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 The lithium-ion (Li-ion) battery has a high demand because of its long cycle, 

reliability, high energy density, low toxic, low self-discharge rate, high power 

density, and high efficiency. However, lithium-ion batteries have sensitivity 

to over-charge, temperature, and charge discharge currents. The conventional 

battery charging system takes a very long time to charge which makes the 

battery temperature high. Therefore, a charger system that can maximize 

charging capacity, shorten charging time, and extend battery life is needed. In 

this study, a battery charging system was developed using the constant 

current–fuzzy (CC-fuzzy) control method. The aim is to get faster charging 

time and maintain battery life by limiting the battery charging temperature. 

The proposed charger system is dual mode which can be operated in both buck 

and boost mode. The experimental result shows that the proposed method is 

superior compared to the constant current constant voltage (CCCV) method 

in charging time. The CC-fuzzy method charging time is faster compared to 

the CCCV method by 25% and 12.5% in buck and boost modes, respectively. 

Whereas from the battery temperature, in buck mode, the proposed method 

has a lower temperature by 0.5 ⁰C and in the boost mode, each method has the 

same temperature. 
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1. INTRODUCTION 

The battery is a component that can store electrical energy for a long time, so it has an important role. 

The batteries commonly used as energy storage media are secondary batteries, which can be recharged by an 

electric charge (rechargeable). Rechargeable batteries are becoming more prevalent in contemporary 

technology such as portable electronic equipment, electric automobiles, plug-in hybrid electric vehicles, energy 

storage systems, and renewable energy systems [1]. However, the life of the rechargeable batteries is dependent 

not only on the charger time [2], [3] but also on the charger way and overcharging control [4]. 

Because of its long cycle, reliability, high energy density, low toxic, low self-discharge rate, high 

power density, and high efficiency, lithium-ion (Li-ion) batteries are in high demand [5], [6]. Li-ion batteries 

can store more energy than nickel-cadmium (Ni-Cd) batteries of the same size and weight [7]. However, Li-

ion batteries are susceptible to deep discharge/overcharge, temperature, charge/discharge current. Therefore, 

in applying lithium-ion batteries, the battery charging system must be well designed to get high battery 

performance, and long battery life. Battery chargers must have the quality to maximize charging capacity, 

shorten charging time, and extend battery life [8]. There are some methods for lithium battery charging such 

https://creativecommons.org/licenses/by-sa/4.0/
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as constant-current (CC), CC-constant-voltage (CCCV), multi-stage CCCV [9], and five-stage Li-ion battery 

charger [10]. 

One of the most used battery charging methods is CCCV [11]. Because of its simplicity and ease of 

implementation, this approach is frequently used to charge Li-ion batteries [12], [13]. CC and CV are the two 

modes of operation available. In CC mode, a constant current is constantly delivered to the battery until the 

terminal voltage reaches a set maximum cut-off voltage. The cut-off voltage on the battery is maintained in 

CV mode, and the current decreases as the voltage difference between the terminal voltage and the electro-

motive force (EMF) decreases. The charge will be interrupted when the current reaches a specific value 

(typically 0.02 C), and the battery will be fully charged. The CC-CV approach, on the other hand, has the 

drawback of taking a lengthy time in CV mode. Although CC mode charging fills more than 80% of the battery 

capacity, CV mode charging takes around 50% of the overall charging time [1]. The other downside of this 

method is that it causes the battery temperature to rise high [14]. Furthermore, this method is not suitable for 

fast charging since it takes longer to fully charge the battery and reduce battery life [15]. 

The fuzzy logic control system will be the most extensively utilized control system in the coming 

years [16]. One of the benefits of a fuzzy logic controller is that it can be used to nonlinear elements without 

the need to discover a mathematical model; as a result, it may be used in battery charging systems, which are 

nonlinear elements with complex mathematical models. Therefore, the fuzzy logic controller is a suitable 

method for efficiency and reducing charging time without finding the detailed mathematical model [17]. 

Furthermore, Asadi et al. [18] said that using fuzzy logic control in li-ion battery charger can achieve efficiency 

up to 96.62%, faster, and high protection with lower temperature rise. 

A lot of researchers have made use of Fuzzy control in charging algorithms. Passarella et al. [19] use 

constant current with fuzzy logic in Li-ion battery charging. The fuzzy system uses voltage and temperature as 

input while pulse width modulation (PWM) is output. The experiment shows that the fuzzy method can work 

well. However, their proposed algorithm is not compared to another one, so the improvement is unclear.  

