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 This work presents a novel direct torque and flux control (DTFC) of 

permanent magnet synchronous motor (PMSM) with analytically-tuned 

proportional integral (PI) controllers. The proportional (Kp) and integral (Ki) 

gains of the PI controllers were accurately determined, from first principle, 

using the model of the control system. The PI flux and torque controllers 

were then developed in rotor reference frame. The designed PI controllers, 

together with the torque and flux controllers, were tested on a permanent 

magnet synchronous motor (PMSM). The results obtained were compared 

with results from conventional DTFC system using manually-tuned PI 

controllers. The total harmonic distortion (THD) of motor phase currents is 

18.80% and 4.81% for the conventional and proposed models respectively. 

This confirms a significant reduction in torque ripples. The control system 

was tested for step torque loading and found to offer excellent performance 

both during load changes, speed reversal, and constant load conditions. 
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1. INTRODUCTION 

Permanent magnet synchronous motors (PMSM) have very wide field of application owing to their 

many advantages such as higher efficiency, power factor, power density, and torque-to-inertia ratio compared 

to the traditional induction motor often referred to as the workhorse of the industry [1]-[3]. This has resulted 

in intensified research activities in the design, analysis, and control of PMSM. In most industrial applications 

where PMSMs are used, high precision in speed and torque is usually required [4]-[9]. It has been established 

that direct torque control (DTC) offers better dynamic performance compared to field orientation control (FOC) 

especially for spplications requiring high precision, sensitivity, and minimized torque ripples [10]-[14].  

Advancement of DTC has witnessed much attention in the development of control algorithms 

without considering analytical evaluation of PI controller gains and this has greatly affected precision and 

speed/torque distortion. Different DTC strategies based on hysteresis control were presented in [15]-[17]. In 

these works, inverter voltage vectors were selected from hysteresis-based switching tables but the problem of 

high torque ripples persists. Bo-Wen et al. in [18], a DTC method based on active disturbance rejection 

https://creativecommons.org/licenses/by-sa/4.0/
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control was presented while [19] presented DTC in flux weakening region. In the hysteresis controllers were 

replaced with PI controllers without any analytical method for selection of the proportional and integral gain 

values of the PI controllers [20]-[22]. The results of these works show various levels of torque ripples which 

are not suitable for applications requiring minimal ripples in torque and speed. Recently, a model-based 

analytical evaluation of PI controller gains for field orientation control (FOC) was developed in [23] and 

tested on a PMSM. The results show that by accurately determining the gains of the PI controller, torque, and 

speed ripples as well as overshoots were greatly reduced. 

The greatest drawback of the traditional DTC is its high torque and flux ripples. However, several 

researchers have tried different methods in an attempt to reduce these ripples and improve the overall 

performance of the traditional DTC. Some of these methods include: the hysteresis regulators-based stator 

voltage vector selection in [16], the active disturbance rejection controller DTC in [18], the MT-frame flux 

weakening DTC in [19], the SVM-based predictive torque control in [20], the PI based DTC with pole 

placement technique in [21], and sliding mode control with PI-based DTC in [22]. Apart from the predictive 

torque algorithm in [21] that significantly reduced the torque ripples, other algorithms did not achieve much 

in terms of torque and flux ripples reduction.  

From the foregoing, it is seen that a clear gap exists in model-based analytical evaluation of PI 

controller gains for DTC systems. In this work therefore, a PI controller tuned by analytical means, using 

mathematical model of the control system, is developed and employed in a novel DTC algorithm. The 

effectiveness of the proposed scheme is demonstrated on a PMSM fed by a space vector pulsewidth 

modulated voltage source inverter (SV-PWM VSI). MATLAB/Simulink was used for modelling and 

simulation in this work. 

This work is organised is being as: section 1 is Introduction while section 2 presents the PI 

controller design developed using the machine qd-axes model. Section 3 contains the design of the PI flux 

and torque controllers while section 4 presents the simulations and results. Section 5 is the conclusion. 
 

