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 Early in 1980s, fast torque dynamic control has been a subject of research in 

AC drives. To achieve superior torque dynamic control, two major 

techniques are used, namely field oriented control (FOC) and direct torque 

control (DTC), spurred on by rapid advances in embedded computing 

systems. Both approaches employ the space vector modulation (SVM) 

technique to perform the voltage source inverter into over modulation region 

for producing the fastest torque dynamic response. However, the motor 

current tends to increase beyond its limit (which can damage the power 

switches) during the torque dynamic condition, due to inappropriate flux 

level (i.e., at rated stator flux). The proposed research aims to formulate an 

optimal switching modulator and produce the fastest torque dynamic 

response. In formulating the optimal switching modulator, the effects of 

selecting different voltage vectors on torque dynamic responses will be 

investigated. With greater number of voltage vectors offered in dual 

inverters, the identification of the most optimal voltage vectors for producing 

the fastest torque dynamic responses will be carried out based on the 

investigation. The main benefit of the proposed strategy is that it provides 

superior fast torque dynamic response which is the main requirements for 

many alternating current (AC) drive applications, e.g., traction drives, 

electric transportations and vehicles. 
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1. INTRODUCTION 

Low and medium-power applications are typically served by induction motor drives. Researchers 

have modified the power and control circuit designs of this motor to make it suitable for higher-power 

applications [1]. Open-end winding is one of the modifications, three-phase stator windings with two separate 

inverters. The direct torque control (DTC) scheme for induction motor drives has gotten a lot of attention in 

recent years in automotive motor drive applications [2]. The reasons of its popularity are due to its simple 

structure and fast torque dynamic response, as compared with the field-oriented control (FOC) scheme [3], 

which was introduced a decade earlier. Hasse proposed the notion of indirect field oriented control (IFOC) in 

1968 [4], [5]. Blaschke later developed direct field oriented control (DFOC) within Siemens in 1971. Both 

authors suggested a rotor flux vector-aligned orientation. In 1979, a vector-controlled AC drive developed by 

Toshiba in the industry, which consisted of an inverter and an induction motor. Werner Leonhard of the 

about:blank
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Technische Universitat Braunschweig further developed FOC methods in 1980, expanding more 

opportunities for AC drive. In [6] SVM-DTC was implemented and it maintains constant switching 

frequency irrespective of rotor speed. To reduce torque and flux ripples further research has been carried on 

SVM-DTC [7]-[9] 

The motor equations are turned (rewritten) in FOC into a coordinate system that rotates in lockstep 

with the rotor flux vector. Under constant rotor flux amplitude, there is a linear relationship between control 

variables and torque in the field coordinate system. The decoupled torque production in an individually 

excited DC motor corresponds to this transformation, which has a good physical basis. However, from a 

theoretical standpoint, field orientation is not limited to rotor flux orientation, but may also include stator or 

air gap flux [10]. There were a few references in the late 1980 s on stator flux orientation [11] that showed 

some benefits over rotor flux-oriented control. The universal field orientation theory is a generalization [12].  

When it emerged in the mid-1980s that control systems would be standardized based on the FOC 

philosophy, Depenbrock [13], [14], and Takahashi and Noguchi published groundbreaking research departing 

from the concept of coordinate transformation and comparison with DC motor control. Depenbrock 

suggested direct self-control (Direkte Selbstregelung) in 1986 (while at Brown Boveri, now ABB), primarily 

for high-power drives with voltage source inverters. Takahashi and Noguchi (1986) suggested direct torque 

control, which was designed primarily for low, and medium voltage drives. These pioneers recommended 

replacing motor decoupling with bang-bang self-control, which works well with inverter semiconductor 

power devices' on-off operation. Direct torque control (DTC) is the general name for this control approach. 

Uwe Baader investigated the DTC concept in greater depth and contributed significantly [15]. 

Unlike FOC, which uses stator current as an inner control goal, direct self-control (DSC) and DTC 

use hysteresis controls to regulate stator flux. DSC was created with high power and traction in mind. The 

stator voltage vectors in DTC are chosen directly from the comparative effects of the motor torque and flux 

with their reference values [16]. In comparison to FOC, both have high torque dynamics. Both control 

methods, however, have the disadvantages of variable switching frequency and greater torque ripple. Since 

then, researchers have been working tirelessly to overcome these innate flaws. These issues provided 

researchers with numerous opportunities to work on various strategies to prevent the variable switching 

frequency [17]-[19], while remaining true to the basic principle of torque control.  