Cheng et al. [20] use fuzzy logic as temperature control in a Li-ion battery charger. They use the temperature 

and temperature changes of the battery as fuzzy input. The experimental study concludes that the use of fuzzy 

logic can reduce temperature rise by 23.2% compared to the CC-CV method with a longer charging time. On 

the other hand, their method also uses a computer to calculate the fuzzy logic computation, which makes the 

charger unable to work without the computer. Ali and Nizam [21] compare the fuzzy logic method and the CC-

CV method to charge a Li-ion battery. Using delta current, delta voltage, and delta temperature as fuzzy input, 

they conclude that fuzzy logic can accelerate the charging time up to 37.8% at a rate of 2 C. Finally,  

Ali et al. [22] propose a fast-charging method for li-ion battery using fuzzy logic. The input of the fuzzy system 

is the lowest voltage and the highest voltage of three serial Li-ion batteries. The experimental study concludes 

that the proposed method can achieve a 9.76% reduction in charging time compared to the conventional way. 

This paper proposes a dual-mode charging system with a CC-fuzzy logic algorithm for Li-ion batteries. 

The dual-mode means that the charger can be used when the battery voltage capacity is lower than the supply 

voltage (buck mode) and when the battery voltage capacity is higher than the supply voltage (boost mode). The 

fuzzy logic replaces the CV mode in the conventional CC-CV method. The contribution of this research is the use 

of the CC-fuzzy method to accelerate the charging time and maintain the charging temperature under the limit. 

This proposed algorithm is beneficial for fast charging applications in an electric vehicle. 

 

 

2. THEORETICAL BASIS 

2.1.  Lithium-ion battery 

The Li-ion battery is one type of battery widely used in electric vehicles and electronic devices today. 

Among the existing battery technologies, lithium-ion is considered a suitable choice for the development of 

electric vehicle technology [23]–[25]. Li-ion batteries have advantages over other types which can be seen in 

Table 1. When compared to other types of batteries such as lead-acid batteries, Ni-Cd batteries, and nickel-

metal hydride (Ni-MH) batteries, Li-ion batteries have a higher energy efficiency and density, allowing them 

to be built lighter and smaller in weight and size. In addition, lithium-ion batteries offer a wide operating 

temperature range, quick charging capability, no memory effect, a relatively long cycle life, and a low self-

discharge rate [26]. Table 2 resumes the specification of the lithium-ion battery used in this research. 

 

2.2.  Buck-boost converter charger 

The buck-boost converter charger design starts with determining the parameters to be used, then 

calculates the value of the components. Table 3 shows the design specification of the proposed charger. The 

minimum value of the inductor (LMIN) used in the buck and boost converter are calculated using (1) and (2), 

respectively [27]. Where D, f, R, are duty cycle, frequency, and resistor value, respectively. In the buck-boost 

converter, the capacitor is used to filter the voltage ripple output. The target ripple value is 0.1 V, based on the 
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parameters that have been set. The (3) and (4) are used to calculate the minimum capacitor (CMIN) value in buck 

and boost mode, respectively [27]. 
 

𝐿𝑀𝐼𝑁_𝐵𝑢𝑐𝑘  =  (1 − 𝐷)/2𝑓 (1) 
 

𝐿𝑀𝐼𝑁_𝐵𝑜𝑜𝑠𝑡  =  (1 − 𝐷2)𝐷𝑅/ 2𝑓 (2) 
 

𝐶𝑀𝐼𝑁_𝐵𝑢𝑐𝑘  =  (1 − 𝐷)𝑉𝑜𝑢𝑡/ 8𝑉𝑟  𝐿𝑓2 (3) 
 

𝐶𝑀𝐼𝑁_𝐵𝑜𝑜𝑠𝑡  =  (1 − 𝐷)𝑉𝑜𝑢𝑡/ 𝑉𝑟  𝑅𝑓 (4) 
 

 

Table 1. Comparison of lithium-ion batteries with other types [23] 
Specification Lead Acid Ni-Cd Ni-MH Lithium Ion 

Energy Density (W/kg) 30–50 45–80 60–120 110–160 

Power Density 180 150 250–1000 1800 

Nominal Voltage 2 V 1.25 V 1.25 V 3.6 V 

Overvoltage Tolerance High Moderate Low Very Low 

Self-Discharge Low Moderate High Very Low 
Operating Temperature -20–60 oC -40–60 oC -20–60 oC -20–60 oC 

Cycle Life 200–300 1500 300–500 500–1000 

 

 