 

2. PI CONTROLLER DESIGN  

The dq-axis voltage of a permanent magnet synchronous motor can be written in terms of flux 

linkage as [23]. 
 

𝑉𝑑 = 𝑅𝑖𝑑 +
𝑑𝜆𝑑

𝑑𝑡
− ꙍ𝜆𝑞 (1) 

 

𝑉𝑞 = 𝑅𝑖𝑞 +
𝑑𝜆𝑞

𝑑𝑡
+ ꙍ𝜆𝑑 (2) 

 

Where 

 

𝜆𝑑 = 𝐿𝑑𝑖𝑑 + 𝜆𝑝𝑚  (3) 

 

And  

 

 𝜆𝑞 = 𝐿𝑞𝑖𝑞   (4) 

 

From (3) and (4). 

 

𝑖𝑑 =
𝜆𝑑−𝜆𝑝𝑚

𝐿𝑑
  (5) 

 

 𝑖𝑞 =
𝜆𝑞

𝐿𝑞
  (6) 

 

Substituting (5) and (6) into (1) and (2) respectively gives. 

 

𝑉𝑑 = 𝑅(
𝜆𝑑− 𝜆𝑝𝑚

𝐿𝑑
) +

𝑑𝜆𝑑

𝑑𝑡
− ꙍ𝜆𝑞 (7) 

 

𝑉𝑞 = 𝑅
𝜆𝑞

𝐿𝑞
+

𝑑𝜆𝑞

𝑑𝑡
+ ꙍ𝜆𝑑   (8) 

 

Laplace transform of (7) and (8) gives. 
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𝑉𝑑(𝑠) = (
𝑅

𝐿𝑑
+ 𝑠)𝜆𝑑(𝑠) − ꙍ𝜆𝑞(𝑠) −

𝑅𝜆𝑝𝑚

𝐿𝑑
  (9) 

 

𝑉𝑞(𝑠) = (𝑠 +
𝑅

𝐿𝑞
)𝜆𝑞(𝑠) + ꙍ𝜆𝑑(𝑠) (10) 

 

From (9)  

 

𝜆𝑑(𝑠) = [𝑉𝑑(𝑠) + ꙍ𝜆𝑞(𝑠) +
𝑅𝜆𝑝𝑚

𝐿𝑑
]

1

(
𝑅

𝐿𝑑
 +𝑠)

  (11) 

 

In 11 is represented in block diagram as of Figure 1. It is seen from (1) and (2) that the dq flux control 

loops are not independent due to the back-emf terms in both equations. To make the dq flux control loops 

independent, a back-emf decoupling term is introduced. This decoupling term is introduced just after the PI 

controller to serve as a disturbance with the same value but but having opposite sign as the back-emf term in the 

motor model. The block diagram of the system is now as shown in Figure 2. Since the decoupling term will cancel 

the effect of the back emf term, Figure 2 reduces to Figure 3. There will be both sensor delay and computation time 

delay in the system; a first order time delay is introduced to modify Figure 3 as shown in Figure 4. 
 

 

 
 

Figure 1. Open loop block diagram of the flux control model 

 

 

 
 

Figure 2. Closed-loop block diagram of decoupled flux control 

 

 

 
 

Figure 3. Closed-loop block diagram of the flux control model 

 

 

 
 

Figure 4. Closed-loop block diagram with time delay 
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The open loop transfer function, 𝐺𝑂𝐿 , is given by (12) as shown in. 
 

𝐺𝑂𝐿(𝑠) =
𝐾𝑝𝑠+𝐾𝑖

𝑠
.

1

𝑇𝐷𝑠+1
.

𝐿𝑑

𝐿𝑑𝑠+𝑅
 (12) 

 

If the zero of the PI controllers (
−𝐾𝑖

𝐾𝑝
⁄ ) is designed to cancel the pole (

−𝑅𝑎
𝐿𝑑

⁄ ) of the PMSM by pole-

zero cancellation method, then we let: 
 

 𝐾𝑖𝑝 =
𝐾𝑖

𝐾𝑝
=

𝑅

𝐿𝑑
  (13) 

 

From (13), 
 

𝐾𝑖  =  𝐾𝑝𝐾𝑖𝑝   (14) 

 

Substituting (14) into (12) gives. 
 

