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 This paper leads to present the modified approach of the speed control for 

permanent magnet synchronous motors applied to electric vehicles using a 

nonlinear control. The motor's nonlinear dynamics are transformed into a 

linearized system model using the input-output feedback linearization 

technique. There are two permanent magnet synchronous motors (PMSM) in 

the propulsion model. In order to improve the motor's output torque, the 

direct component of the current is adjusted to zero. The electronic 

differential, which is used in the calculations, enables each driving wheel to 

be controlled individually at each curve. The MATLAB/Simulink software 

is used to implement modeling and simulation in order to assess the 

effectiveness of the suggested solution. Simulation studies are used to 

confirm the efficacy of the proposed technique. The obtained results signify 

that this approach is more accurate. 
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1. INTRODUCTION 

With its high performance, permanent magnet synchronous motors (PMSM) has been 

hardlyexploited inquite high-performance drives such as machinetools and industrial robots. The fundamental 

drawback of PMSM, however, is the requirement for a complicated control unit that, because of its extremely 

non-linear properties, guarantees high-efficiency electric drive applications. The development of permanent 

magnet technology has led to the widespread use PMSM for various engineering applications, especially in 

variable-speed motors and electric vehicles were presented in [1], [ 2]. An efficient technique for controlling 

nonlinear systems is to linearize input- output feedback. 

This section describes the nonlinear control strategy that was simply input output feedback control 

and depends on differential geometry techniques. The motor model can be split using these techniques into 

two separate monovariable linear subsystems. A perfect arrangement of the poles that reveals the dynamics 

of each subsystem was presented by Rebouh et al. [3]. 

The speed parameters of this controller are used within a drive system managessential objectives to 

reunite with other important criteria of the high-performance drive. Based on the literature, nonlinear systems 

have been traditionally developed by using classical linear control methods. These methods are only 

operational for a small operating range. In the case of a huge required operating range, the linear controller is 

https://creativecommons.org/licenses/by-sa/4.0/
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no longer able to perform poorly. However, nonlinear controllers may operate the nonlinearities in range 

operations directly [4], [ 5]. 

Without a speed sensor, the research [6] described a direct torque control/sliding mode control 

DTC/SMC for IM training. The control method for an induction motor IM drive is built on the combination 

of SMC and stator flux field orientation control as presented in [6]. As an input-output feedback linearization 

technique, the vector control scheme's internal dynamics cannot be analytically shown to be stable under 

transient and steady state conditions. This means that unless the controller gains are properly set with more 

precision, the control system is only locally stable. In order to drive an induction motor without a sensor, The 

feedforward control principle, DTC, and modulation of spatial vectors (SVM) approach have been integrated 

and utilized in [7]. Because robust induction, a sort of field-oriented control, allows for extremely precise 

machine control, its development [8]−[15] marked a significant turning point in the field of electric drives. 

The following describes how the paper is structured: The PMSM mathematical model is described 

in the second section. The third portion covers the whole design of control utilizing input-output linearization 

theory. Section 4 describes the parts of the electric traction system, whereas section 5 describes the parts of 

the electric differential system. Section 4 contains the simulation's results as well as a discussion of them. 

The last part explains the results obtained using the proposed controller. 

 

 

2. PMSM MATHEMATICAL MODEL 

According to the design in [12]-[18], PMSM drives the electric car's two rear wheels. More details 

based on the mathematical formulations can be found in the following section. 

 

2.1.  Description of machine equations 

In this section, the mathematical representation of the PMSM in the rotor frame (d-q) can be written 

as assuming that the PMSM is three-phase with balanced windings and no saturation [12]. 

 

(𝑣𝑑
𝑣𝑞
) = [

𝑅𝑠 + 𝑝𝐿𝑑 −𝑤𝑟
∗𝐿𝑞

𝑤𝑟
∗𝐿𝑑 𝑅𝑠 + 𝑝𝐿𝑞

] (𝑖𝑑
𝑖𝑞
) + ( 0

𝑤𝑟
∗𝜑𝑓
) (1) 

 

Applying the transformation of (1) from the d-q coordinate to α-β coordinate, is given by (2) and (3). 

