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 The use of induction machines has gained fast popularity in many aspects of 

today’s energy applications and industrial productions. However, just as with 

any other machine, failure is expected due to a variety of faults in component 

and system levels. Therefore, it is necessary to improve machine reliability by 

performing preventive maintenance and exploring faulty indications in advance 

to avoid future failures. In normal operation, a distinct machine sound signature 

can be identify. Therefore, at any faulty operation, diagnosis of potential error 

can be defined based on output signature sound data analysis. Yet, this process 

of monitoring induction machine sounds and vibration can be hectic and 

extensive in terms of collecting data and compiling analysis. That is, a huge 

number of data samples need to be collected and stored in order to define 

abnormality operation. Therefore, in this work, wavelet-based algorithms were 

developed as an analysis process to analyze collected data and identify 

abnormality, with much fewer data samples and compiling process, as special 

prosperity of wavelet transform. As a result, MATLAB codes were 

implemented to analyze data based on sound signature technique and wavelet 

transform algorithms to show a significant improvement in identifying potential 

error and abnormality conditions. 
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1. INTRODUCTION  

In today's large and heavy industries revolution, induction motors play an important role as driver 

machinery due to their affordable cost, easy maintenance, high reliability, and ease of operations. However, 

this is not the case all the time, since many faults may occur causing failures or even breakdown with potentially 

catastrophic results. Many of these faults are indistinguishable, can't be detected, and could inherent into the 

machine main core causing bigger issues. Therefore, faults such as broken rotor bars, winding faults, bearing 

failure, stator, and rotor unbalanced, and many more other faults needs to be detected and identified [1], [2]. 

Meanwhile, as an economic value, voltage distortion and phase imbalance costs the US somewhere between 1 

to 2 billion dollars a year in failures [3]. 

Many researches have been done to develop a processing system of monitoring, collecting, and 

analyzing data required to prevent major failures. In fact, undetected small failures could potentially lead to 

catastrophic failures with consequences of extreme vibrations, poor performances, and high thermal stress [4], 

[5]. A variety of machine faults detection applications were studied by many researchers [4]−[9] to determine 

and diagnose faulty incidents through waveform spectral components such as voltage, current, power, 

https://creativecommons.org/licenses/by-sa/4.0/
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temperature, vibrations, and sound captured during the brief operation. In most researches, digital signal 

processing (DSP) has been used as primary tools in the area of electrical machines faults detection analysis and 

advanced over the recent decades [8]−[11]. However, such detection is based on conventional DSP analysis of 

Fourier transform [7].  

Although Fourier transform has wide usage in DSP applications, Fourier transform analysis has some 

shortcomings comparing to other analysis algorithms [12]. For example, in Fourier, a transformed signal from 

time to frequency domain may losses some critical data information. In addition, Fourier has shown a lack of 

ability for non-stationary signals analyzing [12], [13], as Fourier transform assumes individuality of each 

frequency component, gives a limitation approach.  

Other researches, as in [14]−[17], have been invested in presenting their tested waveform data in 

methods of time-varying or nonstationary based on dilation and translation of a signal to provide dynamic time 

and frequency localization adjustable windows (scaling concept to fit multi-frequency components). However, 

in this work, a unique special feature of the wavelet transform algorithm will be used to deliver a combined 

framework for advanced signals processing analysis application with much fewer data samples and shorter 

testing time [18], [19] for stationary and non-stationary motor output sounds waveform.  

As a result, discrete wavelet transform (DWT) will be presented as a new method of detecting machine 

failure based on faulty noise indication to identify fault potential that may lead to machine malfunctions. The 

distinctive of this new proposed DWT algorithm will allow analyzing machine output sounds with fewer data 

samples as compared to fast Fourier transform (FFT) by the unique property of decomposition and de-noising 

filters to isolate faulty frequencies and locate abnormality faster and in early stages.  

 

 

2. SIGNAL TO NOISE RATIO 

The signal-to-noise ratio (SNR) is a regularly used process to evaluate the quality of a signal and 

estimate the influence of noise on a signal. In this process, the power ratio of the signal power to the total noise 

is estimated by the spectral data [20], [21]. In fast Fourier transform (FFT), the captured waveform data samples 

will be transformed into the frequency domain where the captured signal will be in the form as shown in (1). 

