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 This article proposes a new metaheuristic algorithm called Archimedes 

optimization algorithm (AOA) for solving optimization problems of optimal 

power flow (OPF) utilizing the renewable energy sources (RES) for 

minimizing different single-objective and multi-objective functions based on 

minimization of fuel cost, power losses of transmission lines, emission and 

voltage profile improvement. Also, mathematical formulation of (OPF) is 

introduced by converting the function with multiple objectives based on 

price and weighting parameters into a single objective function. Also, the 

effect of optimal RES is merged into the OPF problem. Notably, optimal 

RES placement yields even more effective solution. AOA was inspired by 

an intriguing physical law known as Archimedes' Principle. To prove the 

effectiveness of the AOA proposed algorithm, it compared with different 

recent algorithms for solving the optimal power flow problems and testing 

them to one standard system of the IEEE30-bus test system. The superiority 

of the proposed AOA algorithm is proven also by applying them on the 

IEEE30-bus modified system with optimal allocation of renewable energy 

source (RES). The results demonstrate that the proposed algorithm is more 

successful and efficient than the other optimization methods in the title of 

resolving OPF problems. 
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1. INTRODUCTION 

The term "optimal power flow" (OPF) refers to the operation of a power system in an economical 

and stable manner, which is achieved by properly setting the system's control variables, where (OPF) is a 

critical and nonlinear complex optimization problem for assessing security and dependability of power 

systems, whose primary goal is to select the optimal network or grid control variable solution that fulfils the 

minimal objective function value while taking system constraints into consideration. where OPF aims to 

optimize generator dispatch based on their limits, expected operating conditions, voltage constraints on the 

bus, as well as safety margins [1], [2]. Many control variables, including generator voltage, generator actual 

output power, transformer tap settings, and reactive power compensation devices, can be used in this 

situation. Renewable energy sources (RES), specifically wind turbines and solar generators, have recently 

been recommended for due to clean energy production and reducing operating costs. The allocation and 

technical characteristics of renewable energy generators have a significant impact on the system's techno-

economic performance [1]–[5]. As a result, control variables, generator behaviour, and the establishment of 

an accurate planning tool for optimal power flow in the integrated electric system [1]–[7] must be considered. 

https://creativecommons.org/licenses/by-sa/4.0/
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An objective function definition should be used to pick the optimal solution as the desired solution. 

Different objectives for the OPF are considered in the electrical system. As a result, the optimal power flow 

takes system constraints into account and determines the most optimal operating conditions in terms of both 

system control variables,and objectives of the problem. OFP's optimal solution has been linked with technical 

and economical benefits, which are typically regarded to be OPF objectives. Generally, the objective 

functions of OPF may be divided into single objective functions that achieve a single goal and multi-

objective functions that achieve many objectives at the same time. These objectives might include the 

generators fuel cost, emission rate of the generator, the power losses in an electric network, and security 

index of the voltage [1]–[7]. As presented in [8]–[10], many optimization methods have been devised for 

solve the OPF issues. These methods may be divided into two categories: conventional methods and 

metaheuristics methods as presented in [9]. To address the OPF problems, several traditional approaches were 

being used, including linear programming [11], nonlinear programming [12], quadratic programming [13], 

newton method network flow programming [14], as well as the interior point technique [15]. The primary 

drawbacks of traditional approaches are that they are unsuitable for large and complex OPF problems, which are 

non- linear and multi-modality optimization issues, as a result of the significant sophistication and nonlinear 

effects of the restricted OPF issue, it has been revealed that conventional techniques may not even be capable of 

handling the OPF problem solutions correctly, resulting in poor results [3], [9]. 

According to the literature survey in [3], [9] various metaheuristic optimization approaches 

including evolutionary-inspired, bio-inspired, human-inspired, physics-inspired, hybrid, swarm and artificial 

neural networks-fuzzy logic approaches, these approaches are invented and proposed to fill the gap formed 

by the use of conventional methods and getting the best optimum solutions when dealing with OPF difficult 

issues. Furthermore, the incorporation of new renewable sources, particularly WT and PV, into the power 

system adds complexity of the OPF problem due to their intermittent power generation characteristics. As a 

result, to fill the gap left by the use of conventional methods, a comprehensive overview of various 

metaheuristic optimization approaches for the optimal solution of power flow issues has been invented and 

proposed [3], [9]. Finally, when compared to traditional techniques, the advantages of these metaheuristic 

techniques include high dependability, guaranteed best optimized solution, rapid convergence, and a low 

likelihood of errors and being trapped in local minima. Because of the optimal outcomes, most researchers in 

recent study work considered ametaheuristic population-based approach to resolving the OPF issue. 

Several research articles used nature-inspired techniques for solving the OPF problems. Jadhav and 

Bamane [16] solve the problem of OPF with a single objective function and employed the best-guided 

algorithm called artificial bee colony to optimize the fuel cost. Glow-worm swarm optimization algorithm is 

used to optimize emission and fuel cost as in [17]. Tan et al. [18] the fuel cost is optimized with only valve 

effect by using the improved group search optimization algorithm. Power losses, fuel cost, fuel cost with valve 

effect, emission are optimized in [19] employed the oppositional krill herd algorithm. Also, algorithm known as 

chaotic artificial bee colony is used to optimize transient stability and fuel cost as in [20]. Also, Mukherjee and 

Mukherjee [21] solve the OPF problem and employed the chaotic krill herd algorithm to optimize fuel cost, fuel 

cost with valve effect, emission, power losses, and voltage deviation. Mohamed et al. [22] solving the OPF 

problems with multi-objective function and employed algorithm called moth swarm to optimize emission,fuel 

cost, fuel cost with only valve effect, L-index, power losses, piecewise cost, and voltage deviation. 

Several research articles used the algorithms inspired by humans that were used for solving the OPF 

problems.Where improved harmony search algorithm is employed in [23] to solve OPF problem using only 

single objective function and optimize the fuel cost only with valve effect. Also, fuel cost, fuel cost considering 

the banned regions,and fuel cost with valve effect have been optimised in [24] using algorithm called symbiotic 

organisms search. Adaryani and Karami [25] fuel cost with only valve effect and emission based on using the 

modified teaching-learning algorithm are optimized. Ghasemi et al. [26] solve the OPF problem and employed 

algorithm known as the improved teaching-learning to optimize fuel cost, fuel cost with only valve effect, 

emission, piecewise cost, and voltage deviation. Mandal and Roy [27] employed optimization algorithm known 

as quasi-oppositional teaching learning algorithm to optimize emission, fuel costs with valve effect, L-index, 

power losses, and L-index. 

Many research papers applied evolutionary-based optimization techniques for solving the OPF 

problem. Somasundaram et al. [28] authors are solving the optimal power flow problem with a single objective 

function and employed the evolutionary programming algorithm to optimize the fuel cost. A faster algorithm 

called evolutionary is applied in [29] to optimize fuel cost and fuel cost with only valve effect. Optimizing of 

fuel cost and emission is presented in [30] by using the improved evolutionary algorithm. Power losses, fuel 

cost, emission, and L-index are optimized in [31] employed enhanced self- adaptive differential evolution. 