 

{
𝑣𝛼 = 𝑅𝑠𝑖𝛼 + 𝑤𝑟(𝐿𝑑 − 𝐿𝑞)𝑖𝛽 + 𝐸𝛼

𝑣𝛽 = 𝑅𝑠𝑖𝛽 + 𝐿𝑑𝑝𝑖𝛽 − 𝑤𝑟(𝐿𝑑 − 𝐿𝑞)𝑖𝛼 + 𝐸𝛽
 (2) 

 

{
𝐸𝛼 = {((𝐿𝑑 − 𝐿𝑞)(𝑤𝑟𝑝𝑖𝑑 − 𝑝𝑖𝑞) + 𝑤𝑟𝜑𝑓}(−𝑠𝑖𝑛𝜃𝑟)

𝐸𝛽 = {(𝐿𝑑 − 𝐿𝑞)(𝑤𝑟𝑝𝑖𝑑 − 𝑝𝑖𝑞) + 𝑤𝑟𝜑𝑟}(𝑐𝑜𝑠𝜃𝑟) 
 (3) 

 

Where: (𝑣𝛼, 𝑣𝛽𝑎𝑛𝑑 iα,𝑖𝛽)are (α, β) axis voltage/current components, 𝜃𝑟 is Rotor angular. 

Based on in (2), In the following formula, the mathematical models for PMSM with fixed frames of 

reference (α, β) are presented by (4). 

 

(

𝑑𝑖𝛼
𝑑𝑡
𝑑𝑖𝛽

𝑑𝑡

) = (
−
𝑅𝑠

𝐿𝑑
−𝑤𝑟 (

𝐿𝑑−𝐿𝑞

𝐿𝑑
)

𝑤𝑟 (
𝐿𝑑−𝐿𝑞

𝐿𝑑
) −

𝑅𝑠

𝐿𝑑

)(𝑖𝛼
𝑖𝛽
) + (

−
1

𝐿𝑑
0

0
1

𝐿𝑑

)(𝐸𝛼
𝐸𝛽
) +

1

𝐿𝑑
(𝑣𝛼
𝑣𝛽
) (4) 

 

The stator flux linkage and current expression for the electromagnetic torque (𝑇𝑒) of the PMSM as in (5). 

 

𝑇𝑒 =
3

2
𝑝(𝜑𝛼𝑖𝛽 − 𝜑𝛽𝑖𝛼) (5) 

 

The following formulation represents the state flux linkage in the α-β by (6). 

 

{

𝑑𝜑𝛼

𝑑𝑡
= 𝑣𝛼 − 𝑅𝑠𝑖𝛼

𝑑𝜑𝛽

𝑑𝑡
= 𝑣𝛽 − 𝑅𝑠𝑖𝛽

 (6) 

 

The stator flux linkage's amplitude (φs) as in (7). 
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𝜑𝑠 = √𝜑𝛼
2 + 𝜑𝛽

2 (7) 

 

The dynamic equation is delivered by (8). 

 

𝑗
𝑑𝑤𝑟

𝑑𝑡
= 𝑝(𝑇𝑒 − 𝑇𝐿) − 𝑓𝑤𝑟 (8) 

 

A dynamic model of the PM synchronous motors can be expressed using (2)-(8) as in (9). 