 

𝑥𝑜𝑢𝑡(𝑛) = 𝑠(𝑛) + 𝛾(𝑛) (1) 

 

Where 𝑠(𝑛)is the signal and 𝛾(𝑛)is the noise.  

For optimal accuracy, 𝑥𝑜𝑢𝑡(𝑛)will consist of  number of samples and an integer number sine-wave 

whole cycles [6]. Therefore compute SNR, 𝑥𝑜𝑢𝑡(ℎ), with 𝜇-point FFT of 𝑥𝑜𝑢𝑡(𝑛), will be calculated as given 

by (2). 

 

𝑥𝑜𝑢𝑡(ℎ) = ∑ 𝑥𝑜𝑢𝑡(𝑛)𝑒−𝑗(2𝜋 / 𝜇)ℎ𝑛𝜇−1
𝑛=0  (2) 

 

With frequency component 𝜔 in the 𝑗-th element of 𝑥𝑜𝑢𝑡(ℎ), Parseval's theorem for FFT [19], the estimation 

of the variance of the signal 𝑠(𝑛) (which is also the signal power 
sp ) as given in (3). 

 

�̑�𝑠 =
2

(𝜇−1)𝜇
|𝑥(𝑗)|2 (3) 

 

However, unbiased noise power P̂  can be given by (4). 

 

�̑�𝑛 =
2

(𝜇−1)𝜇
∑ |𝑥(ℎ)|2(𝜇−1)/2

ℎ=1
𝑎𝑛𝑑 ℎ ≠ 𝑗 (4) 

 

As a result, the combination of both (3) and (4) yields SNR for frequency 𝜔 as in (5). 
 

𝑆𝑁𝑅 = 10log10 [
|𝑥(𝑗)|2

∑ 𝑥(ℎ)2(𝜇−1)/2
ℎ=1

] 𝑎𝑛𝑑 ℎ ≠ 𝑗 (5) 

 

 

3. WAVELET TRANSFORM 

While Fourier transform signal analysis is done based on one window analysis fit all frequencies, 

wavelet transforms provide an adjustable window analysis for different frequencies to provide good resolution 

in the time domain for a high-frequency component of the signal and good resolution in frequency for  
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low-frequency component of the signal [22], [23]. As a result, an automatic analysis window of wavelet 

transform is done through the shifting and scaling process based on mother wavelet form [5]. In continuous 

wavelet transform, the original signal multiplied by scaling and shifting algorithm of a wavelet to be summed 

over time and produces low-pass and hi-pass coefficients as in (6). 
 

𝛹𝑎,𝑏(𝑡) = ∫ 𝑓(𝑡)
∞

−∞
𝜙𝑎,𝑏(𝑡)𝑑𝑡  (6) 

 

Where  
 

𝜙𝑎,𝑏(𝑡) =
1

√𝑎
𝜙

𝑡 − 𝑏

𝑎
 𝑎𝑛𝑑 𝑎 > 0 

 

(a and b are dilation and translation parameters and √𝑎 normalization factor).  
Meanwhile, in DWT, convolutions with a quadratic mirror filter are performed for the decomposition 

process of the original signal. As a result, a predetermined filters bank of low and high-passes used to transfer 

raw data of the original signal into orthonormal wavelet basis or decomposing the signal by a set of independent 

frequency bands to remove half of the frequency spectrum at each decomposition levels without risking the 

signal information components [24]−[26]. DWT would have the advantage of processing and analyzing 

stationary signals and non-stationary signals over the FFT [27]. That is, a discrete signal X[n] decomposition 

can be presented as in (7). 
 

𝑥[𝑛] = ∑ 𝑎𝑗𝑜,𝑘𝑘 𝜙𝑗𝑜,𝑘[𝑛] + ∑ ∑ 𝑑𝑗,𝑘𝜑𝑗,𝑘 [𝑛]𝑗−1
𝑗=𝑗   (7) 

 

Where: 

𝑥[𝑛]is discrete signal 

𝜙𝑗𝑜,𝑘[𝑛] is scaling function 

𝜑𝑗,𝑘[𝑛] mother wavelet at scaling function 

𝑎𝑗𝑜,𝑘 approximation coefficients at scaling function 

𝑑𝑗,𝑘 detail coefficients at scaling function 

By applying DWT filter bank of high-pass and low-pass algorithms, detail coefficients are passed 

through the high-pass filter h[n] and approximation coefficients are transferred through a low-pass filter g[n] 

followed by a down-sampling by two driven by mother wavelet and the scaling function [20], [21], [28], as 

shown in Figure 1, which makes DWT suitable for signal analysis with fewer data samples and particularly for 

transient signals. However, in this work, instantaneous amplitude measurements and waveform dynamic range 

will be based on the low-pass approximation coefficients to eliminate noises and obtain an accurate reading. 

