationship between the attributes. Statistical description of the data reveals that all 

attributes are floating point numbers and there are no missing values in the dataset. The range of the attribute 

frequency is from 0 Hz to 2000 Hz. For all other attributes, the minimum value is a very small continuous 

floating point value that has a power of 1e-9. Further analysis of the data using duplicated in pandas, a data 

analysis software, reveal there are no duplicate rows in the dataset. To further analyse the dataset for outliers, 

skewness and kurtosis functions in pandas have been used and the results reveal high positive value for skew 

and kurtosis for all attributes except the frequency. High positive value for skew indicates all attributes 

except frequency are right skewed which indicates the data distribution is not symmetrical and highly skewed 

with longer tails to the right side. High positive values for kurtosis reveal numerous outliers in the dataset for 

all attributes except frequency. The results shown in Table 1 indicate significant reduction in skewness and 

kurtosis values which indicates the transformed dataset is now closer to normal distribution with reduced 

outliers. Exploratory data analysis reveals that the dataset has numerous outliers and is positively highly 

skewed. Therefore, the training of the ANN would not be ideal and with the help of a suitable transformation 

algorithm, the dataset has to be transformed to a new dataset devoid of outliers and skewness. 

 

 

Table 1. Analysis of the attributes in the dataset 

 
Before processing  After processing 

Skewness Kurtosis Skewness Kurtosis 

F 0 -1.2 -1.97483 5.53236 

Good X 14.94039 254.9368 -0.90639 0.649114 
Good Y 45.25426 2074.963 -1.42593 4.291290 

Twisted X 14.87656 324.2824 -0.74694 -0.13571 

Twisted Y 43.77001 1981.886 -1.12677 2.473182 
Bent X 11.33756 162.3006 -0.84875 0.286339 

Bent Y 44.99905 2058.742 -1.36612 4.188487 

Bulged X 24.84025 759.1271 -0.90449 0.610648 
Bulged Y 46.12201 2129.461 -1.55131 5.372109 

Cracked X 20.21336 546.9635 -0.88551 0.480553 

Cracked Y 45.89052 2115.043 -1.4902 4.656801 
Slotted X 18.88787 463.5698 -0.82665 0.072927 

Slotted Y 46.16197 2131.942 -1.47583 5.158623 

 

 

4.2. Data transformation 

Even many transformations are available, log transformation is applied to all attributes of this 

dataset to reduce the skewness to make the data as normal as possible. For the attribute frequency, the log 

transformation is applied to all values except the first value which is zero. For all other values, the application 

of the Log transformation results in a negative value and hence, after applying Log transformation, the sign 

of the data is changed from negative to positive. The basic statistical details of the transformed dataset are 

summarized in Table 2. 

 

 

Table 2. Statistical description of the data after transformation 
 Count Mean Standard deviation Minimum 25% 50% 75% Maximum 

Frequency 2134 2.86629 0.43507 -0.02803 2.69890 2.99993 3.17602 3.30096 
Good X 2134 5.69455 0.78286 2.48596 5.15335 5.89308 6.29755 8.73845 

Good Y 2134 5.72442 0.57929 1.59341 5.44511 5.85112 6.10766 8.52216 

Twisted X 2134 5.60984 0.86286 2.40997 4.92536 5.90164 6.30942 8.67312 
Twisted Y 2134 5.67138 0.59989 1.98165 5.33377 5.80116 6.08955 8.81861 

Bent X 2134 5.67871 0.79395 2.75327 5.16924 5.89219 6.29509 8.68163 

Bent Y 2134 5.71686 0.60327 1.47977 5.42954 5.84326 6.12088 8.95687 
Bulged X 2134 5.72402 0.77280 2.25688 5.20475 5.93149 6.31493 8.66393 

Bulged Y 2134 5.76086 0.60550 0.89438 5.47030 5.89358 6.15173 8.96419 

Cracked X 2134 5.71243 0.78809 2.34252 5.20453 5.93768 6.31626 8.39567 
Cracked Y 2134 5.74478 0.60007 1.29346 5.46098 5.87850 6.13801 8.76337 

Slotted X 2134 5.67220 0.81912 2.46975 5.08905 5.92917 6.30308 8.38482 

Slotted Y 2134 5.69869 0.60130 0.73089 5.39308 5.83621 6.10179 8.76579 
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5. DESIGN OF THE ANN AND THE PREDICTED RESULTS 

5.1. Design of the ANN  

This section describes the architecture of the ANN designed to predict the 10 faults (5 defects in 

each x- and y-directions) in the blades of the rotating machines. The input layer of ANN consists of three 

neurons „namely‟ the frequency, good x and good y attributes. The output layer consists of 10 neurons 

namely, x- and y-axis vibration measurements of twisted blades, bent blades, bulged blades, cracked blades 

and slotted blades. After trial and error with a number of neurons, a single hidden layer with 80 neurons with 

linear activation function is considered between the input and output layer as shown in Figure 5. Before 

choosing the linear activation, correlation between the attributes were considered and a positive correlation 

between the input and output attributes was found as shown in the heat map (see Figure 6). 

 

 

 
 

Figure 5. The architectures of the ANN to find the faults in the rotating machine 

 

 

 
 

Figure 6. Heat map of the correlation between the attributes after data transformation 

 

 

5.2. Selection of the training and testing dataset 

Scikit-learn machine learning library available for machine learning for python programming [21] is 

used to split the transformed dataset into training and testing dataset. Ninety percent of the dataset is used for 

training and ten percent of the dataset is used for testing. 1920 observations are randomly split as training 

data and 214 observations are split as testing data. 