A hysteresis comparator controls the torque and flux linkage in a typical DTC, and a switching table 

chooses the voltage vector [20]. The conventional two-level VSI fed winding induction motor drive offers 

only eight voltage vectors (six active voltage vectors and two zero voltage vectors), and the selection of the 

vector is not exactly the most suitable vector for the performances of DTC. Alternatively, implemented DTC 

in dual inverter for open end winding gives the greater number of vectors where more freedom to select the 

most optimal voltage vector which gives the best performances. However, the selection of active vectors to 

regulate the stator flux into a circular flux path during a torque dynamic condition, does not guarantee to 

produce the fastest torque dynamic responses. This is due to the fact that one of two active voltage vectors 

used to control the flux is not the optimal vector that can provide a quick stator flux change and hence a fast 

torque dynamic response. Therefore, the propose method by using open-end winding with dual-inverter is 

presented to improve the torque dynamic response. This article is structured is being as. Section 2 discussed 

on conventional method by using single-sided supply and open-end winding induction machine while in 

section 3 presents on the simulation results for both methods discussed on section 2. 

 

 

2. SINGLE-SIDED SUPPLY AND OPEN-END WINDING INDUCTION MACHINE 

2.1.  Single-sided supply induction machine 

The most common single-sided supply setup for induction machines is a two-level VSI connected to 

the stator winding with a star or delta connection. Figure 1 depicts a typical induction machine setup with a 

DC source magnitude (Vdc). Figure 2 depicts the VSI switching states that result in eight voltage vectors 

[21]. The two groups of voltage vectors that can be found are active voltage vectors (V1-V6) and non-active 

or zero voltage vectors (V0 and V7). The six active voltage vectors have the same magnitude but with 

different angle. When there is a single magnitude to control the torque or/and flux at the same rate of rise, the 

DTC has only one choice. However, at extreme operating conditions (e.g., at very low speeds), the vector 

selection appears to be insufficient, resulting in high switching frequencies and torque ripple. 
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Figure 1. The single-sided supply induction machine 
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Figure 2. Voltage vector for single-sided 

winding 

 

 

2.2.  Open-end winding induction machine 

Figure 3 depicts a schematic of the induction motor drive's open-end winding configuration. In this 

method, two two-level inverters are used to feed power from both sides of the stator windings. The inverter's 

DC source is set to half the DC voltage of a standard single-sided two-level VSI. Besides, the VSIs' DC 

sources are electrically separated from one another to prevent the presence of zero-sequence voltage 

(common-mode voltages) [22]. 
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Figure 3. Open-end winding induction machine supplied using dual-inverter 

 

 

The measures in [23]-[25] can be used to measure the open-end winding drive's phase and leg/pole 

voltage relationship. The voltage through the open-end windings, for example, can be written as:  

 

𝑉𝐴1𝐴2 = 𝑉𝐴1𝑁1 + 𝑉𝑁1𝑁2 − 𝑉𝐴2𝑁2 (1) 

 

𝑉𝐵1𝐵2 = 𝑉𝐵1𝑁1 + 𝑉𝑁1𝑁2 − 𝑉𝐵2𝑁2 (2) 

 

𝑉𝐶1𝐶2 = 𝑉𝐶1𝑁1 + 𝑉𝑁1𝑁2 − 𝑉𝐶2𝑁2 (3) 

 

where 𝑉𝐴1𝑁1, 𝑉𝐵1𝑁1, 𝑉𝐶1𝑁1, 𝑉𝐴2𝑁2, 𝑉𝐵2𝑁2, 𝑉𝐶2𝑁2 are the voltage of leg/pole, 𝑉𝑁1𝑁2 is the voltage difference in 

the DC buses' negative rails (also known as common-mode voltages) while 𝑉𝐴1𝐴2, 𝑉𝐵1𝐵2 and 𝑉𝐶1𝐶2 are the 

voltage of phase. The number of three phase voltage is zero since the DC buses are separated. 

 

As a result, 𝑉𝑁1𝑁2 can be calculated using (1)-(3) is being as: 

 

𝑉𝑁1𝑁2 =
1

3
[(𝑉𝐴1𝑁1 − 𝑉𝐴2𝑁2) + (𝑉𝐵1𝑁1 − 𝑉𝐵2𝑁2) + (𝑉𝐶1𝑁1 − 𝑉𝐶2𝑁2)] (4) 
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By substituting 𝑉𝑁1𝑁2 into (1)-(3), the step voltage can be expressed as: 

 