Reddy and Bijwe [32], differential evolution algorithm is applied to optimize power losses, L-index, fuel cost, 

and fuel cost with only valve effect. Chaib et al. [33] solve the OPF problem and employed the backtracking 

search method to optimize emission, L-index, fuel cost, fuel cost with only valve effect, piecewise cost, and 

voltage deviation.  
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Several research articles present the applicable physics-inspired techniques for solving the OPF issues. 

Bouchekara et al. [34], the author solved the OPF problem with multi-objective function and employed 

optimization method called an improved colliding bodies to optimize emission, fuel cost, fuel cost with only 

valve effect, L-index, power losses, voltage deviation, and piecewise cost. Many research papers discuss 

composite optimization techniques that have been used for OPF. Gacem and Benattous [35] used particle swarm 

and genetic algorithm to optimize fuel cost, and cost of fuel with valve effect. Fuel cost, cost of fuel with valve 

effect, emission, L-index, piecewise cost, and voltage deviation is optimized in [36] by employing Nelder-Mead 

and fuzzy particle swarm optimization algorithms. Also, Singh et al. [37] with an aging leader and challengers 

employed particle swarm optimization algorithm to optimize fuel cost, fuel cost with only valve effect, voltage 

deviation, and power losses. The optimizations techniques based on ANNs and fuzzy logic approachs are 

presented through several research articles as in references [38]-[40]. 

To summarise, this article presents a new population-based algorithm called archimedes optimization 

algorithm (AOA) based on the physics law known as Archimedes' principle to compete with state-of-the-art and 

recent optimization algorithms, including other physics-inspired methods. It is important to note that the 

proposed technique strikes a balance between exploration and exploitation. Because AOA keeps a population of 

solutions and investigates a large area to find the best global solution, it is well suited for solving complex 

optimization problems with many locally optimal solutions.In conclusion, the following are the main 

contributions of this research: 

− Archimedes optimization algorithm (AOA) has been proposed as a new population-based algorithm that 

mimics Archimedes' principle. 

− Introduce the OPF problem formulation with different four objective-functions. 

− Applying the proposed AOA for solving the optimization problems by converting the multi-objective 

function (fuel cost, power losses, voltage deviation, and emission) into a single-objective function using the 

price and weighting factors. 

− The IEEE30-bus testing system is used in this study to assess the effect of the proposed algorithm on a 

difficult test suite in metaheuristic literary works. 

− The search efficiency of AOA is validated against well-established algorithms dragonfly algorithm (DA), 

particle swarm optimization (PSO), sparrow search algorithm (SSA), future search algorithm (FSA). 

− The AOA algorithm is also proposed for deciding the best and optimal allocation of RES. 

− Finally, the modified IEEE30-bus testing system integrated with the optimal RES allocation is introduced to 

test the AOA suggested algorithm's supremacy over other metaheuristic algorithms. 

This paper organization is as follows: section 2 introduces the mathematical formulation model of the 

OPF. The AOA proposed algorithm is discussed in section 3. Also, section 4 contains the AOA simulation 

results. In this section, a thorough analysis and comparison are performed against the selected metaheuristic 

algorithms. Section 5 presents the final discussion and conclusion. 
 
 

2. MATHEMATICAL FORMULATION FOR OPF  

The optimum power flow issue seeks to maximize an objective function by making optimal 

modifications to the control variables of power system while adhering to various equality constraints and 

inequality constraints. In general, the optimization issue may be mathematically stated as: 
 

𝑚𝑖𝑛 𝐹(𝑥, 𝑢) (1) 
 

Conditional on:  

𝑔𝑗(𝑥, 𝑢) = 0 𝑗 = 1,2, … , 𝑚 

ℎ𝑗(𝑥, 𝑢) ≤ 0 𝑗 = 1,2, … , 𝑝 

Where function F represents the objective function, 𝑥 is a vector containing the state variables (dependent 

variables), 𝑢 is a vector containing the control variables (independent variables), and 𝑔𝑗  and ℎ𝑗  are 

respectively the equality and inequality requirements. The variables 𝑚 and 𝑝 represent respectively the 

equality and inequality constraints numbers. In a power system, the state variables (𝑥) are as: 
 

𝑥 = [𝑃𝐺1 , 𝑉𝐿1 … 𝑉𝐿,𝑁𝑃𝑄 , 𝑄𝐺,1 … 𝑄𝐺,𝑁𝐺  , 𝑆𝑇𝐿,1 … 𝑆𝑇𝐿,𝑁𝑇𝐿 ] (2) 

 

where 𝑃𝐺1  denotes power of slack bus, 𝑉𝐿  denotes load bus voltage, 𝑄𝐺  denotes reactive output 

power for generator, 𝑆𝑇𝐿 denotes the transmission line's apparent power flow, 𝑁𝑃𝑄 denotes the 

load buses number, 𝑁𝐺 denotes the generation buses number, and 𝑁𝑇𝐿 denotes the transmission 

lines number. In a power system, the control variables (u) are as: 
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𝑢 = [𝑃𝐺,2 … 𝑃𝐺,𝑁𝐺 , 𝑉𝐺,1 … 𝑉𝐺,𝑁𝐺 , 𝑄𝐶,1 … 𝑄𝐶,𝑁𝐶  , 𝑇1 … 𝑇𝑁𝑇] (3) 
 

where 𝑃𝐺  is the active output power for generator, 𝑉𝐺  is the generation bus voltage, 𝑄𝐶  is the shunt 

compensator reactive power injected, T is the tap setting for transformer, NC is the shunt compensator units 

number, and NT is the transformers number. 
 

2.1.  Objective functions 

An objective function definition should be used to pick the optimal solution as the desired solution. 

In addition to the problem objectives, different objectives are assessed for the OPF, going to result in an 

optimized power flow that considers system constraints and determines the finest conditions in terms of 

system control variables, in furthermore to the problem objectives. OFP's best solution has been linked to 

techno-economic advantages, which are commonly referred to as OPF objectives. Reduced fuel costs in 

terms of annual savings are among the economic benefits, while the technical benefits are listed [3]:  

− Minimization of active power losses 

− Minimization of reactive power losses 

− System reliability, and power quality enhancement 

− Deviation of the voltage 

− Stability of the voltage 
 

2.1.1. Single objective functions 

A most common objective-functions can be performed as follows [41]-[45]: 

− Basic fuel costs minimization objective 

This objective function is the primary aim of the OPF issue and seeks to minimize overall 

fuel cost. For every generator, it may be demonstrated as a quadratic polynomial function as: 
 

𝐹1 = ∑ 𝐹𝑖
𝑁𝐺
𝑖=1 (𝑃𝐺𝑖) = ∑ (𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃

2
𝐺𝑖)

𝑁𝑃𝑉
𝑖=1

$

ℎ
 (4) 

 

where, 𝐹𝑖 is the 𝑖th generator fuel cost. 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are the cost coefficients for 𝑖th generator. 

− Generation emission minimization objective 

Reducing the amount of gas emitted by thermal power plants can help to reduce 

pollution. The objective function for the emission gases is as:  
 

𝐹2 = ∑ (𝛾𝑖𝑃
2

𝐺𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛼𝑖+ζ𝑖  𝑒𝑥𝑝(𝜆𝑖𝑃𝐺𝑖)𝑁𝐺
𝑖=1  (5) 

 

where, 𝛾𝑖, 𝛽𝑖, 𝛼𝑖, ζ𝑖, and 𝜆𝑖 are the 𝑖th generator's emission coefficients. 

