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 The most significant tool for defect diagnostics in transformers is dissolved 

gas analysis (DGA). The time series prediction of dissolved gas levels in oil, 

when combined with dissolved gas analysis, provides a foundation for 

transformer fault diagnosis and an early warning. A long short-term memory 

(LSTM) based prediction model is developed in this paper to train the digital 

twin for identifying the essential fault in the transformer via DGA. The 

model is fed with three different gas concentrations as input. This study 

achieves the performance evaluation in terms of validation accuracy. The 

suggested model exhibits significant validation accuracy of 99.83%, as 

indicated by the analyses, thus the early prediction of transformer 

maintenance is aided. It can be validated that the LSTM model for fault 

identification and analysis using dissolved gas in the transformer has a lot of 

research potential. 
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1. INTRODUCTION 

Transformers are the heart of electric power systems, and their operational state decides whether or 

not the power network is well-regulated. Electrical, mechanical, and thermal stresses cause some gases 

created during an operation to dissolve in insulating oil [1]-[3]. Dissolved amounts of these gases are being 

examined as a possible approach to diagnose and anticipate the transformer's performance both inside and out 

[4]-[7]. The outcome of a dissolved gas analysis (DGA) offers sufficient information to diagnose the state of 

the transformer’s operation. Two different sorts of procedures for getting dissolved gas analysis data have 

been proposed during the last several decades for predictive maintenance of transformers which is an 

alternative to breakdown corrective maintenance. Predictive maintenance increases the operational 

availability of transformers, preclude downtime due to unscheduled maintenance, minimize the costs and 

maximize safety. Data driven methodologies are superior to model based predictive maintenance elucidations 

as they attempt to learn predictive models from the data automatically that makes them suitable for a wide 

range of such problems. 

https://creativecommons.org/licenses/by-sa/4.0/
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Machine learning has begun to play an important role in predicting transformer failures, and as a 

result, contributing to predictive maintenance. Artificial neural networks (ANN), support vector machines 

(SVM), relevance vector machines (RVN), and fuzzy theory [8]-[11] are examples of common machine 

learning approaches that have been implemented for DGA. All these methods have several specific flaws, 

such as the need to choose a large number of parameters for accuracy, overfitting, and training duration. 

Deep learning approaches such as long short-term memory (LSTM) that can extract features automatically 

have been used, with promising results. To be effective, deep learning techniques require a large amount of 

data. When compared to other modern methodologies, many deep learning algorithms offered for predictive 

maintenance problems [12] such as estimating the remaining useful life of transformers showed encouraging 

results. For greater accuracy LSTM require a significant amount of labelled data to be adequately trained.  

The following are the paper's main contributions: i) To diagnose transformer defects with precision, huge 

DGA data consisting of 960 samples of fault-free training and 500 samples of fault-free testing, faulty 

training, and faulty testing is pre-processed with the proposed high pass filter ,scaling and windowing 

approaches; ii) LSTM network based prediction model is developed to train the digital twin for precisely 

diagnosing the essential fault in the transformer through the DGA with highest validation accuracy. The rest 

of this paper is structured as follows: Section 2 describes LSTM network, section 3 explains methodology 

with the framework for the LSTM-based digital twin training approach, section 4 presents results and 

discussion, and finally, section 5 discusses the conclusion. 

 

 

2. LSTM NETWORK 

Hochreiter and Schmidhuber proposed LSTM as a recurrent neural network (RNN) based technique 

[13]. When it comes to processing time series, RNN outperforms other neural networks. RNN training time 

exists, and LSTM solves RNN based on RNN with only a short-term memory. LSTM adds a memory unit to 

determine whether the information is helpful and has a sophisticated dynamic structure when compared to 

RNN. The model can handle the challenge of long-term sequence prediction since it has a long-term memory 

function. In addition, during long sequence training, LSTM may tackle gradient disappearance and gradient 

explosion [14], [15]. The classification of sequence data is well suited to long short-term memory (LSTM) 

networks. For time-series data, LSTM networks are useful because, in order to categorize new signals, they 

recall the uniqueness of earlier signals. An LSTM network allows users to feed sequence data into it and 

make predictions based on the discrete time steps in the data. 

