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 This study explores the numerical optimization of water turbine runner profile 

performance using a surface vorticity model algorithm. The turbine is 

designed on a laboratory scale and operates at a net head of 0.09 m, 400 rpm, 

and a water flow rate of 0.003 m3/s. The initial design of the turbine runner 

was optimized to minimize losses in the hydrofoil. The optimization algorithm 

is coded in MATLAB software to obtain the optimal stagger angle that will 

be used in the water turbine design. Furthermore, design validation was 

performed using computational fluid dynamics analysis ANSYS CFX to 

determine the water turbine performance. The settings used in ANSYS CFX 

include the reference pressure of 1 atm, turbulence model shear stress 

transport, and inlet boundary conditions using total pressure and static 

pressure outlet boundary conditions. The computational fluid dynamics 

analysis reveals that by optimizing the design, the efficiency of the water 

turbine increases by approximately 2.6%. The surface vorticity model 

algorithm can be applied to optimize the design of the water turbine runner. 
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1. INTRODUCTION 

The development of small and medium scale hydroelectric power plants in Indonesia is currently 

growing rapidly. This situation arises because the potential is quite large and is in line with the government’s 

program to develop renewable energy resources. Geographically, Indonesia is an archipelagic country. The 

unequal distribution of electricity load centers as well as the low level of electricity demand in several regions 

are factors that hinder the supply of electrical energy on a national scale. Facilities in disadvantaged, frontier, 

and outermost areas are particularly disadvantaged. The decreasing availability of fossil energy sources and 

increasing awareness to preserve the environment will encourage the increased use of alternative energy sources. 

Pico and micro hydro power plants are also widely developed in developing countries [1]–[4]. 

The water turbine is one of the main components of a hydropower system. Thus, good turbine design is 

necessary to endow the generator with high efficiency. One method to optimize the design of the water turbine 

runner is to use surface vorticity model analysis which is a boundary integral method for evaluating fluid flow. 

The surface vorticity model has been developed and applied as a predictive tool for various engineering problems, 

such as for handling potential flows for any situation, including lifting bodies. Surface vorticity modelling offers 

the advantage of being the most natural of all boundary integral techniques [5].  

https://creativecommons.org/licenses/by-sa/4.0/
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In this study, an analysis of the runner profile of a two-dimensional water turbine was performed because 

of the advantage of computing speed relative to a more complex three-dimensional analysis. Potential flow 

analysis using a surface vorticity model is applied to minimize losses in the runner profile. Several other 

optimization methods related to potential flow analysis of the runner turbomachinery profile were conducted using 

a viscous vortex lattice method analysis [6], multiphase large eddy simulations [7], [8], computational fluid 

dynamics analysis [9]–[14] and experimental analysis [15]–[17]. In this work, design validation was implemented 

to determine performance using computational fluid dynamics analysis ANSYS CFX. 
 
 

2. MATERIALS AND METHODS 

2.1.  Turbine design 

In this study, the water turbine runner design employed is a propeller turbine type because the turbine 

can operate from very low to medium head [18]–[20]. The turbine is designed on a laboratory scale with runner 

specifications as shown in Table 1. The design of the main turbine dimensions and the basic shape of the runner 

profile uses a speed triangle analysis approach on a two-dimensional profile as shown in Figure 1. Figure 1 

presents a sectional profile of a water turbine runner that is periodic in the x-axis direction. Such an approach 

is necessary because the nth element in all aerofoils will have the same vortex strength. Figure 1 shows a 

velocity triangle that occurs in the profile of a runner with a stagger angle (), water flow angle (), absolute 

velocity (C), relative velocity (W), tangential velocity (U), pitch (t) and chord (l). Subscript 1 is on the inlet 

side, and subscript 2 is on the outlet side. 
 