− Active power losses minimization objective 

The desired objective-function is to minimize real power loss, which can be presented as: 
 

𝐹3 = ∑ 𝐺𝑖𝑗(𝑉2
𝑖 + 𝑉2

𝑗 − 2 𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗)𝑁𝑇𝐿
𝑖=1 MW  (6) 

 

where, 𝐺𝑖𝑗 the transmission conductance, NTL is the transmission lines number, and 𝛿𝑖𝑗 is the 

voltages phase difference. 

− Voltage profile improvement 

The deviations of load buses voltage from a predetermined voltage are minimized by this 

objective function, it may be expressed as: 
 

𝐹4 = 𝑉𝐷 = ∑ |𝑉𝑖 − 1|𝑁𝑃𝑄
𝑖=1  (7) 

 

2.1.2. Multi-objective functions 

The primary goal of resolving a multi-objective problem is to optimize multiple 

independent objective functions simultaneously and its definition is represented as: 
 

𝑀𝑖𝑛 𝐹(𝑥, 𝑢) = [𝐹1(𝑥, 𝑢), 𝐹2(𝑥, 𝑢), … , 𝐹𝑖(𝑥, 𝑢)] (8) 
 

where 𝑖 is the objective functions number, the optimization with Pareto approach or weight factors 

as follows can be used to solve multi objective functions: 

 

𝑀𝑖𝑛 𝐹5 = ∑ 𝑤𝑖
4
𝑖=1  𝐹𝑖(𝑥, 𝑢)  

 

𝐹(𝑥, 𝑢) = 𝑤1𝐹1 + 𝑤2𝐹2 + 𝑤3𝐹3 + 𝑤4𝐹4 (9) 
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𝐹(𝑥, 𝑢) = 𝑤1 ∑ (𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃
2

𝐺𝑖)
𝑁𝐺
𝑖=1 + 𝑤2 ∑ (𝛾𝑖𝑃

2
𝐺𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛼𝑖+ζ𝑖  𝑒𝑥𝑝(𝜆𝑖𝑃𝐺𝑖)𝑁𝐺

𝑖=1 +

𝑤3 ∑ 𝐺𝑖𝑗(𝑉2
𝑖 + 𝑉2

𝑗 − 2 𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗)𝑁𝑇𝐿
𝑖=1 + 𝑤4 ∑ |𝑉𝑖 − 1|𝑁𝑃𝑄

𝑖=1   (10) 
 

where 𝑤11, 𝑤2 , 𝑤 3 and𝑤4 are weight factors chosen based on the relative importance of one goal 

to another. Typically, the values of the weight factors are chosen as: 
 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1 (11) 

 

2.2.  System constraints 

There are already many constraints in the system that can be classified as: 
 

2.2.1. The Equality constraints 

The equality constraints for the balanced load flow equations are as: 
 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗 cos 𝛿𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗)𝑁𝐵
𝑗=1  (12) 

 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗 cos 𝛿𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗)𝑁𝐵
𝑗=1  (13) 

 

where 𝑃𝐺𝑖  and 𝑄𝐺𝑖  are the active power and reactive power generated respectively at bus 𝑖, the 

active and reactive demand of the load at bus 𝑖 are represented by 𝑃𝐷𝑖 and 𝑄𝐷𝑖, respectively. 𝐺𝑖𝑗  

and 𝐵𝑖𝑗 represent conductance and susceptibility among buses 𝑖 and 𝑗 , respectively. 
 

2.2.2. Inequality constraints 

The Inequality constraints is categorized as: 

 

Active output power of generators 𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥  𝑖 = 1,2, … , 𝑁𝐺 (14) 

 

Voltages at generators buses 𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥  𝑖 = 1,2, … , 𝑁𝐺 (15) 

 

Reactive output power of generators 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥𝑖 = 1,2, … , 𝑁𝐺  (16) 

 

Tap settings of transformer 𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥  𝑖 = 1,2, … , 𝑁𝑇 (17) 

 

Shunt VAR compensator 𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥  𝑖 = 1,2, … , 𝑁𝐶 (18) 

 

Apparent power flows in transmission lines 𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖
𝑚𝑖𝑛 𝑖 = 1,2, … , 𝑁𝑇𝐿 (19) 

 

Magnitude of load buses voltage 𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥  𝑖 = 1,2, … , 𝑁𝑃𝑄  (20) 
 

The dependent control variables can be easily incorporated into an optimization solution by using 

the quadratic penalties formulation of the objective-function, which is stated: 
 

𝐹𝑔(𝑥, 𝑢) = 𝐹𝑖(𝑥, 𝑢) + 𝐾𝐺(∆𝑃𝐺1)2 + 𝐾𝑄 ∑ (∆𝑄𝐺𝑖)2 + 𝐾𝑉 ∑ (∆𝑉𝐿𝑖)
2𝑁𝑃𝑄

𝑖=1
𝑁𝑃𝑉
𝑖=1 + 𝐾𝑆  ∑ (∆𝑆𝐿𝑖)

2𝑁𝑇𝐿
𝑖=1  (21) 

 

where 𝐾𝐺 , 𝐾𝑄, 𝐾𝑉, and 𝐾𝑆 are penalty factors with large positive values, also ∆𝑃𝐺1, ∆𝑄𝐺𝑖, ∆𝑉𝐿𝑖 , 

and ∆𝑆𝐿𝑖  are penalty conditions that can be stated as: 
 

∆𝑃𝐺1 =  {

(𝑃𝐺1 − 𝑃𝐺1
𝑚𝑎𝑥)                                  𝑃𝐺1 > 𝑃𝐺1

𝑚𝑎𝑥

(𝑃𝐺1 − 𝑃𝐺1
𝑚𝑖𝑛)                                  𝑃𝐺1 < 𝑃𝐺1

𝑚𝑖𝑛

0                                          𝑃𝐺1
𝑚𝑖𝑛 < 𝑃𝐺1 < 𝑃𝐺1

𝑚𝑎𝑥

 (22) 

 

∆𝑄𝐺𝑖 =  {

(𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑎𝑥)                                  𝑄𝐺𝑖 > 𝑄𝐺𝑖

𝑚𝑎𝑥

(𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛)                                  𝑄𝐺𝑖 < 𝑄𝐺𝑖

𝑚𝑖𝑛

0                                          𝑄𝐺𝑖
𝑚𝑖𝑛 < 𝑄𝐺𝑖 < 𝑄𝐺𝑖

𝑚𝑎𝑥

 (23) 
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∆𝑉𝐿𝑖 =  {

(𝑉𝐿𝑖 − 𝑉𝐿𝑖
𝑚𝑎𝑥)                                  𝑉𝐿𝑖 > 𝑉𝐿𝑖

𝑚𝑎𝑥

(𝑉𝐿𝑖 − 𝑉𝐿𝑖
𝑚𝑖𝑛)                                  𝑉𝐿𝑖 < 𝑉𝐿𝑖

𝑚𝑖𝑛

0                                          𝑉𝐿𝑖
𝑚𝑖𝑛 < 𝑉𝐿𝑖 < 𝑉𝐿𝑖

𝑚𝑎𝑥

     (24) 

 