A gating cell is added to the network architecture in the LSTM model, giving it a “long time 

memory function” that makes it suited for long-term nonlinear series prognosis issues. Memory cells with a 

gating mechanism replaces unseen layer neurons in LSTM, as opposed to regular RNN. The forget gate 

determines which parts of the current state move through to the next, the input gate modifies the current input 

before it is added to the new state, and the output gate modifies the values that pass from the current state to 

the output. Figure 1 depicts the basic structure of a memory cell [16], [17]. 

 

 

 
 

Figure 1. The basic structure of LSTM memory cell  
 

 

The memory cell is the most important part of the LSTM network. The sequence input 𝑥𝑡 at time t, 

the memory cell state 𝐶𝑡−1 at time 𝑡 − 1, and the hidden layer cell state ℎ𝑡−1 at time 𝑡 − 1 make up the cell 

input. The memory cell state 𝐶𝑡 at t and the hidden layer cell state ℎ𝑡 at t are included in the output, with 𝐶𝑡 

and ℎ𝑡 containing the model's long-term and short-term memory information, respectively. The reading and 

modification of the memory cell, as well as the information flow between memory cells, are accomplished by 

manipulating the above three gates. The formulas are provided by (1) to (3) [18]. 
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𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓 ) (1) 

 

 𝑖𝑡  = 𝜎(𝑊𝑖𝑥𝑥𝑡  + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (2) 
 

𝑂𝑡  = 𝜎(𝑊𝑂𝑥  𝑥𝑡  + 𝑊𝑂ℎℎ𝑡 −1 + 𝑏𝑂 ) (3) 

 

Where𝑓𝑡 ,𝑖𝑡 and 𝑂𝑡 are the state computation results of the forget, input, and output gates respectively. 𝑊𝑓𝑥, 

𝑊𝑓ℎ, 𝑊𝑖𝑥, 𝑊𝑖ℎ , 𝑊𝑂𝑥, 𝑊𝑂ℎ and 𝑏𝑓, 𝑏𝑖, 𝑏𝑂  respectively, are the weight matrix and offset term of the 

corresponding gate. Sigmoid activation function is denoted by 𝜎. 

Memory cell state 𝐶𝑡 and hidden layer state ℎ𝑡 are the output outcomes of memory cell at time t. The 

following are the formulas: 

 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶ℎ𝑡−1 + 𝑊𝑓𝑥𝑡  + 𝑏𝐶) (4) 

 

𝐶𝑡  = 𝑓𝑡  𝑜𝐶𝑡 −1 + 𝑖𝑡  𝑜�̃�𝑡 (5) 

 

ℎ𝑡  = 𝑂𝑡  𝑜𝑡𝑎𝑛ℎ(𝐶𝑡  ) (6) 

 

Where �̃�𝑡 denotes the memory cell's state input at time t, and tanh  denotes hyperbolic tangent activation. 

The state weight matrix and offset term of cell state are represented by 𝑊𝐶 and 𝑏𝐶, respectively. The element-

by-element multiplication is denoted by the symbol o. 

 

 

3. METHODOLOGY 

The LSTM network outperforms well-established models in predicting transformer oil dissolved 

gases and can successfully deal with the challenge of prediction of nonlinear sequences. Figure 2 depicts the 

framework for the LSTM-based digital twin training approach, and the actions that follow are carried out. 

 

 

 
 

Figure 2. Framework for the LSTM-based digital twin training approach 
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3.1.  DGA data acquisition 

The three dissolved gasses (C2H2, C2H4, CH4) from transformer oil (Grade-1) obtained by using 

Hydran sensor setup and different gas intensity percentage combinations from Duval triangle has been taken 

and formed four ensemble files, namely Faultfreetraining.csv, Faultfreetesting.csv, Faultytraining.csv and 

Faultytesting.csv respectively. In order to affirm the efficacy of the proposed prediction work, the case of this 

paper analyzes time series data using online monitoring of a 500 kVA transformer as an example shown in 

Figure 3. The fault-free data is taken for the period of 5 years (2013-17) and the faulty data is taken for 3 

years (2018-2021). The specifications of the test transformer are given in the Table 1. 