 

 

High pass
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Figure 1. Wavelet transforms decomposition 

 

 

4. MOTOR FAULTS TYPES AND FAULT DIAGNOSIS 

Faults in induction motors can be classified based on fault location. With three major parts of induction 

motors (stator, rotor, and shaft bearing) as in Figure 2, the stator of an induction motor may cause some 

problems due to internal wiring and shielding problems such as open or short winding, abnormal winding 

connection, or ground faults. Rotor problems can be referred to as rotor internal winding and shielding (open 

or short winding), or mechanical bearing faults [9], [29]. In addition, induction motor failure can be caused by 

other mechanical parts such as bearing and an imbalanced shaft. Therefore, it is necessary to identify any 

potential failure. 
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Figure 2. Induction motor stator winding, rotor winding, and bearing 
 
 

Fault detection and condition monitoring of induction motor can be performed in many techniques 

such as sound signature analysis, vibration analysis, acoustic emission analysis, motor current signature 

analysis, temperature monitoring, and many other techniques [9], [17], [30]. In this work, sound signature 

analysis will be used to define any potential failure or potential error that may lead to a failure. As it's known, 

the sound is mechanical wave vibration of a medium (solid, gas, liquid) that propagate and transfer at pressure 

rate change known as frequency, and the differences among the level of pressure characterize amplitude.  

By converting such pressure and amplitude into electrical signals, a discrete wavelet decomposition 

process can be applied in two levels to obtain approximation coefficients data. For example, using Haar wavelet 

decomposition process for the first level as in (8) if the digitized signal assumed to be z(n). 
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For the second level decomposition, waveform will be filtered as in (9). 
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(9) 

 

As a result, detection of sound changes can be determined through waveform amplitude voltage 

change and dynamic range increases (ratio of the largest and smallest component of a signal that can be 

measured expressed in dB [21]). DR can be given by (10). 
 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 𝑖𝑛 𝑑𝐵 =  20 ∗  𝑙𝑜𝑔10( 𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛 ) (10) 
 

As mechanical faults such as bearing faults or unbalance faults, or electrical faults such as stator or rotor 

winding faults may occur, unique sound changes in frequency amplitude can be defined by the frequency 

spectrum, which indicates a faulty or potential fault operation. However, in this work, due to the large number of 

samples collected and processed by FFT to obtain frequency spectrum, wavelet decomposition will be used to 

decrease the number of processed and stored data samples [12], [18], [24]. As shown in Figure 3 (flowchart), a 

continuous monitoring sequence and data acquisition as iterative MATLAB code will be performed on induction 

motor to collect sounds waveform data samples, apply DWT filtration and amplification to eliminate noise and 

analyze for abnormality. 
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Figure 3. Flowchart sequence of iterative MATLAB codes 
 

 

5. SIMULATION and RESULTS DISCUSSION  

Sounds analysis of rotating machines can give a major indication of motor condition. By constantly 

monitoring and analyzing the sound behavior of a machine, as shown in Figure 4, the decision can be made on 

the status of the machine. For example, distress of machinery may very often reveal itself in sounds and 

vibration outside the normal pattern and the dynamic range of the expected waveform. In addition, shortage 

between rotor or stator winding due to insulation damages may lead to current flow between shorted winding 

and sparks based on the amount of current flow, and the ionization may result in sparks. Therefore sounds 

analysis of motor output sound could be a powerful tool for monitoring, detecting, comparing, and diagnosis 

faults due to added failure noises and allow troubleshooting in most machines. 

 

 

Motor
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Figure 4. Sound monitoring system 

 

 

In this work, a clean consistent sinusoidal waveform has been simulated as motor sound without 

additive error is ordered to implement a conventional testing analysis of FFT and new wavelet transform 

analysis. The test was intended to show the abilities of both FFT and DWT testing analysis in processing,  

de-noising, and explores waveform data. As noticed in Figure 5, the FFT power spectrum has specified the 

fundamental frequency without data decomposition or showing any other critical waveform components. 