𝐺𝑂𝐿(𝑠) =
𝐾𝑝𝑠 + 𝐾𝑝𝐾𝑖𝑝

𝑠
.

1

𝑇𝐷 𝑠 +1
 .

1

𝑠+ 
𝑅

𝐿𝑑

  (15) 

 

𝐺𝑂𝐿(𝑠)  =  
𝐾𝑝

𝑇𝐷
 

1

𝑠(𝑠+ 
1

𝑇𝐷
)
  (16) 

 

Let K = 
𝐾𝑝

𝑇𝐷
 , so that (16) becomes. 

 

𝐺𝑂𝐿(𝑠) =
𝐾

𝑠(𝑠+ 
1

𝑇𝐷
)
  (17) 

 

The closed-loop transfer function, 𝐺𝐶𝐿 is given as. 
  

𝐺𝐶𝐿 =
𝐺𝑂𝐿

1+ 𝐺𝑂𝐿
 =

𝐾

𝑠2+ 
𝑠

𝑇𝐷
+ 𝐾

  (18) 

 

The general equation of a second-order system is [24], [25]. 
 

𝐻(𝑠) =
𝜔𝑛

2

𝑠2+2𝛿𝜔𝑛𝑠+ 𝜔𝑛
2   (19) 

 

By comparing (18) and (19), we obtain. 
 

𝜔𝑛
2 = 𝐾 𝑜𝑟 𝜔𝑛 = √𝐾  (20) 

 

And 
 

2𝛿𝜔𝑛 =
1

𝑇𝐷
 𝑜𝑟 𝛿 =

1

2𝑇𝐷√𝐾
  (21) 

 

Where 𝜔𝑛 is the natural frequency and 𝛿 is the damping ratio. The maximum overshoot of a second order 

system is given by [23]. 
 

𝑀𝑝 = 𝑒−𝜋𝛿 √1− 𝛿2⁄   (22) 
 

So, by choosing the maximum percentage overshoot allowed and the value of 𝑇𝐷; 𝐾𝑝 and 𝐾𝑖 can be 

calculated using (20)-(22). 

 

 

3. DESIGN OF FLUX AND TORQUE CONTROLLERS 

3.1.  PI flux controller model 

In rotor reference frame, the flux of a PMSM is controlled by d-axis current. So, the PI flux 

controller is designed to produce the accurate d-axis reference voltage from d-axis flux error which is its 

input. Thus, to obtain a flux controller model we make use of the d-axis voltage (7). 



Int J Pow Elec & Dri Syst ISSN: 2088-8694  

 

A novel direct torque and flux control of permanent magnet synchronous motor with … (Kenneth Odo) 

2107 

From (7). 
 

𝑉𝑑 = R (
𝜆𝑑−𝜆𝑝𝑚

𝐿𝑑
) +

𝑑𝜆𝑑

𝑑𝑡
− ω𝜆𝑞 =  

𝑅

𝐿𝑑
(𝜆𝑑 − 𝜆𝑝𝑚) +  

𝑑𝜆𝑑

𝑑𝑡
 −  ω𝜆𝑞   (23) 

 

Let the time rate of change of d-axis flux, 
𝑑𝜆𝑑

𝑑𝑡
, be equal to d-axis flux error per sample time, 

𝑒𝑑

𝑇𝑠
, where 𝑒𝑑 is 

the d-axis flux error and 𝑇𝑠 is the sample time. 

Therefore, 
 

𝑑𝜆𝑑

𝑑𝑡
=  

𝑒𝑑

𝑇𝑠
  (24) 

 

Taking integral of 24 gives 24. 
 