Table 2. Li-ion battery specification [28] 
Datasheet of Sony VTC4 18650 

Specification 

Nominal capacity 2100 mAh 

 

Nominal voltage 3.7 V 

Standard charge 
CCCV, 1.25 A, 

4.20 ± 0.05 V 

Max. Discharge current 30 A 
Discharge cut-off voltage 2.5 V 

Weight (max.) 45.0 g 

Dimension (max.) 
(D) 18.35 ± 0.2 mm 

(H) 65 ± 0.2 mm 

Operating temperature 

Charge: 0 to 50 oC 

Discharge: -20 to 

60 oC 

 

 

Table 3. Specification of the proposed buck-boost converter 
Parameters Value Unit 

Vin min 9 V 

Vin max 12 V 

Vout min 7 V 
Vout max 30 V 

Iout max 2 A 

Freq (f) 62.5 kHz 
Vripple (Vr) 0.1 V 

 

 

3. PROPOSED METHOD 

3.1.  Fuzzy logic control 

Fuzzy logic control is a control method which follow linguistic approach, if-then rules [29]; therefore, 

it is simple and easy to understand [30]. In this research, the fuzzy controller has 2 inputs, and 1 output. The 2 

inputs consist of battery temperature and battery temperature change, depicted in Figures 1(a) and (b). The 

determination of the battery temperature membership limit is based on the datasheet. In comparison, battery 

temperature changes are obtained from system testing. At the same time, the output is the PWM value of both 

buck and boost, depicted in Figures 2(a) and (b). The membership of PWM value is divided into two, namely 

the PWM boost value and the PWM buck value. The PWM is in 8 bits formats with values between 0–255. 

Each of them has 3 linguistic attributes, namely small, moderate, and big. Whereas the value is determined 

based on trial in the simulation stage. The rule base design is shown in Table 4. This rule base is used for both 

buck and boost mode since it only depends on the temperature. 
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Figure 1. Fuzzy input membership function (a) battery temperature and (b) changes in battery temperature 

 

 

  
 

Figure 2. Fuzzy output membership function (a) boost mode and (b) buck mode 

 

 

Table 4. Fuzzy rule base design 
dT/T Cold Normal Hot 

Small Small Small Big 
Moderate Small Moderate Big 

Big Small Big Big 

 

 

3.2.  Battery sensor 

The current sensor, voltage sensor, and temperature sensor are the three sensors that are used. The 

current sensor utilized is the ACS712–05 A, which can read a maximum current of 5 A with sensitivity of  

185 mV/A. This current sensor measures the battery charge current and provides feedback to the buck-boost 

converter. Figure 3 depicts the current sensor circuit. A voltage divider circuit is used to create the voltage 

sensor. This voltage sensor has two functions: one is to determine the battery voltage/charge state and the other 

is to determine the charging voltage. Charging is interrupted every 5 minutes to obtain battery voltage data. 

The charger system receives data from this sensor reading. Figure 4 shows the voltage sensor circuit. Figure 5 

depicts the temperature sensor circuit. The DS18B20 temperature sensor was utilized. This sensor offers a high 

level of accuracy, with a temperature range of -10 °C to + 85 °C and an accuracy of 0.5 °C. This temperature 

sensor also monitors the temperature of the battery, which is used as a fuzzy input. 
 

 

  

 

 

Figure 3. Current sensor circuit 

 

Figure 4. Voltage sensor circuit 

 

Figure 5. Temperature sensor circuit 

(a) (b) 

(a) (b) 
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3.3.  Constant current–fuzzy logic 

Figure 6 shows the block diagram of the proposed battery charger system. The system is designed for 

charging 2 series (buck mode) or 4 series (boost mode) batteries. The battery charging system designed in this 

study is equipped with an organic light-emitting diode (OLED) display. This OLED screen functions as a data 

display for battery voltage, charging voltage, charging current, and battery temperature. The data were taken 

through the Arduino IDE serial monitor when connected to a laptop. 

The battery charging system uses the constant current-fuzzy control method. The program starts working 

by reading all the sensors: voltage, temperature, and current sensors. The microcontroller uses the results of the 

voltage sensor readings to determine the amount of charging voltage. If the voltage is less than 14.4 V, the buck 

converter will active with the charging voltage between 7.6–8.5 V. On the other side, when the initial battery 

voltage is higher than 14.4 V, the boost converter will be activated, and the charging voltage is between  

15.22–16.9 V. Charging will enter constant current mode first, which is by stabilizing the charging current with 

feedback in the form of current reading. Then the program will stop charging every 5 minutes to find out the 

battery voltage, when the battery state of charge (SoC) has been detected 80%, the charging changes to fuzzy 

control mode. The SoC 80% of two and four serries batteries are 8.2 V and 16.4 V, respectively. The program 

will also stop every 5 minutes at this stage to find out the voltage from the battery, when the battery is full the 

program will stop charging. If there is a temperature change of more than 3 ℃, the charging mode will switch to 

fuzzy mode. The flow diagram of the battery charging system is shown in Figure 7. 
 