 

Table 1. Specification and dimensions of the turbine runner 
Symbol Value Description 

Hnet 0.09 m Head netto 

Q 0.003 m3/s  Debit 

n 400 min-1 Rotational speed 
nq 133.33 min-1 Specific speed 

Cm 0.565 m/s Meridional speed 

D1 0.0949 m Outer diameter of turbine runner 
DN 0.0475 m Diameter of hub 

z 5 Number of propeller blades 

 
 

 
 

Figure 1. Velocity triangles of cascade geometry for a runner turbine  
 
 

2.2.  Potential flow analysis 

Surface vorticity modelling offers advantages over turbine runner profile panels which are actually 

direct simulations of ideal fluid flow. This method is the most natural of all boundary integral techniques. Fluid 

flow passing through a two-dimensional water turbine runner profile in a plane (x,y) with a uniform flow 

velocity (W∞) and tilt angle (∞) were analysed with this surface vorticity model. Figure 2 shows a flow diagram 

for runner potential flow analysis. The outlet flow angle (𝛽2), which is the output of the surface vorticity model 

algorithm, will be used to calculate the new stagger angle (). 

Some of the equations for calculating the potential flow analysis on the water turbine runner profile 

are as in (1) to (12): 

 

∆𝑆𝑛 = √[(𝑋𝑛+1 − 𝑋𝑛)
2 + (𝑌𝑛+1 − 𝑌𝑛)

2] (1) 
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𝛽𝑛 = 𝑎𝑟𝑐 tan (
𝑦𝑛+1−𝑦𝑛

𝑥𝑛+1−𝑥𝑛
)  (2) 

 

𝑥𝑛 =
1

2
(𝑋𝑛+1 + 𝑋𝑛)  (3) 

 

𝑦𝑛 =
1

2
(𝑌𝑛+1 + 𝑌𝑛)  (4) 

 

𝐾(𝑠𝑚 , 𝑠𝑛) =
∆𝑠𝑛

2𝑡
{
sin

2𝜋

𝑡
(𝑦𝑚−𝑦𝑛) cos 𝛽𝑚−sinh

2𝜋

𝑡
(𝑥𝑚−𝑥𝑛) sin 𝛽𝑚

cosh
2𝜋

𝑡
(𝑥𝑚−𝑥𝑛)−cos

2𝜋

𝑡
(𝑦𝑚−𝑦𝑛)

}  (5) 

 

𝐾(𝑠𝑚 , 𝑠𝑚) ≈ −
1

2
−

1

8𝜋
(𝛽𝑚+1 − 𝛽𝑚−1)  (6) 

 

𝐾(𝑠𝑜𝑝𝑝 , 𝑠𝑚) = −
1

∆𝑠𝑜𝑝𝑝
∑ 𝐾(𝑠𝑛 , 𝑠𝑚)∆𝑠𝑛
𝑀
𝑛=1

𝑛≠𝑜𝑝𝑝
  (7) 

 
∑ 𝐾(𝑠𝑚, 𝑠𝑛)𝛾(𝑠𝑛) = 𝐾(𝑛, 1)𝛾(𝑠1) + ⋯+ (𝐾(𝑛, 𝑡𝑒) − 𝐾(𝑛, 𝑡𝑒 + 1))𝛾(𝑡𝑒) + ⋯+ 𝐾(𝑛,𝑀)𝛾(𝑀)𝑀
𝑛=1   (8) 

 

𝑟𝑠ℎ𝑚 = −𝑈∞ cos 𝛽𝑚 − 𝑉∞ sin 𝛽𝑚  (9) 

 

𝐶𝑝 = 1 − {
𝛾(𝑠)

𝑊∞
}
2

  (10) 

 

𝛽2 = 𝑎𝑟𝑐 tan {(
1−

Γ𝑣
2𝑡

1+
Γ𝑣
2𝑡

) tan𝛽1 − (
2

1+
Γ𝑣
2𝑡

)
Γ𝑢

2𝑡
}  (11) 

 

𝐶𝐿∞ = 2(
𝑡

𝑙
) (tan 𝛽1 − tan 𝛽2) cos 𝛽∞  (12) 

 

with runner profile input data coordinates (Xn,Yn), element lengths (∆𝑆𝑛), profile slopes (𝛽𝑛), pivotal points 

(xn,yn), coupling coefficients K(sm, sn), right hand sides (𝑟𝑠ℎ𝑚), the back-diagonal correction 𝐾(𝑠𝑜𝑝𝑝 , 𝑠𝑚), the 

Kutta-condition 𝐾(𝑠𝑚 , 𝑠𝑛)𝛾(𝑠𝑛), the surface pressure coefficient (𝐶𝑝), and the lift coefficient (𝐶𝐿∞) [5]. 