 

 

 
 

Figure 3. 500 kVA distribution transformer 

 

 

Table 1. Specifications of 11kV/400V, 500 kVA test transformer 

Parameters Rating 

KVA 500 

Volts at No Load HV 11000 

LV 430 

Amperes HV 26.24 

LV 671.35 

Phases HV 3 Delta 

LV 3 Star 

Type of Cooling ONAN 

Frequency 50HZ 

Impedance Volts % 4.29 

Vector Group Ref: Dyn 11 

Un Tanking Mass in Kgs 1120 

Weight of oil in kgs 520 

Oil in Liters 590 

Total weight in kgs  2265 

Maximum temperature rise in oil/WDG 50/55 Deg C 

 

 

3.2.  DGA data set 

The DGA dataset taken by using hydran DGA sensor on 500 kVA, 11000/430 V test transformer 

from 2013-2021 is divided into fault-free testing set, fault-free training set, faulty testing set and faulty 

training set. The practical DGA data in this case consists of 960 samples of fault-free training with a data size 

of 480000x55, 500 samples of fault-free testing with a data size of 250000x55, faulty training and faulty 

testing with a data size of 960000x55, and faulty training and faulty testing with a data size of 960000x55. 

Table 2 summarizes the data set. 

 

 

Table 2. Details of the fault-free and faulty data set 
Particulars No. of Samples Size of Data 

Fault free training data 960 480000x55 

Fault free testing data 500 250000x55 
Faulty training data 500 960000x55 

Faulty testing data 500 960000x55 
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Each simulation's length is determined by the data set. For every three minutes, all simulations are 

sampled. 960 samples have been trained for 54 hours, 500 samples of 960 have been tested for 48 hours, 200 

samples of 960 have been used for validation for 24 hours (fault-free data). Similar procedure for Faulty data 

set. The columns of apiece data frame includes the following variables: 

− The fault type is shown in column 1 (fault code), which ranges from 0 to 20. A fault code of 0 indicates 

that the system is fault-free, whereas fault numbers 1 through 20 indicate distinct fault categories based 

on percentage gas intensity combinations obtained from the Duval Triangle. 

− The number of times the simulation ran to acquire complete data is mentioned in column 2 

(simulationRun). The number of runs in the training and test data sets ranges from 1 to 500, with each 

value representing a unique random generator state for the simulation across all fault codes. 

− The number of times each variable is recorded per simulation is indicated in column 3 (sample).  

− The measured variables from both the Hydran Sensor and the Duval Triangle are found in columns 4–

55.The Duval triangle method is used in this paper as it has a 96% accuracy rate of determining a 

transformer defect, according to a review based on the IEC data bank of inspected transformer failures 

and several other reports [19], [20]. 

 

3.3.  Data preprocessing 

The following steps are carried out during DGA data preprocessing: 

− Clean the data: Inconsistent values are removed using a high-pass filter. In both the training and testing 

data sets, delete data entries with the fault numbers 3, 9, and 15. These fault numbers are unrecognizable, 

and the simulation findings that go with them are incorrect. 

− Scaling: This Method is implemented to bring the large data horizontally on to a scale which can be 

visualized. The scaling procedure uses a fixed sampling frequency to find time resolution. Time intervals 

are established based on time resolution and DGA sampling time. This time signal data is now applied to 

all of the DGA samples. For the windowing procedure, it is then translated into time domain data. 

− Windowing: This method is implemented to bring the large data vertically on to a scale which can be 

visualized. Using a cosine signal and a hanning window [21], [22] the whole DGA data is transformed 

into time domain data. FFT analysis is used to convert a time domain signal to a frequency domain signal. 

The data from the entire DGA set is translated to frequency domain, and the dimensionality is lowered, 

which is necessary for such a big data collection. 

− Divide data: By retaining 20% of the training data for validation, the training data is divided into training 

and validation data. A validation data set allows to assess the model's fit on the training data set while 

adjusting the hyper parameters of the model. Data splitting is a typical technique for preventing 

overfitting and under fitting in networks. 