 

 
 

Figure 6. Block diagram of battery charging system 
 

 

  
 

Figure 7. Flowchart of the proposed charging algorithm 
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4. RESULTS AND DISCUSSION 

4.1.  Simulation testing 

The simulation test is carried out by varying the input duty cycle with an increase of every 10% so 

that the output voltage can vary. The aim is to test whether the buck-boost converter can work properly.  

Figure 8 is a simulation circuit. The simulation result is resumed in Table 5. It is clearly shown that both boost 

and buck mode can work well. 
 

 

 
 

Figure 8. Simulation schematic of the proposed charger 
 
 

4.2.  Hardware testing 

Several tests were carried out in hardware testing: sensor accuracy and sensor precision, buck-boost 

testing, and charging test of 2 and 4 series batteries. The circuit board after assembly and testing is shown in 

Figure 9; part A is the battery charger, part B is the power supply 12 V, part C is the battery, and part D is the 

temperature sensor. The hardware testing is done to validate the performance of the proposed algorithm in real 

applications. 
 

 

Table 5. Simulation result 
Boost Mode Buck Mode 

Duty cycle  

(%) 

VIN  

(V) 

VOUT  

(V) 

Duty cycle  

(%) 

VIN  

(V) 

VOUT  

(V) 

0 12 11.2 0 12 11.2 

10 12 13.3 10 12 11.2 

20 12 15.9 20 12 11.2 
30 12 18.7 30 12 10.6 

40 12 22.7 40 12 8.92 

50 12 28.3 50 12 7.55 
60 12 37.8 60 12 6.12 

70 12 54.8 70 12 4.66 
 

 
 

Figure 9. Battery charging circuit and testing 
 
 

4.2.1. Sensor accuracy and precision 

Accuracy testing is done to assess the value of the error and the voltage sensor's accuracy. The root 

mean square error (RMSE) represents the amount of precision. The lower the RMSE score, the higher the 

accuracy level. The mean relative standard deviation (MRSD) of repeatability is used to represent test 

precision. The higher the precision, the lower the coefficient of variation after repeatability. 

Figure 10 shows the accuracy of voltage sensor which compared to voltmeter. The percentage of the 

voltage sensor reading error value against the voltmeter is not constant but does not exceed 0.8% and has an 

RMSE value of 0.068% so it can be concluded that the sensor has an accuracy value of 99.932%. Table 6 

shows the result of the precision test. From fifteen measurements, the standard deviation (SD) is only 0.060 

with an MRSD of 0.336% it can be concluded that the precision of the sensor is 99.664%. 
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Figure 10. Graph of voltage sensor accuracy 

Table 6. Voltage sensor precision 
No. Voltmeter (V) Voltage Sensor (V) 

1 17.71 17.81 
2 17.71 17.78 

3 17.71 17.75 

4 17.68 17.78 
5 17.72 17.99 

6 17.70 17.78 

7 17.71 17.84 
8 17.68 17.78 

9 17.71 17.81 

10 17.72 17.78 
11 17.71 17.78 

12 17.71 17.78 

13 17.68 17.72 
14 17.70 17.78 

15 17.69 17.78 

SD 0.060 

0.336 MRSD 
 

 

 

4.2.2. Buck-boost testing 

This test is divided into two stages which are buck mode and boost mode and is carried out by varying 

the input duty cycle so that the output voltage is varied. This test is carried out by providing a 330 Ω resistance; 

hence, the output voltage can be measured. The testing result of boost mode is shown in Table 7. The smallest 

output voltage is 11.67 V when the duty cycle is 0% and the largest output voltage is 42.9 V when the duty 

cycle is 70%. After the duty cycle exceeds 70% the output voltage will drop, and the MOSFET will heat; this 

indicates the maximum voltage at 70% duty cycle. The output voltage will increase along with the increase in 

the duty cycle. The lowest efficiency is 68.45% at 60% duty cycle, and the greatest efficiency is 94.75% at 

70% duty cycle. Table 8 shows the result of buck mode. In this mode, the system can work well and reach a 

duty cycle of 90% with a voltage output of 3.02 V and an efficiency of 25%. 
 