While, in Figure 6, DWT has performed a de-noising and decomposition process to reveal data components of 

waveform characteristics in terms of amplitude and dynamic range changes. 

Meanwhile, by adding abnormality to the fundamental signal as a source of potential motor failure, 

the new output sound waveform was analyzed and the process by both testing algorithms to define the 

amplitude and standpoint of the potential failure. In Figures 7 and 8, as it shows the noisy output motor sound, 

the FFT algorithm was used to obtain the power spectrum and define unwanted data attached to the waveform. 

However, it was noticed that the noises component was closer to the noise floor and the amplitude of 

fundamental frequency was very high to define the magnitude of amplitude changes or any significant dynamic 
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range alteration. Meanwhile, in Figure 9, the same output waveform was analyzed by DWT to perform a de-

noising and decomposition process. In this algorithm, DWT was able to pinpoint and represent changes 

(distortion) that occur within the waveform with one-fourth number of data samples. That is, the amplitude 

change was clearly defined and dynamic range alteration was determined based on the changes of the highest 

and lowest waveform amplitude of the approximation decomposition cA with much fewer data samples and 

time to compile. 

 

 

  
  

Figure 5. Original clean waveform and power 

representation of frequency domain 

Figure 6. Original clean waveform and discrete. 

wavelet analysis 

 

 

  
  

Figure 7. Faulty waveform and power spectrum 

representation of frequency domain 

Figure 8. Original faulty waveform and power 

spectrum representation of frequency domain  

 

 

 
 

Figure 9. Waveform distortion based on wavelet analysis 

 

 

By obtaining the maximum and the minimum deconstruct waveform amplitude, the dynamic range 

was computed based on different types of mother wavelet. For a clean motor waveform with no failure,  

Tables 1 and 2 show the instantaneous dynamic range of normal operation for both no-load and with load 
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status. Meanwhile, Tables 3 and 4 show an instantaneous dynamic range for faulty waveform for both no-load 

and with load respectively.  

This test was based on two different algorithms. For FFT, signal to noise ratio was used to determine 

the level of noise due to failure occurrence measured in dB. Meanwhile, wavelet transforms algorithms were 

used based on waveform dynamic range calculation to determine failure occurrence. Based on results shown 

in Tables 1 to 4 and Figures 10 (a) and 10 (b), it was clear that wavelet transforms algorithms significant 

results by using Daubechies (dbn) wavelet at the second level of waveform decomposition 

 

 

Table 1. No load no error 
Wavelet db4 db12 Haar FFT/dB 

cA1 0.63 0.68 0.42 0.97 

cA2 0.25 0.29 0.22 0.97 
 

Table 2. With load no error 
Wavelet db4 db12 Haar FFT/dB 

cA1 0.55 0.58 0.30 0.95 

cA2 0.16 0.20 0.17 0.95 
 

  

 

Table 3. No load with error 
Wavelet db4 db12 Haar FFT/dB 

cA1 0.86 0.81 0.62 0.89 

cA2 0.65 0.62 0.53 0.89 
 

Table 4. With load and error 
Wavelet db4 db12 Haar FFT/dB 

cA1 0.77 0.73 0.52 0.82 

cA2 0.51 0.59 0.44 0.82 
 

 

 

  
(a) (b) 

 

Figure 10. Motor failure detection based on dynamic range calculation for (a) instantaneous DR measurement 

at 1st level decomposition and (b) instantaneous DR measurement at 2nd level decomposition 
 

 

6. CONCLUSION  

In this work, the properties of DWT decomposition and de-noising were implemented as advanced 

signal processing techniques to monitor the behavior of electrical motor. Fault diagnosis of induction motors 

was based on the algorithms of Fourier transformations for SNR fault indication technique and wavelet 

transform for DR indications where used. Hence, even though the two techniques were different in compiling 

samples method and testing result, DWT has shown promising results in detecting faulty sounds with mush 

less data to compile. That is, by comparing results in terms of number of collected data samples, Fourier 

transformation did not show sufficient results in term of SNR (due to large number of collected data sample in 

power spectrum), while, wavelet transform had shown promising results in terms of computing DR and spotting 

deviation of motor error. In addition, based on wavelet decomposition coeffients, Daubechies wavelet has 

shown superior results in term of motor error detection in both 1st and 2nd level decomposition. 
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