𝜆𝑑 =
1

𝑇𝑠
 ∫ 𝑒𝑑 𝑑𝑡  (25) 

 

Substituting (24) and (25) into (23) gives. 
 

𝑉𝑑 =
𝑅

𝑇𝑠𝐿𝑑
∫ 𝑒𝑑 𝑑𝑡 −

𝑅

𝐿𝑑
 𝜆𝑝𝑚 +  

𝑒𝑑

𝑇𝑠
− 𝜔𝜆𝑞  (26) 

 

Since 𝐾𝑖𝑝 =
𝐾𝑖

𝐾𝑝
=

𝑅

𝐿𝑑
  

 

In (25) is re-written as. 

 

𝑉𝑑 =
𝐾𝑖

𝑇𝑠𝐾𝑝
∫ 𝑒𝑑 𝑑𝑡 −

𝐾𝑖

𝐾𝑝
 𝜆𝑝𝑚 +

𝑒𝑑

𝑇𝑠
− 𝜔𝜆𝑞  (27) 

 

In (26) is the required PI flux controller model.  

 

3.2.  PI torque controller model  

The torque equation of a PMSM is given as [23]. 

 

𝑇𝑒 = 1.5𝑝(𝜆𝑝𝑚𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞  ) (28) 

 

Where 𝑝 is the pole pair. 

Since 𝐿𝑑 = 𝐿𝑞  for non-salient pole machine, then. 

 

𝑇𝑒 = 1.5𝑝𝜆𝑝𝑚𝑖𝑞  (29) 

 

In (28) shows that electromagnetic torque of a non-salient pole PMSM is directly proportional to the q-axis 

current, but from in (4), 

 

𝜆𝑞 = 𝐿𝑞𝑖𝑞  ⇒  𝑖𝑞 =
𝜆𝑞

𝐿𝑞
  (30) 

 

Substituting (29) into (28). 

 

𝑇𝑒  =  1.5𝑝𝜆𝑝𝑚
𝜆𝑞

𝐿𝑞
  (31) 

 

Differentiating both sides of (30) with respect to time gives. 

 
𝑑𝑇𝑒

𝑑𝑡
 =  

1.5𝑝𝜆𝑝𝑚

𝐿𝑞

𝑑𝜆𝑞

𝑑𝑡
  (32) 

 

Let the time rate of change of torque, 
𝑑𝑇𝑒

𝑑𝑡
, be equal to the torque error per sample time, 𝑒𝑡. So 

 
𝑑𝜆𝑞

𝑑𝑡
=

𝐿𝑞

1.5𝑝𝜆𝑝𝑚
𝑒𝑡   (33) 
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Similarly, the PI torque controller is designed to produce the exact q-axis reference voltage from its input, 

which is torque error. Since the torque of a PMSM in rotor reference frame is controlled by q-axis current, 

the PI torque controller model is obtained by modifying the q-axis voltage (in (8)). From (8). 

 

𝑉𝑞 = 𝑅
𝜆𝑞

𝐿𝑞
+

𝑑𝜆𝑞

𝑑𝑡
+ 𝜔𝜆𝑑   (34) 

 

Let the time rate of change of q-axis flux, 
𝑑𝜆𝑞

𝑑𝑡
, be equal to the q-axis flux error per sample time. That is;  

 

 
𝑑𝜆𝑞

𝑑𝑡
=

𝑒𝑞

𝑇𝑠
  (35) 

 

 𝜆𝑞 =  
1

𝑇𝑠
 ∫ 𝑒𝑞 𝑑𝑡 (36) 

 

In (32) and (35) show that the q-axis flux error per sample time is directly proportional to torque error. So, by 

multiplying torque error by 
𝐿𝑞

1.5𝑝𝜆𝑝𝑚
, the q-axis flux error per sample time 

𝑒𝑞

𝑇𝑠
 is obtained. Therefore, 

substituting (35) and (36) into (34), (35) is obtained. 