 

Table 7. Test data boost converter 
Duty 
Cycle 

VIN 
(V) 

IIN 
(A) 

VOUT 
(V) 

IOUT 
(A) 

Efficiency 
(%) 

0% 11.99 0.04 11.67 0.03 73.00 

10% 11.99 0.05 13.69 0.04 91.34 

20% 11.96 0.07 15.54 0.04 74.25 
30% 11.96 0.09 17.87 0.05 83.01 

40% 11.95 0.12 21.90 0.06 91.63 

50% 11.92 0.18 25.60 0.07 83.52 
60% 11.87 0.36 32.50 0.09 68.45 

70% 11.56 0.47 42.90 0.12 94.75 
 

Table 8. Test data buck converter 
Duty 
Cycle 

VIN 
(V) 

IIN 
(A) 

VOUT 
(V) 

IOUT 
(A) 

Efficiency 
(%) 

0% 11.99 0.04 11.67 0.03 73.00 

10% 12.01 0.04 11.64 0.03 72.69 

20% 11.99 0.04 11.16 0.03 69.81 
30% 11.98 0.03 9.74 0.03 81.30 

40% 11.99 0.03 8.49 0.03 70.81 

50% 11.99 0.02 7.38 0.02 61.55 
60% 11.99 0.02 6.28 0.02 52.38 

70% 11.99 0.02 5.2 0.02 43.37 

80% 11.99 0.01 4.16 0.01 34.70 
90% 11.99 0.01 3.02 0.01 25.19 

 

 

 

4.2.3. Charging two series batteries 

The test for charging 2 series batteries is carried out to know the performance of the proposed charger 

system if the voltage of the battery charged is below the power supply voltage. In this case, the charger act as 

a buck converter. Both methods, CCCV, and CC-fuzzy control, are tested and compared. 

The charging process of the CCCV method can be seen in Figure 11, with an initial battery voltage of 

7.43 V and an initial temperature of 30.5 ℃. Charging starts with CC mode until the battery voltage reaches 

8.2 V (SoC 80%), then continues with CV mode until the battery voltage reaches 8.4 V (SoC 100%). In the 

CC mode, the duty cycle generated by the system decreases during charging, this causes the charging voltage 

to increase while the charging current remains constant. In the CV mode, the resulting duty cycle of the system 

increases during charging this is due to stabilizing the voltage when the charging current decreases. Charging 

times in CC mode and CV modes are 25 minutes and 15 minutes, respectively. Therefore, the total charging 

time is 40 minutes. The highest battery temperature reaches are 34 ℃ when in CC mode and decrease when it 

enters CV mode because the charging current decreases as the battery voltage increases. 

The graph of the charging process using the CC-fuzzy method can be seen in Figure 12 with an initial 

battery voltage of 7.43 V and an initial temperature of 30.5 ℃. Charging starts with CC mode until the battery 

voltage reaches 8.2 V (SoC 80%) or the battery temperature changes more than 3 ℃ then it will be continued 

with fuzzy control mode until the battery voltage reaches 8.4 V (SoC 100%). In the fuzzy control mode, the 

duty cycle generated by the system during charging drops, this is caused by the battery temperature still being 
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at a safe limit; hence, the charging current is greater to charge faster. Charging time in CC mode is 25 minutes 

and fuzzy control mode is 5 minutes. Therefore, the total charging time is 30 minutes. The battery temperature 

continues to increase during CC mode and reaches the highest temperature of 33.5 ℃. The battery voltage does 

not exceed 8.5 V, indicating that the system has prevented overvoltage. 
 

 

 
 

Figure 11. CCCV method for charging 2S batteries 
 

 

 
 

Figure 12. Charging the 2S batteries using the CC-fuzzy method 
 

 

4.2.4. Charging four series batteries 

The charging test for 4 series batteries is to know the performance of the proposed charger system in 

the boost mode or when the voltage of the charged battery is higher than the supply voltage. The charging 

process using the CCCV method can be seen in Figure 13, with an initial battery voltage of 14.81 V and an 

initial battery temperature of 29.5 ℃. In Figure 13 when the CC mode, the duty cycle generated by the system 

is constant at 50%, this is due to the algorithm that does not allow a duty cycle of more than 50%. The charging 

current is only constant at a maximum of 2 A when the charging voltage increases during CC mode. In the CV 

mode, the resulting duty cycle of the system drops due to stabilizing the voltage when the charging current 

decreases. Charging time in CC mode is 30 minutes, CV mode is 10 minutes, and the total charging time is  

40 minutes. The battery temperature continues to rise during CC mode and reaches a top temperature of 32 ℃ 

during CV mode. 