 

{
 
 
 
 

 
 
 
 
(

𝑑𝑖𝛼
𝑑𝑡
𝑑𝑖𝛽

𝑑𝑡

) = (
−
𝑅𝑠

𝐿𝑑
0

0 −
𝑅𝑠

𝐿𝑑

)(𝑖𝛼
𝑖𝛽
) +

(
−

1

𝐿𝑑
0

0 −
1

𝐿𝑑

)(𝐸𝛼
𝐸𝛽
) +

1

𝐿𝑑
(𝑣𝛼
𝑣𝛽
)

𝑇𝑒 =
3

2
𝑝𝜑𝑓(𝑖𝛽𝑐𝑜𝑠𝜃𝑟 − 𝑖𝛼𝑠𝑖𝑛𝜃𝑟)

𝑑𝑤𝑟

𝑑𝑡
=

𝑝

𝑗
(𝑇𝑒 − 𝑇𝐿) −

𝑓

𝑗
𝑤𝑟

 (9) 

 

 

3. ELECTRIC DRIVE SYSTEM COMPONENT MODELING 

In this section, electric drive system component modeling is presented. Figure 1 depicts a general 

representation of an electric traction system that combined battery, inverter, PMSM, gears, and wheel. 

However, the PMSM speed controlled by electrical differential. This structure applied for two back wheels.  

 

 

 
 

Figure 1. The electric drive system's chain 

 

 

3.1.  Description of energy source 

In this section, a description of the energy source is provided. A lithium-ion battery system serves as 

the typical power source. Compared to other types of rechargeable batteries, lithium-ion battery innovation 

has benefits in the main aim of specific energy, specific power, and service life. 

 

3.2.  Model with inverters 

In this example, the current battery in the electric traction system is provided to generate three 

balanced phases of variable frequency alternating current in [19]. 

 

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] =

𝑈𝑑𝑐

3
(
2 −1 −1
−1 2 −1
−1 −1 2

) [

𝑆𝑎
𝑆𝑏
𝑆𝑐

] (10) 

 

3.3.  Analysis of vehicle dynamics 

The road load 𝐹𝑟𝑒𝑠the formula is based on the principles of vehicle dynamics and aerodynamics [5]–[10]. 
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𝐹𝑟𝑒𝑐 = 𝐹𝑅𝑟 + 𝐹𝑆𝑟 + 𝐹𝐴𝑑 (11) 

 

𝐹𝑅𝑟: rolling resistance, 𝐹𝑆𝑟 : slope resistance,𝐹𝐴𝑑:the aerodynamic drag. 

 

𝐹𝑅𝑟 = 𝜇𝑀𝑔 (12) 

 

𝐹𝑆𝑟 = 𝑀𝑔𝑠𝑖𝑛(𝛼) (13) 

 

𝐹𝐴𝑑 =
1

2
𝜌𝐶𝑥𝐴𝑓(𝑣 − 𝑣0)

2 (14) 

 

 

4. EVALUATION OF THE ELECTRIC DIFFERENTIAL AND ITS CONSEQUENCES 

Since the two rear wheels are directly driven by two independent motors, the speed of the outer 

wheel must differ from the speed of the inner wheel when cornering. This need can be easily satisfied if the 

position encoder can detect the angular position of the steering wheel. More details can be found in Figure 2. 

Figure 3. Presents the electric differential under the block diagram as applied for the numerical simulations 

based on the prior equation. 
 

 

 
 

Figure 2. Driving trajectory model 
 

 

 
 

Figure 3. Electronic differential diagram 
 

 

The driver sets the reference speed when turning the car; if the car goes left, the speed of the right 

wheel increases and the speed of the left wheel lowers. The following equation expresses the difference in the 

angular velocities of the driving wheels. 
 

∆𝑤 = 𝑤𝑚𝑒𝑠1 −𝑤𝑚𝑒𝑠2 = −
𝑑𝑤𝑡𝑎𝑛𝛿

𝐿𝑤
𝑤𝑣 (15) 

 

Next, the steering angle indicates the direction of the trajectory. 
 