∆𝑆𝐿𝑖 =  {

(𝑆𝐿𝑖 − 𝑆𝐿𝑖
𝑚𝑎𝑥)                                 𝑆𝐿𝑖 > 𝑆𝐿𝑖

𝑚𝑎𝑥

(𝑆𝐿𝑖 − 𝑆𝐿𝑖
𝑚𝑖𝑛)                                  𝑆𝐿𝑖 < 𝑆𝐿𝑖

𝑚𝑖𝑛

0                                          𝑆𝐿𝑖
𝑚𝑖𝑛 < 𝑆𝐿𝑖 < 𝑆𝐿𝑖

𝑚𝑎𝑥

                                    (25) 

 
 

3. ARCHIMEDES OPTIMIZATION ALGORITHM OVERVIEW 
AOA mimics the concept of the force of buoyancy which imposed upwards to an object partially or 

completely immersed in fluid, proportional to the weight of the displaced fluid. AOA is a population-based 

algorithm, and the individuals in the population are the immersed objects in the proposed approach. AOA, 

like other population-based metaheuristic algorithms, begins the search process by populating objects 

(candidate solutions) with random volumes, densities, and accelerations. At this point, each object is also 

given a random position in fluid. AOA works in iterations until the termination condition is met after 

evaluating the fitness of the initial population. AOA updates the density and volume of each object in each 

iteration. The object's acceleration is updated based on the condition of its collision with any other 

neighboring object. The new position of an object is determined by the updated density, volume, and 

acceleration. The detailed mathematical formulation of AOA steps is given. 
 

3.1.  Algorithmic steps 

The mathematical formulation of the AOA algorithm is introduced in this section. AOA, in theory, 

can be thought of as a global optimization algorithm because it encompasses both exploration and 

exploitation processes. Algorithm 2 shows the proposed algorithm's pseudo-code, which includes population 

initialization, population evaluation, and parameter updating.The steps of the AOA are detailed 

mathematically as follows. 

- Step 1: Initialization 

Initialize the positions of all objects using (26): 
 

𝑂𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖); 𝑖 = 1, 2, … , 𝑁 (26) 
 

where 𝑂𝑖  is the object 𝑖𝑡ℎ in a population of 𝑁 objects, 𝑙𝑏𝑖and 𝑢𝑏𝑖 are respectively the lower and the upper 

bounds of the search-space. Density (𝑑𝑒𝑛) and initial volume (𝑣𝑜𝑙) and for each object 𝑖𝑡ℎ using (27) and  (28): 
 

𝑑𝑒𝑛𝑖 = 𝑟𝑎𝑛𝑑 (27) 
 

𝑣𝑜𝑙𝑖 = 𝑟𝑎𝑛𝑑 (28) 
 

where rand is a D-dimensional vector that generates a number at random between [0, 1]. Finally, initialize 

acceleration (𝑎𝑐𝑐) of object 𝑖𝑡ℎ using (29): 
 

𝑎𝑐𝑐𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (29) 
 

inside this step, assess the initial population and choose the object with the highest fitness value. Assign 

𝑥𝑏𝑒𝑠𝑡 , 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 , 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 , and 𝑎𝑐𝑐𝑏𝑒𝑠𝑡  . 

- Step 2: Update densities, volumes  

The density and volume of 𝑖 object for the iteration t + 1 is updated using (30) and (31): 
 

𝑑𝑒𝑛𝑖
𝑡+1 = 𝑑𝑒𝑛𝑖

𝑡+1 + 𝑟𝑎𝑛𝑑 × (𝑑𝑒𝑛𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑛𝑖
𝑡) (30) 

 

𝑣𝑜𝑙𝑖
𝑡+1 = 𝑣𝑜𝑙𝑖

𝑡+1 + 𝑟𝑎𝑛𝑑 × (𝑣𝑜𝑙𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑙𝑖
𝑡) (31) 

 

where 𝑣𝑜𝑙𝑏𝑒𝑠𝑡  and 𝑑𝑒𝑛𝑏𝑒𝑠𝑡  are the volume and density affiliated with the finest object discovered thus far, 

and rand is an uniform random number.  

- Step 3: Transfer operator and density factor  

Initially, objects collide, and after a period, the objects attempt to reach an equilibrium state. This is 

accomplished in AOA using the transfer factor TF, which transforms search from exploration to exploitation, 

as defined by (32). 
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𝑇𝐹 = exp (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
) (32) 

 

Where the transfer TF gradually increases over time until it reaching1. Here 𝑡 and 𝑡𝑚𝑎𝑥are iteration number 

and maximum number of iterations, respectively. Similarly, the density decreasing factor 𝑑 also aids in its 

global to local search. It decreases over time when using (33). 

 

𝑑𝑡+1 = exp (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
) − (

𝑡

𝑡𝑚𝑎𝑥
) =𝑇𝐹 − (

𝑡

𝑡𝑚𝑎𝑥
) (33) 

 

Where 𝑑𝑡+1 decreases over time, allowing convergence in a previously identified outstanding region. It 

should be noted that proper handling of this variable will ensure AOA's balance of exploration and 

exploitation. 

- Step 4.1: Exploration phase (collision between objects occurs)  

If TF ≤ 0.5, an object collides, choose a random material (𝑚𝑟) and update acceleration of the object 

for iteration t + 1 using (34): 

 

𝑎𝑐𝑐𝑡+1 =
𝑑𝑒𝑛𝑚𝑟+𝑣𝑜𝑙𝑚𝑟×𝑎𝑐𝑐𝑚𝑟

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1  (34) 

 

where 𝑑𝑒𝑛𝑖, 𝑣𝑜𝑙𝑖 , and 𝑎𝑐𝑐𝑖  are density, volume, and acceleration of 𝑖 object. Besides that, 𝑎𝑐𝑐𝑚𝑟 , 𝑑𝑒𝑛𝑚𝑟and 

𝑣𝑜𝑙𝑚𝑟are the acceleration, density, and volume of random material. It is worth noting that TF ≤ 0.5 

guarantees exploration during one-third of iterations. Changing the value from 0.5 to something else will 

alter the exploration-exploitation behavior. 

- Step 4.2: Exploitation phase (no collision between objects) 

If TF > 0.5, Objects do not collide, update acceleration of the object for iteration t + 1 using (35): 

 

𝑎𝑐𝑐𝑡+1 =
𝑑𝑒𝑛𝑏𝑒𝑠𝑡+𝑣𝑜𝑙𝑏𝑒𝑠𝑡×𝑎𝑐𝑐𝑏𝑒𝑠𝑡

𝑑𝑒𝑛𝑖
𝑡+1×𝑣𝑜𝑙𝑖

𝑡+1  (35) 

 

Where 𝑎𝑐𝑐𝑏𝑒𝑠𝑡  is the acceleration of the best object. 

- Step 4.3: Normalize acceleration  

Normalize acceleration to calculate the percentage of change using (36). 

 

𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 = 𝑢 ×

𝑎𝑐𝑐𝑖
𝑡+1−min (𝑎𝑐𝑐)

max(𝑎𝑐𝑐)−min (𝑎𝑐𝑐)
+ 𝑙 (36) 

 

Where 𝑢 and 𝑙 are the range of normalization and set to 0.9 and 0.1, respectively. The 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1  determines 

how much each agent will change in one step. If the object I is very far from the global optimum, the 

acceleration value will be high, indicating that it is in the exploration phase; or else, it is in the exploitation 

phase. This diagram depicts how the search progresses from the exploratory to the exploitation phase. In 

most cases, the acceleration factor starts out high and gradually decreases. These assists search agents in 

moving away from local solutions and toward the best solution globally. However, it is worth noting that 

some search agents may require more time to remain in the exploration phase than usual. As a result, AOA 

achieves the desired balance of exploration and exploitation. 