Figure 14 shows the graph of the charging process using the CC fuzzy method with the initial battery 

voltage of 14.78 V and the initial temperature of the battery 29.5 ℃. Charging starts with CC mode until the 

battery voltage reaches 16.4 V (SoC 80%) or the battery temperature changes more than 3 ℃ then it will be 

continued with fuzzy control mode until the battery voltage reaches 16.8 V (SoC 100%). In the CC mode, the 

duty cycle produced by the system is ± 50%, the duty cycle decreases when the charging current reaches  

2.24 A. In a fuzzy control mode, the resulting duty cycle of the system drops to 47.3% so that the charging 

current decreased to 1.6 A. Charging time in CC mode for 30 minutes and fuzzy control mode for 5 minutes. 

So that the total charging time is 35 minutes. The battery temperature continues to increase during CC mode 
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and reaches a peak temperature of 32 ℃ at 30-35 minutes. The voltage of the battery does not exceed 16.8 V, 

indicating that the system has protected the battery from overvoltage. 
 
 

 
 

Figure 13. CCCV method for charging 4S batteries 
 
 

 
 

Figure 14. Charging the 4S battery using the CC-fuzzy method 
 

 

4.2.5. Constant current constant voltage and constant current–fuzzy comparison 

The experimental testing using both methods, CCCV and CC-fuzzy, has been done in both two and 

four-series batteries. In this section, the charger parameters of each method are compared in one graph to clearly 

see the differences, Figure 15. Figures 15(a) and 15(b) show the battery charging voltage. It is seen that, after 

reaching 80% SoC, the CC mode is ended. Entering the CV mode, the voltage decreases and become constant. 

On the other side, in fuzzy mode, the voltage still increases based on the battery temperature. Figures 15(c) and 

15(d) depict the battery charging current. It shows that in CC mode, the charger can maintain constant current. 

Entering the second mode, in CV mode, the current is decreased. Whereas, in fuzzy mode, the current increases 

in two series batteries and decreases in four series batteries. This pattern is different due to the fuzzy input 

condition different which is based on the battery temperature. Figures 15(e) and 15(f) for battery voltage graph. 

It is seen that for both battery configurations, CC-fuzzy is faster to charge the battery fully. In the CCCV 

method, the time needed to charge 2 and 4 series batteries is the same as 40 minutes. Compared with the CCCV 

method, the CC-fuzzy control method charges 10 minutes faster for 2 series batteries and 5 minutes faster for 

4 series batteries. The last parameters are temperature shown in Figures 15(g) and 15(h). It informs that the 

battery temperature is nearly the same for both methods; the difference is only small, which is 0.5℃ in the first 

battery configuration. The comparison analysis showed that the proposed algorithm has contributed to reducing 

the charging time of the traditional CCCV method. Whereas, in the charger configuration, the use of buck-

boost converter configuration makes the charger can be used to charge the battery configuration below and 

upper the charging supply voltage. 

 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Constant current-fuzzy logic algorithm for lithium-ion battery charging (Muhammad Nizam) 

935 

  

  

  

  
 

Figure 15. Comparison of charging parameter between CCCV and CC-fuzzy for battery: (a) charging voltage 

comparison: 2 series, (b) charging voltage comparison: 4 series, (c) charging current comparison: 2 series,  

(d) charging current comparison: 4 series, (e) voltage comparison: 2 series, (f) voltage comparison: 4 series,  

(g) temperature comparison: 2 series, and (h) temperature comparison: 4 series 
 

 

5. CONCLUSION 

The proposed charger system with the CC-fuzzy control method was successfully developed and tested. 

The test was carried out both in simulation and hardware implementation. The temperature sensor was used to 

measure the battery temperature used as a fuzzy control input so that the battery temperature was kept within 

(b) (a) 

(c) (d) 

(e) (f) 

(g) (h) 
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safe limits. The proposed charger system was dual-mode which can be operated in buck mode and boost mode. 

The buck mode was used to charge the battery with voltage lower than the power supply and vice versa. The 

experimental result showed that the proposed method was superior to the CCCV method in charging time. The 

CC-fuzzy method charging time was faster than the CCCV method by 25% and 12.5% in buck and boost 

modes, respectively. 
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