{

𝛿 > 0 → 𝑡𝑢𝑟𝑛. . . 𝑙𝑒𝑓𝑡 
𝛿 < 0 → 𝑡𝑢𝑟𝑛. . . 𝑟𝑖𝑔ℎ𝑡

𝛿 = 0 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡. . . 𝑎ℎ𝑒𝑎𝑑
 (16) 
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5. CONTROL OF THE PMSM'S INPUT-OUTPUT LINEARIZATION 

The input-output linearization technique converts the nonlinear system into a decoupled linear 

system by a nonlinear change in coordinates and feedback. The model of the engine in the d-q frame of 

reference is provided [20]–[25], along with simplifying assumptions for the PMSM. 

 

{
 
 

 
 

did

dt
= −

Rs

Ld
id +

Lq

Ld
pwriq +

1

Ld
ud

diq

dt
= −

Rs

Lq
iq +

Lq

Ld
pwrid −

φf

Lq
pwr +

1

Lq
uq

dwr

dt
=

3p

2J
(φfiq + λidiq) −

1

J
TL −

B

J
wr 

 (17) 

 

The 𝑇𝐿is taken out of the equations in this model and will be treated as a disturbance. The dynamics of the 

system can then be rearranged as seen in (1), (5), and (17). 

 

ẋ = f(x) + g1(x). ud + g2(x). uq (18) 

 

Where, 

 

x = [idiqwr]
T

g1 = [
1

Ld
00]

T

g2 = [0
1

Ld
0]
T

 (19) 

 

Next, comparing (17) and (18), we can obtain: 

 

𝑓(𝑥) = [

𝑓1
𝑓2
𝑓3

] =

[
 
 
 
 −

𝑅𝑠

𝐿𝑑
𝑖𝑑 +

𝐿𝑞

𝐿𝑑
𝑝𝑤𝑟𝑖𝑞 

−
𝑅𝑠

𝐿𝑞
𝑖𝑞 +

𝐿𝑞

𝐿𝑑
𝑝𝑤𝑟𝑖𝑑 −

𝜑𝑓

𝐿𝑞
𝑝𝑤𝑟

3𝑝

2𝐽
(𝜑𝑓𝑖𝑞 + 𝜆𝑖𝑑𝑖𝑞) −

𝐵

𝐽
𝑤𝑟 ]

 
 
 
 

 (20) 

 

If a direct relation must be established between the outputs y and the inputs u of the system, the output 

variable is chosen by𝑦1 =𝑖𝑑 and 𝑦2= wr. Consequently, the following could be a simple way to express the 

output dynamics: 

 

y1 = id = h1(x), ∇h1 = [1 0 0] (21) 

 

y2 = wr = h2(x), ∇h2 = [0 0 1] (22) 

 

The order of the system's relative degree can be used to determine if a nonlinear system admits input-output 

linearization under the condition of linearization. We determine the output relative degree in order to derive 

the nonlinear control law. The relative degree of the d-axis current 𝑖𝑑=𝑦1 [21]. 

 
y1̇ = Lfh1(x) + Lg1h1(x)ud + Lg2h1(x)uq

= −
Rs

Ld
id +

Lq

Ld
pwriq

 (23) 

 

r1 = 1is the relative degree of 𝑦1(𝑥). The diagram of linearized system is presented in Figure 4 with more 

details.  

The mechanical speed's proportional degree is 𝑤𝑚 = 𝑦2 

 
y2̇ = Lfh2(x) + Lg12(x)ud + Lg2h1(x)uq

=
3p

2J
(φfiq + λidiq) −

B

J
wr

 (24) 

 

We note that the inputs u doesn’t be shown in (24), a second derivative became then necessary: 
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ÿ2 = Lf
2h2(x) + Lg1(Lfh2(x))ud + Lg2(Lfh2(x)uq 

 

= Aλiqf1(x) + A(φf + λid)f2(x) −
B

J
f3(x) +

Aλ

Ld
iqud +

A(φf+λid)

Lq
uq

 (25) 

where 

 

⋀ =
3p

2J
 (26) 

 

𝑦2(x) has a relative degree of 𝑟2 = 2. The system's relative degree is equal to its order n (which is set to 3). 