- Step 5: Update position 

If (TF ≤ 0.5) means less than 0.5 (exploration phase), the 𝑖𝑡ℎ position of the object for next iteration 

t + 1 using (37): 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐶1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖

𝑡) (37) 

 

where 𝐶1 is a constant equals to 2. Otherwise, if (TF > 0.5) means greater than 0.5 (exploitation phase), the 

objects' positions are updated using (38): 

 

𝑥𝑖
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 + 𝐹 × 𝐶2 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑖−𝑛𝑜𝑟𝑚
𝑡+1 × 𝑑 × (𝑇 × 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) (38) 

 

where 𝐶2 a fixed value of 6. 𝑇 grows with time, is proportional to the transfer operator, and is defined using 

𝑇 =  𝐶3 ×  𝑇𝐹. 𝑇 increases with time  in range [𝐶3 ×0.3,1] and initially deducts a certain percentage from the 

best position. It begins with a low percentage because this results in a large difference between the best and 

current positions; as a result, the step-size of the random walk will be large. As the search progresses, this 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Optimal power flow using archimedes optimizer algorithm (Mohammed Hamouda Ali) 

1397 

percentage gradually increases to reduce the gap between the best and current positions. This results in an 

appropriate balance of exploration and exploitation. 𝐹 is the flag to change the direction of motion using (39): 
 

𝐹 = {
+1    𝑖𝑓 𝑃 ≤ 0.5
−1    𝑖𝑓 𝑃 > 0.5

 (39) 

 

where, 𝑃 = 2 × 𝑟𝑎𝑛𝑑 − 𝐶4. 

- Step 6: Evaluation 

Evaluate every object using the objective function f, and keep the best solution found so far in mind. 

Assign 𝑥𝑏𝑒𝑠𝑡 , 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 , 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 , and 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 . 

 

3.2.  AOA-based optimization process 

This paper's holistic optimization model includes multi-dimensional parameters. The main AOA 

encoding is no longer applied. The code vector for comprehensive OPF optimization is as: 
 

[𝑃𝐺2, 𝑃𝐺5, 𝑃𝐺8, 𝑃𝐺11, 𝑃𝐺13, 𝑉1, 𝑉2, 𝑉5, 𝑉8, 𝑉11, 𝑉13, 𝑇11, 𝑇12, 𝑇15, 𝑇36, 𝑄10, 𝑄12, 𝑄15, 𝑄17, 𝑄20, 𝑄21, 𝑄23, 𝑄24, 𝑄29] 
 

 

4. RESULTS OF SIMULATION 
To investigate the efficacy of using AOA to resolve the OPF issue, it is investigated using one 

standard test system of IEEE-30 bus test system. In this section, the simulation results of solving OPF using 

AOA are compared to those obtained by other recent metaheuristic algorithms. The potential of AOA to 

minimize the fuel cost, active power loss, total deviation in the voltage, and emission as a single-objective 

problem for each objective and as a multi objective problem using weight factors which evaluated based on 

the following cases presented below. Also, he proposed AOA algorithms' efficiency is also tested against 

other algorithms through the modified IEEE30-bus test system to introduce the optimal allocation for RES 

and prove its validity with minimizing of the fuel cost. The appropriate parameters of the AOA and other 

methods are chosen based on empirical tests through running these algorithms considerable many times for 

the test system with combination of different parameters. The application of AOA and other compared 

techniques to solve OPF problem have been run on, a I7-8700 CPU, 16 GB RAM PC 2.8GHz, and 

MATLAB 2018a. 
 

4.1.  Testing system description. 

The standard IEEE 30-bus test system includes 6 generation power units, 41 lines and 24 load buses.  

Bus no. 1 is selected as slack bus. The active and reactive power values of the total connected load are 2.834 pu 

and 1.262 pu, respectively. The voltage magnitude of the power generating buses is limited between 0.95 pu and 

1.1 pu, while the voltage magnitude of the remaining load buses is limited between 0.95 pu and 1.05 pu. 

Furthermore, the tap changing transformers are adjustable between 0.9 and 1.1 pu. Furthermore, the VAR 

compensator limit is set to fluctuate between 0 and 0.05 pu. Finally, more information about all of the buses and 

lines data of the IEEE 30-bus testing system can be found and described in [46]-[48]. 
 

4.1.1. Case1: Minimization of fuel cost 

The proposed AOA in this case is implemented on the IEEE 30-bus test system to reduce fuel costs. 

Table 1 shows the best results obtained by the AOA as well as those obtained by other reported algorithms in 

the literature. such as FSA, SSA, PSO [49] and DA [50]. According to the simulated results, the better 

(minimum) fuel costs offered by AOA algorithm is 799.1543 $/hr which is better than that determined by the 

other compared algorithms. Furthermore, Figure 1 shows the voltage profile of the AOA which guarantees 

that the magnitudes of all voltages for all buses are within acceptable limits. Figure 2 depicts the convergence 

characteristics of minimizing the fuel cost (more than 200 iterations) produced by the standard AOA and 

other algorithms compared. It is observed that from this figure the AOA yields better convergence 

characteristics than other compared algorithms. 
 

4.1.2. Case2: Minimization of active power losses 

For this case, the minimization of the real power loss is considered here as a single objective function. 

The best simulation results yielded based on the AOA are presented in Table 2 together with the obtained results of 

the other compared techniques, where AOA yielded power losses value of 2.980374 MW compared to the results 

of 4.417859, 3.414704, 3.774816 and 3.8095 MW achieved by FSA , SSA , PSO and DA respectively. As in 

case 1, the voltages profile for all buses are within their boundaries as shown in Figure 3. The minimizing 

real power loss convergence characteristics obtained by AOA and other compared techniques is illustrated in 

Figure 4, it is concluded that the AOA's convergence characteristics of minimizing real power loss 

outperform with the other algorithms that were compared. 
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Table 1. Optimal control variables for IEEE30-bus test system for minimizing fuel cost 
 FSA SSA PSO DA AOA 