− Network design and preprocessing: In this process, the sample train and sample test data are preprocessed 

to find the network parameters viz. Xtrain, Ytrain, Xtest, Ytest, Xval and Yval. 

 

3.4.  Identifying the condition indicators 

Normalize data sets: Normalization is a technique for converting numeric values in a data set to a 

similar level without distorting range disparities. This strategy assures that a variable with a higher value 

does not dominate the training variables. It also converts numeric data from a larger range to a smaller range 

without sacrificing any crucial training information. Using data from all simulations in the training data set, 

the mean and standard deviation for 52 signals are determined. 

Visualize data: There are 400 fault-free simulations in the Xtrain data set, followed by 6800 

defective simulations. A plot of the fault-free data is created first to visualize the fault-free and defective 

data. The total 10 signals are labeled in the Xtrain data set for the sake of this plot in order to construct an 

easy-to-read image. The signals from 1 to 3 are gas concentrations of C2H2, C₂H4 and CH4 in ppm 

respectively. The signals from 4 to 6 are equivalent percentages of C2H2, C₂H4 and CH4 respectively obtained 

from Duval’s triangle method. The signals from 7 to 10 are fault code, simulation run, sample number and 

abnormal condition for the total failure of oil respectively. The visualization of non-faulty data (fault-free) 

and faulty data for 10 signals of the Xtrain data set is plotted in Figure 4 and Figure 5 respectively. As shown 

in the picture Figure 5, the LSTM has been completely trained after around 130 samples (time step) and 

ready for validation. 
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Figure 4. Training observation for non-faulty data 

 

 

 
 

Figure 5. Training observation for faulty data 

 

 

3.5.  Training of the model in the test data set and running the model 

In the process of training, the hardware and software used are MATLAB simulation platform 

(R2021a, MathWorks) on Dell PC with 16 GB RAM, 3.5 GHz clock, running Windows 7 enterprise 

operating system (64-bit) and integrated with graphical processor unit (GPU), Jetson Nano hardware to 

increase the speed of computations of deep learning architectures. There are 52 signals with 500 uniform time 
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steps in the final data set which includes training, validation, and testing data. As a result, the signal or 

sequence must be categorized to the correct fault number, making it a sequence classification challenge. 

A LSTM network, a full-connect linear layer and a softmax layer are used in the proposed 

prediction model. The input layer size is 52 and number classes are 18. The fully connected layer's outputs 

are equal to the number of DGA classes to be categorized. In deep neural network models that predict a 

multinomial probability distribution, the softmax function is utilized as the activation function in the output 

layer. The number of hidden layers of the network considered are 3 with a unit size of 52, 40 and 25 

respectively. The training epochs are 30 with the minimum batch size of 50 and the drop out is 0.2. Figure 6 

depicts the LSTM's internal loop structure. 

 

 

 
 

Figure 6. The LSTM's internal loop structure 

 

 

Algorithm for LSTM network:  

− Use fault-free and faulty DGA data ( 80% for training and 20% for testing) 

− Initialize the LSTM network  

− Apply both fault-free and faulty training data to the LSTM network 

− Apply both the fault-free and the faulty test data to the LSTM network 

− Set the training options for both training and testing data  

− Run the trained LSTM network on test set and predict the fault type 

− Calculate the validation accuracy 

− Obtain the confusion matrix to evaluate the efficacy of a categorization network 

 
 

4. RESULTS AND DISCUSSION 

The case study in this work examines time series data utilizing online monitoring of a 500 kVA 

transformer as a case study to demonstrate the effectiveness of the suggested prediction model. Based on 

training and testing data for fault free state (2013-17) and faulty condition (2018-21), the dissolved gas 

content for test transformer oil was calculated, which is elaborately mentioned in section 3.2. The suggested 

high pass filter approach eliminates unexpected and unwanted intensity in the CH4, C2H2, and C2H4 gases. 

The scaling and windowing strategies applied for the filtered DGA data result in a more apparent output 

signal by lowering its dimensionality. Dividing the data for training & testing and normalizing the data for 

identifying health indicators are done to train LSTM model in the given DGA data set. The data pertaining to 

LSTM network layers and number epochs, including approach to network design and preprocessing are 

mentioned in section 3.3 to 3.5. 
 