 

5.3. Training of the ANN 

TensorFlow is a machine learning platform used for training neural networks and it is an open 

source library with plenty of fast numerical computing algorithms available to create ANN models and to 

train them. Keras is an API that runs on top of TensorFlow and enables fast experimentation to fine tune and 

train ANN models. Training of ANN in this research is carried out using Keras and TensorFlow as it helps to 

sequentially build and test neural network very quickly with minimal lines of code.  
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Adam optimizer (adaptive moment estimator) is used for upgrading the weights of the dense layers 

of the ANN during the training. Adam uses adaptive learning rate during training phase and changes the 

individual learning rates for each parameter based on squared gradients and momentum to enable faster 

convergence. Adam is superior to stochastic gradient descent optimizer which uses a learning rate that does 

not vary during the iterations and hence preferred for training the ANN.  

During training the mean squared error (MSE) loss function is minimized. The maximum epoch is 

specified as 80. Very common issue with training neural network model is the problem of over fitting. To 

overcome this problem EarlyStopping feature available in keras to stop training when a monitored metric has 

stopped improving has been used. The patience argument available in EarlyStopping function is set to five 

which stops the training when the loss function has not significantly improved over 5 iterations. The 20 per 

cent of the training data was used for validation to test the model during training. The convergence of the 

model is provided in Table 3. In Table 3, MSE, MAE, VAL_MSE and VAL_MAE refer to mean squared 

error during training, mean absolute error during training, mean squared error during validation, and mean 

absolute error during validation respectively. As seen from Table 3 the model converged in 17 iterations 

when there is no significant improvement in mse during training. The early stopping feature used in this work 

ensures the training continues until the error significantly decreases and error for training and validation data 

is almost similar to avoid over fitting. The mse during training and validation is almost the same at the end of 

the 17
th

 iterations which indicates the model will not over fit for unseen data. The plot the convergence 

characteristics are shown in Figure 7 (a) and Figure 7 (b). From Figure 7 (a) and Figure 7 (b), it is evident 

that during training of ANN, the MSE and MAE reduces to the lowest possible value.  

 

 

Table 3. Convergence characteristics of the model 
Epoch MSE MAE VAL_MSE VAL_MAE 

0 18.711683 2.649993 0.358549 0.439097 
1 0.231891 0.369927 0.171996 0.322538 

2 0.143537 0.290199 0.129434 0.275002 

3 0.129264 0.274902 0.12706 0.270735 
- - - - - 

- - - - - 

13 0.064647 0.189005 0.054906 0.17281 

14 0.060739 0.182184 0.048822 0.163773 

15 0.066706 0.193218 0.06819 0.208151 

16 0.060984 0.182181 0.05758 0.182925 
17 0.064329 0.189406 0.061712 0.195263 

 

 

 
(a) MSE     (b) MAE 

 

Figure 7. Plot of (a) MSE, and (b) MAE during training of ANN 

 

 

5.4. ANN prediction results 

In this section, the plot of the actual value and the predicted value for all 10 faults are shown. In 

Figures 8 (a)-(j), the trained models are evaluated on the test data and the plots for the 10 attributes are 

shown. The predicted values for each fault are shown in the y-axis, while the actual values are shown in x-

axis. The result shows that ANN can predict the x- and y-axes lateral vibrations of most of the faults very 

closely. A 45° line indicates a prediction with minimal errors and the data points away from the 45° line 

indicates the error in prediction by the ANN. Generally, the results imply that the actual and predicted values 

for most of the faults are closely similar with wider variations in few fault examples. 
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(a)  

 
(b)  

 

 
(c)  

 
(d)  

 

 
(e)  

 
(f)  

 

 
(g)  

 
(h)  

 

 
(i) 

 
(j)  

 

Figure 8. Plot of actual and predicted values for 10 faults, (a) twistedx, (b) twistedy, (c) bentx, (d) benty, (e) 

bulgedx, (f) bulgedy, (g) crackedx, (h) crackedy, (i) slottedx, and (j) slottedy 

 

 

6. CONCLUSION 

In this paper, the ANN has been applied to classify different faults of rotating machines. First, the 

lateral vibrations of a rotor-disk-blade device consisting of 6 healthy blades were analyzed experimentally 
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and through finite element modal analysis. The system responses in two directions were obtained at 1000 

rpm. Five faulty blades (twisted, bent, bulged, cracked, and slotted) were replaced in turn by one of the 6 safe 

blades. Comparisons of a twisted blade's response magnitudes with those of healthy blades indicate that the 

vibration amplitudes in the acceleration response range of the first two resonant frequencies decreased, while 

the amplitude nearer to the running speed increased. 

After obtaining the data on the aforementioned rotational machine faults, the ANN was utilized to 

be able to classify and discriminate the x- and y-axis lateral vibrations of the rotor. The ANN was coded in 

python software. Initially, correlation between the attributes was considered and it was shown that there is a 

positive correlation between the input and output attributes. For training the ANN, 90% of the dataset is used 

and 10% of the dataset is used for testing. The result shows that ANN can very accurately predict the two-

dimensional (x- and y-axes) lateral vibrations of most of the faults. The results imply that the ANN can 

effectively recognize and discriminate different lateral vibration in a rotor depending on training and testing 

with different data samples of the faults types. Further research concentrates on the application of the ANN 

for practical fault detection and classification. 
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