𝑃𝐺2 (MW) 46.28349 80 48.87814 48.93911 48.25165 

𝑃𝐺5 (MW) 21.34807 15 21.47237 21.32534 21.40734 

𝑃𝐺8 (MW) 23.26794 35 21.68903 21.33967 21.2471 

𝑃𝐺11(MW) 14.56352 30 10 10 12.40777 

𝑃𝐺13(MW) 16.68156 24.4285 12 12 11.11124 

𝑉1(pu) 1.088163 0.95 1.1 1.1 1.099999 

𝑉2(pu) 1.078415 1.1 1.086457 1.075001 1.086588 

𝑉5(pu) 1.035299 1.070375 1.058621 1.034858 1.059408 

𝑉8(pu) 1.049452 1.073196 1.066039 1.048098 1.068567 

𝑉11(pu) 1.083961 1.1 1.08413 1.1 1.099741 

𝑉13(pu) 1.094221 1.042241 1.1 1.1 1.099967 

𝑇11 (6-9) 1.029402 0.9 0.9 0.995808 0.997018 

𝑇12 (6-10) 1.078941 0.981035 1.1 1.008401 0.987031 

𝑇15 (4-12) 1.062136 1.08085 1.030829 1.010048 1.005459 

𝑇36 (2827) 0.968044 0.9 0.980481 0.96689 0.981402 

𝑄10(MVR) 0.335860 0 0 2.614276 2.898496 

𝑄12(MVR) 0.335860 0.378800 4.999604 2.327550 2.511993 

𝑄15(MVR) 0.335860 0.098791 5 1.707832 4.557046 

𝑄17(MVR) 0.335860 5 5 1.936540 4.807264 

𝑄20(MVR) 0.335860 0 5 5 4.578255 

𝑄21(MVR) 0.335860 0.205703 5 4.697618 4.954453 

𝑄23(MVR) 0.335860 2.563488 0 2.858147 2.354573 

𝑄24(MVR) 0.335860 3.784069 5 2.801551 4.362404 

𝑄29(MVR) 0.335860 5 3.426363 5 3.406998 

Fuel Cost ($/h) 802.7119 817.6356 799.5118 800.1055 799.1543 

Power Losses (MW) 8.711178 25.18706 8.804382 9.023054 8.663665 

Voltage Deviations(pu) 0.506489 1.438624 1.472048 1.283183 1.583447 

 

 
 

  
  

Figure 1. The voltage profile of the AOA and other 

compared algorithms for case 1 

Figure 2. The convergence characteristics of AOA 

and other compared algorithms for case 1  

 

 

  
  

Figure 3. The voltage profile of the AOA and other 

AOA compared algorithms for case 2 

Figure 4. The convergence characteristics of AOA 

and other compared algorithms for case 2 
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Table 2. Optimal control variables for IEEE30-bus test system for minimizing real power loss 
 FSA SSA PSO DA AOA 

𝑃𝐺2 (MW) 73.00357 80 80 76.21227 79.9728 

𝑃𝐺5 (MW) 43.56395 50 50 50 49.99981 

𝑃𝐺8 (MW) 34.90729 35 35 26.88553 34.7412 

𝑃𝐺11 (MW) 30 30 10 21.95056 29.92457 

𝑃𝐺13 (MW) 37.92178 40 40 40 39.91039 

𝑉1(pu) 0.97198 1.038716 1.1 1.1 1.099507 

𝑉2(pu) 0.964838 1.038704 1.097106 1.096669 1.099963 

𝑉5(pu) 0.959585 1.038594 1.079159 1.1 1.088233 

𝑉8(pu) 0.967453 1.038695 1.084461 1.089537 1.093303 

𝑉11(pu) 0.951831 1.038707 1.049517 1.077027 1.098702 

𝑉13(pu) 0.984971 1.038704 1.1 1.1 1.063046 

𝑇11 (6-9) 0.979798 1.038544 1.1 1.002769 1.079032 

𝑇12 (6-10) 0.900415 1.038584 0.9 1.024754 1.010058 

𝑇15 (4-12) 0.984489 1.038668 1.1 1.1 1.019467 

𝑇36 (28-27) 0.947636 1.038656 1.015115 1.007676 1.021381 

𝑄10 (MVAR) 5 5 5 5 4.952362 

𝑄12 (MVAR) 5 5 5 1.823587 4.656925 

𝑄15 (MVAR) 5 5 5 5 4.600773 

𝑄17 (MVAR) 5 5 5 1.878693 4.872392 

𝑄20 (MVAR) 5 5 0 5 4.133455 

𝑄21 (MVAR) 5 5 5 4.996018 4.086306 

𝑄23 (MVAR) 5 5 3.740602 0 4.792458 

𝑄24 (MVAR) 5 5 5 0 3.561832 

𝑄29 (MVAR) 5 5 5 5 3.707280 

Fuel Cost ($/h) 923.4265 968.4138 938.6007 936.42 966.5503 

Power Losses (MW) 4.417859 3.414704 3.774816 3.8095 2.980374 

Voltage Deviations(pu) 0.714313 0.365503 1.283244 1.34055 1.31844 

 
 

4.1.3. Case3: Minimization of total voltage deviation 

The proposed AOA is employed in this case, for minimizing the total Voltage deviation discussed in 

section 2 as single objective function. The Table 3 shows the optimal variables resulting by AOA alongside 

with the other compared algorithms, where the best and minimum voltage deviation value is 0.120906 pu 

which observed with AOA compared to 0.138711 pu, 0.306075 pu,0.181846 pu and 0.291642 pu with FSA, 

SSA, PSO and DA respectively. According to Figure 5, it is seen that the AOA also offer the best voltage 

profile than the other compared algorithms. Also, Figure 6 proven that the convergence characteristic 

obtained by the AOA outperforms those by the other compared algorithm. 
 

 

Table 3. Optimal control variables for IEEE 30-bus test system for minimizing voltage deviation 
 FSA SSA PSO DA AOA 

𝑃𝐺2 (MW) 46.20759 79.72873 80 43.42174 9.7903 

𝑃𝐺5 (MW) 30.90417 50 15.79909 29.08509 45.8976 

𝑃𝐺8 (MW) 23.94749 35 34.98085 31.68695 21.7849 

𝑃𝐺11 (MW) 20.39471 30 13.34155 25.99727 28.3488 

𝑃𝐺13 (MW) 25.34568 40 12.28699 24.50418 18.0528 

𝑉1(pu) 1.015291 1.023154 1.046164 1.088389 1.012223 

𝑉2(pu) 1.005648 1.023334 1.02455 1.04562 0.997005 

𝑉5(pu) 1.019072 1.023358 1.021993 1.009017 1.019623 

𝑉8(pu) 1.007426 1.023358 0.99251 0.990572 1.007383 

𝑉11(pu) 1.023104 1.023177 1.043296 1.085419 1.039686 

𝑉13(pu) 0.992756 1.023193 1.061513 1.02474 1.036563 

𝑇11 (6-9) 0.939334 1.023104 0.902244 0.950507 0.991073 

𝑇12 (6-10) 1.01692 1.023379 1.1 0.943128 0.934161 

𝑇15 (4-12) 0.976926 1.023246 1.1 1.1 1.008232 

𝑇36 (28-27) 0.963545 1.023257 0.938548 0.96876 0.956226 

𝑄10 (MVAR) 5 5 4.992005 4.522767 3.992631 

𝑄12 (MVAR) 5 5 5 2.504991 1.905802 

𝑄15 (MVAR) 4.849158 5 5 5 4.122284 

𝑄17 (MVAR) 5 5 0.347174 2.894850 2.425013 

𝑄20 (MVAR) 4.910406 5 5 2.732917 4.994577 

𝑄21 (MVAR) 5 5 0 5 4.847301 

𝑄23 (MVAR) 5 5 5 2.416678 4.212442 

𝑄24 (MVAR) 4.922147 5 5 0.582945 4.3825691 

𝑄29 (MVAR) 5 5 0 2.658813 1.3320663 

Fuel Cost ($/h). 822.525 968.0146 832.2631 828.1918 860.1368 

Power Losses (MW). 7.934595 3.492302 8.511614 7.666995 10.44553 

Voltage Deviations(pu) 0.138711 0.306075 0.181846 0.291642 0.120906 
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Figure 5. The voltage profile of the AOA and other 

compared algorithms for case3 

Figure 6. The convergence characteristics of AOA 

and other compared algorithms for case3 
 

 

4.1.4. Case4: Minimization of multi objective function without emission 

For optimizing more than single objective function, simultaneously, the multi-objective function 

using weighting factors as discussed in section 2 is proposed here for obtaining the maximum benefits of the 

proposed test system. Table 4 shows how the AOA and other compared algorithms solved the multi-objective 

OPF problem without considering emission in the IEEE-30 bus system. These findings suggest that using 

AOA to solve the multi-objective OF problem is more effective than using other compared algorithms. 