4.1.  Accuracy of fault diagnosis evaluation 

The performance accuracy ratio (PR) is used to measure fault diagnostic accuracy [23]. The criteria 

for the overall performance of the model is defined as the ratio of the number of equal predictions (n) to the 

total number of predictions (N) and is given by: 
 

𝑃𝑅 = 𝑛/𝑁 (7) 
 

Validation accuracy (VA) = 𝑃𝑅 ∗ 100% (8) 
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This criterion demonstrates the neural network's high accuracy in correctly identifying the fault type 

of unseen signals with few errors. As a result, the better the network, the higher the accuracy. Validation 

accuracy and loss curves obtained on the test data for LSTM algorithm against the training data are shown in 

the Figure 7. The efficacy of a categorization network is evaluated using a confusion matrix [24]. The 

confusion matrix aids in identifying a model's correct predictions as well as its errors for various particular 

classes. The confusion matrix is made up of columns with the LSTM networks predicted values and 

rows with true values. As seen in Figure 8, the major diagonal of the LSTM confusion matrix has numerical 

values, while the other elements in the off diagonal have almost zeros. This indicates that the trained network 

is efficient, classifying over 99 percent of signals correctly. 

 

 

 
 

Figure 7. Validation accuracy and loss curves obtained on the test data for LSTM algorithm against the 

training data 

 
 

 
 

Figure 8. The LSTM confusion matrix 
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The validation accuracy in terms of precision achieved by the most commonly used convolutional 

neural network (CNN) model and the machine learning-based support vector machine (SVM) model is 

96.04% and 97.11% respectively [25]. For condition monitoring, we employed a unique DGA data set 

acquired over an 8-year period to properly train the LSTM network so that the validation accuracy attained in 

this investigation is 99.83%, indicating an effective index for evaluating the fault diagnosis. As a result, the 

suggested model's performance can be objectively measured for research purposes. A comparison of 

validation accuracy on different models is shown in the Figure 9.  

 

 

 
 

Figure 9. A comparison of validation accuracy on different models 

 

 

4.2.  Digital twin training 

The use of a digital twin is an important step towards health management, as it introduces a new 

paradigm for fault diagnosis [26], [27]. The conceptual model of digital twin is shown in the Figure 10. Data 

from the functioning asset can be used to tune both data-driven and physics-based models, resulting in a 

digital twin. The digital twin technology is implemented by using Jetson Nano Hardware, graphical processor 

unit (GPU), NVIDIA Maxwell architecture with 128 NVIDIA CUDA® cores. It is trained by using LSTM 

network with the help of CUDA tool kit.  

The experimental set up of Jetson Nano Hardware Integrated with MATLAB is shown in the  

Figure 11. Jetson Nano hardware is used to deploy and compute the DNN for training and testing. High 

validation accuracy has been achieved by running LSTM network in GPU under parallel computation as a 

novel approach. The GPU, a digital twin of LSTM network acts as an autonomous device to precisely predict 

the fault, to monitor the condition and to anticipate the remaining useful life of the transformer. 

 

 

  
  

Figure 10. The conceptual model of digital twin Figure 11. Jetson Nano Hardware integrated with 

MATLAB 

 

 

5. CONCLUSION 

Based on the current rapid development in testifying the efficacy of the proposed prediction model, 

this paper analyzed a time series data using a continuous monitoring of 500 kVA transformer. Generally the 

amount of sampled dissolved gas data is quite limited and the accuracy of multistep prediction is not high. 

This paper is focused on the application of large scale data using a promising model, LSTM based digital 
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twin training approach to analyze the dissolved gas concentration in transformer oil. An experiment is 

conducted to evaluate the proposed model. The analyzed results of the case study show that the projected 

prediction model has enhanced the validation accuracy, and it can track the effective change in the trend of 

dissolved gas content in transformer oil. The validation accuracy of 99.83% indicating an effective index for 

evaluating the fault diagnosis by the developed framework. The trained digital twin on integrating with the 

test transformer's condition monitoring system, can precisely envisage the transformer's useful life. We can 

investigate its application in transformer online monitoring using a mobile device. 
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