[

𝑉𝐴1𝐴2
𝑉𝐵1𝐵2
𝑉𝐶1𝐶2

] =
1

3
[
2 −1 −1
−1 2 −1
−1 −1 2

] [

𝑉𝐴1𝑁1 − 𝑉𝐴2𝑁2

𝑉𝐵1𝑁1 − 𝑉𝐵2𝑁2

𝑉𝐶1𝑁1 − 𝑉𝐶2𝑁2

] (5) 

 

For d-q axis component: 

 

[
𝑉𝑠𝑑
𝑉𝑠𝑞

] =
2

3
[
1

−1

2

−1

2

0
√3

2

−√3

2

] [

𝑉𝐴1𝐴2
𝑉𝐵1𝐵2
𝑉𝐶1𝐶2

] (6) 

 

The two-level single-sided VSI generates 23 switching state combinations. A total of 23 x 23 or 64 

switching state variations are generated when dual two-level inverters are used. In fact, however, only 19 

switching state variations are possible. The developed voltage vectors from the 19-switching combination can 

be divided into four categories: small voltage vectors (�̅�𝑠𝑆,1 − �̅�𝑠𝑆,6), medium voltage vectors (�̅�𝑠𝑀,1 − �̅�𝑠𝑀,6), 

largest voltage vectors (�̅�𝑠𝐿,1 − �̅�𝑠𝐿,6), and zero or non-active voltage vectors (�̅�𝑠𝑍,0), as shown in Figure 4. As 

shown in Figure 2, the voltage vectors (�̅�𝑠𝐿,2), which correspond to [S1, S2, S3, S4, S5, S6], can be generated by 

switching inverter 1 to position V2 and inverter 2 to position V5. In addition, the information of torque and 

flux status either to increased or decreased and the stator flux position is needed for choosing the suitable 

switching states from the given look-up table in [26]. 

 

 

 
 

Figure 4. Mapping voltage vector for open-end winding 

 

 

3. SIMULATION RESULTS 

Figure 5 shows the block diagram for the proposed method by using open-end winding. As can see, 

there is a dual VSI in this method and the look-up is difference when using the single VSI. The look up table 

will covers all possible voltage vectors including small, medium, and large vectors. Circuit simulation and 

contrast experiments between the proposed method and the traditional method 2-level DTC have been carried 

out using MATLAB/Simulink to verify the proposed method. Table 1 lists the unit and control parameters 

that were used in the experiments. 
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Figure 5. Block diagram of open-end winding induction motor drive 

 

 

Table 1. Machine and control parameters 
Stator resistance, Rs 6.1 

Rotor resistance, Rr 6.2298 

Stator self-inductance, Ls 0.47979 

Rotor self-inductance, Lr 0.47979 

Mutual inductance, Lm 0.4634 

Number of pole pairs, P 1 

Moment of inertia J 0.01 

Viscous friction, B 0 

DC Voltage, Vdc 240 

Sampling Period, DT 5e-6 

 

 

Figure 6 and 7 shows the results consists of torque, flux, phase current and voltage for single supply 

and open-end winding of DTC. As shown the different between the waveform is happen after the step change 

apple from 1Nm to 4Nm. Figure 8 shows the results of torque capability between single supply or open-

ended winding. From the results, the open-ended winding maintains regulate towards its reference 4Nm since 

double DC supply given. Figure 9 shows the comparison of dynamic response for single-side supply and 

open-end winding. It can be observed that the proposed method by using open-end winding shows the 

improvement of dynamic response of torque in the induction motor. The performance has slightly increase 

and provide a better performance due to more possible voltage vectors to be selected to drive the induction 

motor. The most optimal voltage vector can be chosen with the open-end winding. The torque is changes 

from 1 Nm to 4 Nm to see the response when sudden torque demand in the applications. The time response 

for open-end winding, T(OEW)=1.11345 which faster compare to time response for single-sided supply, 

T(SSS)=1.11355. 
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Figure 6. Output Result for Single-Sided Supply of DTC 

 

 

 
 

Figure 7. Output Results for Open-End Winding 

 

 

 
 

Figure 8. Torque Capability for Single and Open-Ended Winding of DTC 
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Figure 9. Comparison of dynamic response for single and open-end winding 

 
 

4. CONCLUSION  

This paper shows that by using the open-end winding on induction machine can provide more 

voltage vector and produced more switching states. With many optional of switching states, the most optimal 

switching states can be chosen to improve the dynamic response for induction machine. Therefore, using the 

simulation results, the performance of proposed system by using open-end winding is verified compare to the 

single sided supply. In simulation results indicates that the response of the open-ended is 1.11345 seconds 

faster response that the single sided supply. This proposed system by using open-ended winding provides 

good solution of a dynamic response for induction motor. 
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