It is a perfectly linear system. By using the (22) and (25): 

 

[𝑦̇1𝑦̈2]
𝑇 = 𝜉(𝑥) + 𝐷(𝑥). 𝑢 (27) 

 

where 

 

ξ = [Lfh1(x)Lf
2h2(x)]

T
 

= [
−
Rs

Ld
id +

Lq

Ld
pwriq

Aλiqf1(x) + A(φf + λid)f2(x) −
B

J
f3(x)

]
 (28) 

 

and 

 

D(x) = [

1

Ld
0

Aλ

Ld
iq

A(φf+λid)

Lq

] (29) 

 

The output dynamics are of order two even though the system dynamics are of third order, indicating the 

presence of internal dynamics and the resulting stability, which could be easily verified. With the assumption 

of 𝑣1 = 𝑦̇1 and 𝑣2 =𝑦̈2 as new state variables in [22]−[27]. We use the following nonlinear state feedback to 

linearize the motor's input-output behaviours in the closed loop. 
 

[
ud
uq
] = D−1(x) ([

v1
v2
] − ξ(x)) (30) 

 

The decoupling matrix must 𝐷−1(𝑥) be invertible. When the linearizing law (30) is applied to the system (27), 

two mono-variable, linear, and decoupled sub-systems can be created.  
 

[ẏ1ÿ2]
T = [v1v2]

T (31) 
 

The internal inputs (𝑣1,𝑣2) are calculated (poles placement) by imposing static modes (𝑖𝑑𝑟𝑒𝑓and 𝑤𝑟𝑒𝑓) and an 

error dynamic. 
 

{
ėid + Kde1 = 0

ëw + Kw1ėw + Kw2ew = 0
  (32) 

 
 

 
 

Figure 4. Block diagram of linearized system 
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6. RESULTS AND DESCRIPTION 

Simulations were run utilizing the model of the drive wheel system to characterize the behavior as 

presented in Figure 5. They display motor current as well as each motor's speed fluctuation. More details 

about simulation including discussion ban be found in the following sections. 

 

6.1.  In the case of a straight road 

During this time, the EV drives at a speed of 80 km/h. Figure 5, provides that the speed of an EV 

has two phases. In the first phase, a speed of 80 km/h, and between [0 3] sand between [3 5] s in the second 

phase with a speed equal to 60 km/h. The two back wheels are moving at the same speed, as can be seen. 

This indicates that in this instance, the electrical differential is inoperative. The following graph indicates that 

the main change experienced when utilizing 𝐹𝑝𝑒𝑛𝑡𝑒= 5.81 between [2 3] s. The torque of the produced motor 

is audible. The electromagnetic motor torque is significantly improved by the slope effect on both the left and 

right sides of each motor. Figure 5 serves as an example of the system's behavior. 
 

 

 
 

Figure 5. Straight road application 
 

 

6.2.  A 60 km/h curved road is on the right 

In this stage, we inform the user that the EV is driving at a speed of 80 km/h. Figure 6 describes the 

EV speed that has two phases. In the first phase, is located between [0 2] s at 80 km/h and [2 5] s at 60 Km/h. 

Once this speed is regular, the resistive torque given to the motor wheels as a whole cause the torque to revert 

to its initial value. Next, in [3.5 4.5] s means the speed changed during the curved road to stabilize the EV.  

 

 

 
 

Figure 6. Curved road 
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7. CONCLUSION 

In the propulsion model, there are two permanent magnet synchronous motors (PMSM). The direct 

component of the current is set to zero to increase the motor's output torque. Each driving wheel may be 

separately controlled at each curve according to the electronic differential, which is used in the calculations. 

The program Matlab/Simulink is used to implement modeling and simulation in order to evaluate the efficacy 

of the proposed solution. Simulation studies are conducted to verify the effectiveness of the suggested 

method. The outcomes show that this strategy is more accurate. In future work, a novel application will be 

provided using different recent techniques and real applications.  
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