 

 

 
 

Figure 2. Flow diagram for runner potential flow analysis 
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2.3.  Analysis of computational fluid dynamics (CFD) 

CFD is a science that studies how to predict fluid flow, heat transfer, chemical reactions and other 

phenomena by solving mathematical equations to produce three-dimensional data. The continuity equation and 

the Navier-Stokes equation in cylindrical coordinates are described in the (13) to (16): 
𝜕𝑣𝑟

𝜕𝑟
+

𝜕𝑣𝑧

𝜕𝑧
+

𝑣𝑟

𝑟
= 0  (13) 

 

𝑣𝑟
𝜕𝑣𝜃

𝜕𝑟
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
−

𝑣𝑟𝑣𝜃

𝑟
= 𝜈 (

𝜕2𝑣𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟2
+

𝜕2𝑣𝜃

𝜕𝑧2
) (14) 
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𝜕𝑟
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−

𝑣𝜃
2

𝑟
+

𝜕𝜌

𝜌𝜕𝑟
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𝜕2𝑣𝑟

𝜕𝑟2
+

1

𝑟

𝜕𝑣𝑟
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−

𝑣𝑟

𝑟2
+

𝜕2𝑣𝑟

𝜕𝑧2
) (15) 

 

𝑣𝑟
𝜕𝑣𝑧

𝜕𝑟
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
+

𝜕𝜌

𝜌𝜕𝑧
= 𝑔 + 𝜈 (

𝜕2𝑣𝑧

𝜕𝑟2
+

1

𝑟

𝜕𝑣𝑧

𝜕𝑟
+

𝜕2𝑣𝑟

𝜕𝑧2
) (16) 

 

where 𝑣𝜃 , 𝑣𝑟  and 𝑣𝑧 are the tangential, radial, and axial velocity components, ρ is the density of water, g is 

gravity and υ is the kinematic viscosity. 

The main advantage of CFDs is their ability to quickly produce results at low cost, thereby making 

them especially suitable for optimization [21]. However, CFDs also require rigorous quantitative validation by 

physical models before they are used for design purposes because the results from CFDs can be higher than 

those from real experimental conditions [22]–[24]. 

Numerical simulations were performed on ANSYS CFX with a three-dimensional water turbine 

runner model and hexahedral mesh elements. The settings used include the reference pressure of 1 atm and 

turbulence model of shear stress transport. The inlet boundary conditions include total pressure and static 

pressure outlet boundary conditions. High resolution type turbulence numeric with double precision were 

employed. Given the axisymmetric shape of the runner, the analysis in this work utilized the turbo mode, 

namely, modelling with one propeller blade. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Runner potential flow analysis 

The runner is the part that directly converts the potential energy contained in the water into torsional 

energy on the turbine shaft. Accordingly, the initial design of the water turbine runner in this work was 

optimized using a surface vorticity model algorithm on the runner profile coded in MATLAB. The output of 

the algorithm aims to obtain the outlet flow angle (𝛽2) so that the optimal stagger angle () can be calculated 

and the losses that occur in the hydrofoil can be minimized. The water turbine runner blade is divided into five 

segments: segment 1 is near the side of the hub, segment 3 is in the middle of the runner and segment 5 is on 

the outer side of the runner. The results of the surface vorticity model algorithm are shown in Table 2. For the 

type 1 turbine, the initial design was achieved using the speed triangle analysis method on a two-dimensional 

runner profile as shown in Figure 1. The type 2 turbine is a turbine design that was optimized by employing 

the surface vorticity model algorithm.  