Where, the total objective function with the value of 836.3664 $/hr is better than all other algorithms with the 

results 847.2615 $/hr, 926.823 $/hr, 844.1233$/hr and 845.088 $/hr achieved by FSA, SSA, PSO and DA 

respectively without violating the consider constraints. As in previous cases, the voltage profiles of all buses 

are within the specified limits, as shown in Figure 7, for all compared algorithms. Furthermore, as shown in 

Figure 8, the AOA still has fast and smooth convergence characteristics when compared to other algorithms. 
 

 

Table 4. Optimal control variables for IEEE30-bus test system for minimizing multi-objective function 

without emission 

 FSA SSA PSO DA AOA 
𝑃𝐺2 (MW) 55.78434 46.83946 48.60174 47.89617 49.16384 
𝑃𝐺5 (MW) 24.03921 25.81327 22.56217 23.61245 22.79406 
𝑃𝐺8 (MW) 19.01405 35 23.80653 19.69738 26.21244 
𝑃𝐺11 (MW) 15.74422 27.06992 13.42591 20.53271 15.30012 
𝑃𝐺13 (MW) 24.79774 35.95446 12 12.0331 11.4444 
𝑉1(pu) 1.024729 1.037957 1.1 1.043497 1.052391 
𝑉2(pu) 1.014104 1.012106 1.060285 1.028974 1.033897 
𝑉5(pu) 1.002711 0.962564 1.008819 1.036575 1.004587 
𝑉8(pu) 1.0187 1.018687 1.000206 0.999347 1.000761 
𝑉11(pu) 1.03556 0.96675 1.053441 1.029754 1.017336 
𝑉13(pu) 1.010232 1.050623 0.991688 1.016487 1.036494 
𝑇11 (6-9) 1.00081 0.997347 0.928706 0.925325 0.978556 
𝑇12 (6-10) 1.030657 0.957128 1.098984 1.050108 0.959816 
𝑇15 (4-12) 0.99651 1.030978 0.944668 0.945414 1.041585 
𝑇36 (28-27) 0.989278 0.907406 0.949064 0.953255 0.957001 
𝑄10 (MVAR) 5 5 4.945975 4.941679 3.181699 
𝑄12 (MVAR) 5 5 0 3.204882 3.6623086 
𝑄15 (MVAR) 5 5 4.708812 1.703036 4.6046683 
𝑄17 (MVAR) 5 5 0 1.821205 0.2866086 
𝑄20 (MVAR) 5 5 4.999873 5 4.6719239 
𝑄21 (MVAR) 5 5 5 1.237059 4.8645306 
𝑄23 (MVAR) 5 5 0 0.703911 4.6938668 
𝑄24 (MVAR) 5 5 5 2.438956 4.2484880 
𝑄29 (MVAR) 5 5 0 2.399590 1.6325226 
𝑄29 (MVAR) 5 5 0 2.399590 1.6325226 
Objective Functions 847.2615 926.823 844.1233 845.088 836.3664 
Fuel Cost ($/h) 812.9506 843.7939 804.9762 807.5542 803.6294 
Power Losses (MW) 8.636995 6.688798 9.842343 9.652608 8.871927 

Voltage Deviations(pu) 0.170159 0.428451 0.194624 0.182286 0.149931 
 

 

4.1.5. Case5: Minimization of multi objective function with emission 

The best results of solving a multi-objective OPF problem with considering emission for IEEE 30-

bus testing system attained by the AOA algorithm is shown in Table 5. From this table, it can be observed 
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that the AOA outperforms other compared algorithms with it. As well as the AOA provides a best value of 

865.9021 $/hr towards 878.1909 $/hr, 902.4330 $/hr, 877.0695 $/hr, and 888.3333 $/hr with the FSA, SSA, 

PSO and DA respectively. The voltages profile of all buses in this case is given in Figure 9, it is recognized 

that all voltages within specified limits for all compared algorithms. Moreover, the convergence 

characteristics for this case obtained by AOA and other algorithms is shown in Figure 10, where AOA 

convergence characteristic has fast and speed convergence, so it outperforms all other algorithms. 
 
 

  
  

Figure 7. The voltage profile of the AOA and other 

compared algorithms for case4 

Figure 8. The convergence characteristics of AOA 

and other compared algorithms for case4 
 

 

Table 5. Optimal control variables for IEEE30-bus test system for minimizing multi-objective function with 

emission 

 FSA SSA PSO DA AOA 
𝑃𝐺2 (MW) 61.9489 27.3040 48.2291 49.3112 52.22681 

𝑃𝐺5 (MW) 23.1307 28.2910 22.1052 15.0505 22.71533 

𝑃𝐺8 (MW) 21.6630 31.6452 35 25.9489 21.38361 

𝑃𝐺11 (MW) 21.2544 26.3380 10 19.9303 14.97433 

𝑃𝐺13 (MW) 21.3232 21.9211 12 15.1212 12.98854 

𝑉1(pu) 1.0311 1.0762 1.1000 1.0391 1.0445 

𝑉2(pu) 1.0233 1.0307 1.0560 1.0263 1.0267 

𝑉5(pu) 0.9937 0.9553 1.0071 0.9940 1.0084 

𝑉8(pu) 1.0058 0.9785 0.9961 1.0192 0.9999 

𝑉11(pu) 1.0026 1.0047 1.1000 1.0378 1.0328 

𝑉13(pu) 1.0248 1.0198 0.9879 1.1000 1.0077 

𝑇11 (6-9) 0.9562 0.9501 0.9497 1.0116 1.0177 

𝑇12 (6-10) 1.0206 0.9501 1.1000 1.0387 0.9255 

𝑇15 (4-12) 1.0051 0.9501 0.9645 1.0472 0.9851 

𝑇36 (28-27) 0.9879 0.9053 0.9626 0.9639 0.9648 

𝑄10 (MVAR) 5 0.5307 5 0 3.8646 

𝑄12 (MVAR) 5 4.0843 5 2.39735 2.8986 

𝑄15 (MVAR) 5 4.7024 3.9236 1.89627 4.9887 

𝑄17 (MVAR) 5 4.6202 0 2.10729 0.5656 

𝑄20 (MVAR) 5 2.8588 5 3.97871 4.9662 

𝑄21 (MVAR) 5 3.7336 0.01161 1.34798 4.8238 

𝑄23 (MVAR) 5 3.00002 5 1.64823 4.9771 

𝑄24 (MVAR) 5 1.05593 5 1.92027 4.3078 

𝑄29 (MVAR) 5 0.53077 1.400453 5 2.6792 

Objective Function 878.1909 902.4330 877.0695 888.3333 865.9021 

Fuel Cost ($/h) 816.1303 829.7243 807.4802 809.0444 804.0073 
Power Losses (MW) 7.8104 8.7264 9.418377 809.0444 9.210662 

Voltage Deviations (pu)  0.1578 0.2474 0.195761 0.2906 0.120500 

 
 