 

𝑉𝑞  = 
𝐾𝑖

𝑇𝑠𝐾𝑝
∫ 𝑒𝑞 𝑑𝑡 + 

𝑒𝑞

𝑇𝑠
 + 𝛚𝜆𝑑 (37) 

 

The block diagram of the conventional DTFC as reported in [21] is shown in Figure 5 while the block 

diagram of the proposed DTFC with analytically-tuned PI controller is shown in Figure 6. 

 

 

 
 

Figure 5. Block diagram of the normal or conventional DTFC system 

 

 

 
 

Figure 6. Complete block diagram of the proposed DTFC system 
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4. SIMULATIONS AND RESULTS 

The conventional and the proposed models were modelled and simulated in MATLAB/Simulink 

environment and tested on a PMSM with the parameters shown in Tabel 1. The designed controller 

calculated gains of 𝐾𝑝 = 326.72 and 𝐾𝑖 = 31583 while the normal PI controller gains were tuned to 𝐾𝑝 = 5.75 

and 𝐾𝑖 = 150 in the simulation. The reference torque varies from 5 Nm to -5 Nm and returns to 5 Nm during 

a total simulation time of 5 seconds. The results show that the proposed model effectively tracked the 

reference torque with almost no ripples while the conventional model produced much torque ripples.  

Figure 7 compares the plot of torque response of the proposed and conventional models. It is seen 

that while the conventional PI controller produced much torque ripples, the proposed model gave almost no 

torque ripples. Another strength of the proposed model is its ability to calculate the gains of the controller 

rather than relying on the error-prone and time-wasting tuning methods used in normal PI controllers. Figure 

8 compares the phase currents of the two models. A difference in phase currents, with that of the proposed 

model being higher and with lower total harmonic distortion (THD) is observed.  

The disparity in phase currents is explained by Figure 9 which shows the 𝑖𝑞  and 𝑖𝑑 currents. It is 

seen in Figure 9 that the torque producing current (𝑖𝑞) is essentially the same for both models. However, the 

d-axis current of the proposed model is higher than the normal one. This is because the two models are 

different and the proposed model uses higher gains. So, the control effort pushes any difference resulting 

from the higher gain to the d-axis current in order to ensure that the response effectively tracks the command 

torque. For these reasons, the phase currents which are combinations of d-axis and q-axis currents (by inverse 

Park transform) is different for the two models. The FFT for phase ‘a’ current for the conventional and the 

proposed DTFC are shown in Figures 10 and 11 respectively. The proposed model shows superior 

performance with THD of 4.81% compared to THD of 18.80% for the conventional DTFC. 

 

 

Table 1. The models conventional and simulated in MATLAB/Simulink 
Motor parameters Value 

Rated Power 9.4 kW 

Frequency 50 Hz 
Stator resistance (Rs) 0.203 Ω 

Constamt rotor flux linkage(𝜆𝑓) 0.123Wb 

Inductance d axis (𝐿𝑑) 0.0021H 

Inductance q axis (𝐿𝑞) 0.0021H 

Inertia constant (J) 0.0048Kgm2 

No. of poles (P) 4 

 

 

  
 

Figure 7. Torque response of the two model 

 

Figure 8. Stator phase currents 
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Figure 9. dq-axes currents 
 

 

 
 

Figure 10. FFT analysis of phase ‘a’ current for conventional DTFC 
 
 

 
 

Figure 11. FFT analysis of phase ‘a’ current for proposed DTFC 
 

 

5. CONCLUSION 

This work has presented a novel direct torque and flux control in which the PI controllers were 

tuned analytically from first principle and compared with a conventional DTFC system that employs 

manually-tuned PI controllers. The accuracy of both the control model and the PI controller tuning method is 

evident in the results which show excellent tracking of the reference torque with no overshoot and less 

ripples than the one with normal PI controllers. By being able to calculate its controller gains; the developed 

algorithm saves the control engineer the trouble of tuning PI controllers by trial-and-error method and also 

performs better than conventional PI controllers. The developed model can be adopted for speed or torque 

control of PMSM. The overall objectives of the work have been achieved. 
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