 

 

Table 2. Comparison of design stagger angles and optimization results 
 Stagger angle () Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

Turbin type 1  initial 47.48 58.99 65.48 69.64 72.56 

Turbin type 2  optimasi 23.71 50.91 62.17 68.33 73.01 

Difference ∆ 23.77 8.08 3.31 1.31 -0.45 

 

 

3.2.  Water turbine runner modelling 

The runner blade designs of types 1 and 2 turbines are then modelled using the ANSYS Design 

Modeler (Figure 3). As shown in Table 2, the initial stagger angle ( initial) whose value is 47.48o, is optimized 

( optimasi) to become more upright to 23.77o for Segment 1. For Segment 2, the stagger angle difference (∆) is 

approximately 8o. For Segment 5, the stagger angle is optimized to be slightly larger than that of the initial 

design. The difference in the slopes of the runner blades of the two designs are presented in Figure 3.  

Figure 3(a) shows isometric 3D view of the blade from the initial design. The stagger angles from segments 1 

to 5 of both designs increase moderately. Figure 3(b) shows isometric 3D view of the blade from the 

optimization results. From Figure 3(b), which is an optimized type 2 turbine, it can be seen that the stagger 

angle profile is more upright when compared to the initial design type 1 turbine as shown in Figure 3(a). The 
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stagger angle for segment 1 to segment 4 turbine type 2 is smaller than turbine type 1 as shown in Table 2. 

While in segment 5, the type 2 turbine in Figure 3(b), has a slightly flatter stagger profile than the type 1 turbine 

in Figure 3(a). 

 

 

 
(a) 

 
(b) 

 

Figure 3. Isometric 3D view of the blade from the (a) initial design and (b) optimization results 

 

 

Furthermore, the design of runner blade types 1 and 2 were analyzed for their performance using the 

commercial ANSYS CFX CFD. ANSYS CFX works on the basis of finite volume method on object elements. 

The three-dimensional volume computing domain using hexahedral meshing is employed to evaluate the water 

turbine runner which is designed to have five blades. This analysis utilized the turbo mode so that only one 

runner blade is modelled. This mode is applied because the geometry of the analyzed runner blades is axis-

symmetric so as to hasten the simulation process. Meshing and grid boundary conditions in the turbo mode 

runner blade model are shown in Figure 4. In the CFX, the pre-boundary and continuum conditions are defined 

to determine the inlet, outlet, runner blades, hub and shroud. Figure 4 (a) shows a one runner blade model 

meshed with a hexahedral structured pattern with the aim of accelerating the iteration process. Figure 4 (b) 

shows the inlet side face of the water inlet which is on the right in the figure and the outlet side on the left as 

indicated by the direction of the water flow arrow. 
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(a) 

 
(b) 

 

Figure 4. CFD model (a) meshing and (b) grid and boundary conditions 

 

 

3.3.  Turbine performance 

In this study, CFD simulations were performed with various rotational speed variations ranging from 

300 rpm to 500 rpm. These limits are in accordance with the specific speed range of the turbine propeller at a 

predetermined head and design discharge. The simulation results are as shown in Table 3, and the difference 

in the efficiencies from the two turbine designs is presented in graphical form in Figure 5. 

As shown in Table 3, the shaft power for each type turbine design shows the same trend, namely, an 

increase with increasing rotational speed until maximum power is reached followed by a decrease if the 

rotational speed continues to be increased. Power et al. [25] revealed that the mechanical power output of a 

water turbine depends on the magnitude of the torque generated by the turbine shaft and the angular velocity 

(ω) of the turbine. However, every water turbine design has an optimal point according to the specifications in 

its design. 