4.1.6. Case6: Optimal allocation for renewable energy sources for minimizing fuel cost 

Where the integration of various renewable sources in the electrical power system increases the 

degree of sophistication of the OPF problem as discussed in section 1, therefore, to show and confirm the 

efficacy of the AOA proposed and implemented in this case to find the optimal allocation of renewable 

energy sources and applied on the IEEE-30 bus testing system for minimizing the fuel costs. Table 6 

illustrates the best AOA results as well as those obtained by other algorithms. According to the simulated 

results, AOA algorithm introduces better (minimum) fuel cost with the optimal location at bus 25 with 

766.0242 $/hr which is better than that determined at bus 30 by the other compared algorithms with values of 

782.489 $/hr, 917.122 $/hr, and 857.0542 $/hr with the FSA, SSA and PSO respectively. Furthermore,  

Figure 11 show the voltage profile of the AOA that guarantees that all voltage magnitudes for all buses are 
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within acceptable limits. The convergence characteristics of minimizing the fuel cost yielded by AOA and 

other compared algorithms are shown in Figure 12. According to this figure, the AOA produces better 

convergence characteristics than the other compared algorithms. 
 

 

  
  

Figure 9. The voltage profile of the AOA and other 

compared algorithms for case5 

Figure 10. The convergence characteristics of AOA 

and other compared algorithms for case 5 
 

 

Table 6. Optimal RES allocation for IEEE 30-bus testing system for minimizing the fuel costs 
 

DG Location 
DG Size 

𝐹𝑐𝑜𝑠𝑡 𝑃𝑙𝑜𝑠𝑠 VD 
MW MVAr 

Base Case - - - 11214.41 5.82226 1.14965 

FSA 30 0.456018 0.2212981 782.489 6.35690 0.86232 
SSA 30 0.253229 0.1579159 917.122 4.83847 0.78772 

PSO 30 0.194454 0.1643651 857.0542 4.83432 0.76938 

AOA 25 0.484643 0.2443312 776.0242 5.09091 0.63354 

 

 

  
  

Figure 11. The voltage profile of the AOA and other 

compared algorithms for case 6 

Figure 12. The convergence characteristics of AOA 

and other compared algorithms for case 6 
 

 

4.1.7. Minimization of the fuel cost with the penetration of RES 

For the present case, to prove the efficiency of the proposed AOA algorithm, it compared also with 

different recent algorithms to minimize and solve the OPF problem with a single objective function 

represented in the reduction of fuel cost only and testing them on a modified IEEE 30-bus system that 

included RES integrated with optimal allocation as present in case 6. Table 7 illustrates the results for this 

case, where AOA yielded the best (minimum) fuel cost of 635.8983 $/hr, compared with 646.264547 $/hr, 

688.92437 $/hr, 639.26731 $/hr, 637.9108 $/hr, achieved by FSA, SSA, PSO and DA respectively. In 

addition, comparing with the first case the superiority of the proposed AOA algorithm is proven, where in 

case 1, AOA introduce minimization of fuel cost with value of 799.1543 $/hr which is higher than that 

determined by introduce proposed AOA with the integration of renewable energy source which adding 

complexity of the optimal power flow problem and achieve fuel cost minimization with value of 635.8983 

$/hr which is less than that determined in case1. Figure 13 illustrates the voltage profiles for all buses that are 

within their boundaries. also, Figure 14 depicts the convergence characteristics of fuel cost by AOA and 

other compared techniques, demonstrating that the AOA's convergence characteristics outperform those of 

the other algorithms compared with it. 

 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Optimal power flow using archimedes optimizer algorithm (Mohammed Hamouda Ali) 

1403 

Table 7. Optimal control variables for modified IEEE30-bus test system for minimizing fuel cost 

 FSA SSA PSO DA AOA 
𝑃𝐺1 (MW) 134.328203 87.663917 153.90287 146.5862 157.6299 
𝑃𝐺2 (MW) 50.1318584 64.489854 43.164128 41.74496 42.98818 
𝑃𝐺5 (MW) 16.6277722 15.333046 15 19.46930 19.78803 
𝑃𝐺8 (MW) 11.8628598 28.127361 10 10.91869 7.860474 
𝑃𝐺11 (MW) 16.7113467 22.939775 10 12.48998 7.891434 
𝑃𝐺13 (MW) 13.7670858 24.179165 12 12 7.627846 
𝑉1(pu) 1.07213437 0.9875585 1.1 1.1 1.098665 
𝑉2(pu) 1.06370895 0.9714789 1.0891724 1.091534 1.084298 
𝑉5(pu) 1.07218239 0.9669598 1.0634733 1.075556 1.056581 
𝑉8(pu) 1.04296082 0.9543305 1.0744262 1.073636 1.065559 
𝑉11(pu) 1.07222602 0.9778671 1.1 1.016967 1.048832 
𝑉13(pu) 1.04296081 0.9528972 0.95 1.055537 1.047008 
𝑇11 (6-9) 1.03729456 0.9 1.1 1.026075 0.977883 
𝑇12 (6-10) 1.07213628 0.9184583 1.1 1.022914 1.030724 
𝑇15 (4-12) 1.07214024 0.9686594 1.1 1.022754 0.998454 
𝑇36 (28-27) 1.07226459 0.9106857 1.1 1.1 1.077131 
𝑄10 (MVAR) 2.67969912 0.4441304 0 3.149833 2.603767 
𝑄12 (MVAR) 2.67969912 1.4258255 5 2.155722 1.15499 
𝑄15 (MVAR) 2.67969912 3.0397021 5 3.474743 1.84191 
𝑄17 (MVAR) 2.67969912 0.8107773 0 3.012264 2.213119 
𝑄20 (MVAR) 2.67969912 4.4382199 5 0 3.070424 
𝑄21 (MVAR) 2.67969912 0.5554283 5 0 3.407764 
𝑄23 (MVAR) 2.67969912 0.4320592 0 1.879185 2.980572 
𝑄24 (MVAR) 2.67969912 1.0959013 0 0.982048 2.07048 
𝑄29 (MVAR) 2.67969912 1.2720052 5 1.774889 1.299162 
Fuel Cost ($/h) 646.264547 688.92437 639.26731 637.9108 635.8983 
Power Losses (MW) 8.49342960 7.7974323 9.1313042 8.273496 8.850231 

Voltage Deviations(pu) 0.64801769 0.9041885 0.9617804 0.875053 1.11413 
 

 

   
  

Figure 13. The voltage profile of the AOA and other 

compared algorithms for case 7 

Figure 14. The convergence characteristics of AOA 

and other compared algorithms for case 7 
 

 

5. CONCLUSION  

In order to solve the OPF problem considering the fuel cost, power loss, voltage profile 

improvement and emissions, a new metaheuristic algorithm has been investigated in this paper. The e 

efficacy and supremacy of AOA have been evaluated based on standards for solving and optimizing the 

single-objective and multi-objective function of OPF problems and modified testing system of IEEE-30 bus 

with the presence of RES to prove its efficiency in finding the optimal allocation with minimization of fuel 

cost. According to the results, the AOA provided a better mitigation of the objective functions in all cases 

than other recently compared algorithms. The comparison results clearly show that the AOA outperformed 

these recent algorithms regardless of the type of objective function, indicating the AOA's ability to solve 

other real-life applications. 
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