At the design point, namely, at a rotational speed of 400 rpm, the Type 2 turbine which is the result 

of the optimisation design has a greater shaft power of approximately 0.72% relative to that of the initial design 

(the Type 1 turbine). In graphical form in Figure 5, the magnitude of the shaft power generated by the two 

turbines is in the form of an inverted parabola. This outcome is in accordance with the simulation and 

experimental results conducted by [3], [17], [26]. 
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Table 3. Runner blade performance with variable rotational speeds 

Rotational Speed n (rpm) 
Type 1 Turbine Type 2 Turbine 

 Shaft Power P (W) Efficiency η (%)  Shaft Power P (W) Efficiency η (%) 

300 1.956 76.93 2.085 80.23 

325 2.014 76.71 2.124 79.69 

350 2.056 76.21 2.139 78.88 
375 2.082 75.47 2.133 77.79 

400 2.092 74.49 2.107 76.43 

425 2.084 73.25 2.059 74.75 
450 2.057 71.73 1.988 72.74 

475 2.012 69.90 1.893 70.30 

500 1.946 67.74 1.774 67.37 

 
 

When viewed in terms of efficiency in Figure 5, turbine Type 2 almost consistently has higher 

efficiency that turbine Type 1 at all rotational speeds except at 500 rpm. At the design point, namely, at a 

rotational speed of 400 rpm, turbine Type 2 has an efficiency of 76.43%, a result which is approximately 2.6% 

higher relative to that of the Type 1 counterpart. The curve line in the efficiency graph in Figure 5 indicates 

that the efficiency decreases as the turbine rotation increases. The graph in Figure 5 is also in accordance with 

research conducted by [27]–[29]. 

 

 

 
 

Figure 5. Turbine performance comparison 

 

 

3.4.  Flow behaviour inside the turbine 

Contour, vectors and velocity streamlines that occur in the runner blades are shown in Figure 6. The 

velocity vector images at the 50% span runner blade position as shown in Figure 6 (a) indicate that the direction 

of flow entering the runner blades is quite good, as characterised by the absence of a reversing/turbulent flow 

pattern around the runner blade. The inflow of water hits the end of the leading runner blade along the runner 

until it exits the tealing runner uniformly. This situation is certainly very satisfactory for ensuring that the 

power shaft is as optimal as possible. 

Figure 6 (b) shows the contour of the water velocity that occurs on the runner blade. The speed of the 

water increases from near the hub to the shroud at a speed of 0.2 m/s to 2.4 m/s. This result is in accordance 

with the mathematical concepts related to the flow motion and rotational force in a water turbine which is 

affected by the circulation parameter (Г) that is related to a function of radius and viscosity [30].  

Figure 6 (c) shows the contour of the flow pattern that occurs in the water turbine runner where the 

flow is quite satisfactory and smooth and no turbulent/turbulent flow exists. A good flow pattern on the turbine 

runner will certainly reduce losses in the hydrofoil so that the shaft power increases. As shown in Table 3 and 

Figure 5, the Type 2 turbine which is the result of optimisation has greater shaft power and efficiency than the 

Type 1 turbine. The Type 2 turbine produces greater torque, thereby generating greater efficiency. This 

outcome is in line with the assertion of Power et al. [25] that the mechanical power output from a water turbine 

depends on the amount of torque generated by the turbine shaft. 
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(a) (b) 

 
(c) 

 

Figure 6. Velocity at blade: (a) contour of relative velocity, (b) velocity vectors at 50% span, and  

(c) velocity streamlines 
 

 

4. CONCLUSIONS 

In this research, turbine runner optimization was performed using a surface vorticity model algorithm. 

With this algorithm method, the efficiency and power of the water turbine is increased relative to that of the 

initial design. Turbine performance can be predicted by performing CFD analysis on a three-dimensional model 

with turbo mode to hasten the simulation process. The CFD simulation confirms that the efficiency of the 

optimized turbine in the design specifications has increased by approximately 2.6% relative to that of the initial 

design. The optimized turbine has greater efficiency at all rotational speeds from 300 to 475 rpm. Therefore, 

the surface vorticity model algorithm can be used as a tool to improve the performance of a water turbine 

runner by minimizing losses in the hydrofoil. 
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