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 The paper examines a strategy for managing voltage control in a microgrid by 

redistributing reactive power among its distributed generators. Unlike 

traditional droop control, the new control approach can provide a more 

accurate reactive power response based on a virtual impedance that helps 

calculate a virtual voltage. In addition, this virtual impedance is employed for 

the current controller inverter to improve the results. The adaptive virtual 

voltage control works well to provide active and reactive power. The proposed 

control works effectively by balancing the active and reactive power of the 

grid and maintains the fundamental frequency. The control technique assists 

the new microgrid (MG) in adapting the operation effectively and 

redistributing the active and reactive power. 
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1. INTRODUCTION 

The power industry is fundamentally changing because of environmental and energy cost issues. Some 

of these changes consider using renewable energy sources (RESs). These new sources are integrated into the 

power grid as distributed generation (DG), typically connected to the power grid by power electronics [1]. 

Some advantages of using DGs in the power grid are that they help reduce environmental issues and power 

losses, increase energy utilization, and improve reliability. 

Compared to traditional generators, DG units often have a higher level of controllability and 

operability [2]–[4]. In addition, microgrids (MGs) play a significant role in ensuring electrical grid stability 

[5], [6]. Thus, MGs help improve power grid operation, including new specific applications [7]. Frequency and 

voltage magnitude droop control have traditionally achieved decentralized power share [8], [9]. However, if 

the feeders are predominantly resistive, the droop control in the MG is susceptible to some stability problems 

in the power control [10]. 

One of the most appealing characteristics of an MG is its ability to operate in island mode, which 

guarantees service reliability in the event of a power outage [11]. DG units must work with an island-mode 

microgrid to balance generation and load by controlling voltage and frequency. Thus, previous research has 

employed droop control to share power in decentralized networks without relying on communications [12]–[14]. 

However, this type of network always faces control, stability, and power-sharing challenges [12], [15], [16]. In 

island-mode MG, multiple DG units share active and reactive power according to their rating.  

https://creativecommons.org/licenses/by-sa/4.0/
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The frequency and voltage magnitude droop regulations are commonly used in power systems to 

represent specific synchronous machines [10], [17]. Thus, the frequency droop technique is adequate to share 

active power. However, network resistances and loads affect the voltage drop technique [18], [19]. As a 

significant advance in droop control applications, the virtual impedance approach improves stability and power 

sharing [20]–[23]. However, other network configurations presents some difficulties in distributing reactive 

power [24]–[26]. 

The stability of the MG has been improved with the virtual frequency–voltage frame and virtual active 

and reactive power [27]. However, these techniques present some difficulties in managing errors in reactive 

power sharing. Therefore, island-mode MGs have been researched [28], [29]. Other applications focus on 

uninterruptible power systems to avoid mutual control wires while sharing power [10], [30]. This technique is 

reliable and flexible, but its application is limited. 

An MG enables the DG systems to operate in island mode, which increases the availability and power 

quality of electricity supplied to consumers [11]. However, island-mode MGs present challenges such as power 

balance between generation and load and reactive power distribution. Droop control enables decentralized 

control without having to rely on external communication connections. While frequency droop is an accurate 

technique to share active power, voltage droop is sometimes inefficient for sharing reactive power due to 

network impedances, load fluctuations, and DG power differences [18]. As a result, reactive power sharing in 

MGs has been researched, and several control strategies have been presented [31]–[34]. 

According to the literature analyzed in this research, recent studies have concentrated on active power 

control, but reactive power sharing techniques require accurate developments. Therefore, this study focuses on 

how reactive power can be distributed more effectively between generators in a MG by using a virtual voltage 

in the inverter voltage controller to increase the output signal. The main contributions of this article are related 

to employing virtual voltages at each inverter to redistribute reactive power between inverters and optimize the 

voltage control signal sent to the current controller. 
 
 

2. MATERIALS AND METHODS 

2.1.  Control method 

Figure 1 presents the diagram of the control technique proposed in this research. The P-ω controller 

regulates the frequency and distributes active power equitably among the DGs. The virtual voltage is calculated 

with the active power and the virtual impedance. Then, the voltage is employed as an input for the controller, 

specifically a proportional resonant. The resulting output signal is then sent to the current controller, which 

utilizes proportional control to enhance the signal directed to the pulse width modulation (PWM). This 

ultimately enables the inverter switch to attain the desired current and voltage. 
 
 

 
 

Figure 1. Proposed control technique used for the DGs 
 

 

2.2.  Voltage loop controller 

Figure 2 presents a voltage controller diagram established in a synchronous reference frame. The 

voltage loop controller is built based on a proportional resonant configuration during the steady-state operation. 

From these diagrams, the state equations are obtained as (1)-(4). 

 
𝑑𝐴𝑑

𝑑𝑡
= (𝑉𝑑

∗∗ − 𝑉𝑜𝑑) − 𝑤0
2𝐵𝑞 + 𝑤0𝐴𝑞 (1) 

 
𝑑𝐴𝑞

𝑑𝑡
= (𝑉𝑞

∗∗ − 𝑉𝑜𝑞) − 𝑤0
2𝐵𝑞 − 𝑤0𝐴𝑑 (2) 

 
𝑑𝐵𝑑

𝑑𝑡
= 𝐴𝑑 + 𝑤0𝐵𝑞 (3) 
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𝑑𝐵𝑞

𝑑𝑡
= 𝐴𝑞 − 𝑤0𝐵𝑑 (4) 

 

Then, the algebraic equations are obtained as in (5) and (6). 
 

𝑖𝑖𝑑
∗ = 𝑘𝑝𝑣(𝑉𝑑

∗∗ − 𝑉𝑜𝑑) + 𝑘𝑖𝑣𝐵𝑑 (5) 
 

 𝑖𝑖𝑞
∗ = 𝑘𝑝𝑣(𝑉𝑞

∗∗ − 𝑉𝑜𝑞) + 𝑘𝑖𝑣𝐵𝑞 (6) 
 

As in (7)-(10) present the linearized model representing the small-signal state space. 
 

[
∆A𝑑𝑞

∆𝐵𝑑𝑞

̇
] = 𝐴𝑣𝑜𝑙 [

∆𝐴𝑑𝑞

∆𝐵𝑑𝑞
] + 𝐵𝑣𝑜𝑙1[∆𝑉𝑜𝑑𝑞

∗∗] +  𝐵𝑣𝑜𝑙2 [
∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] (7) 

 

Where, according to (8) and (9). 
 

𝐴𝑣𝑜𝑙 =

[
 
 
 

0 𝑤0 −𝑤0
2 0

−𝑤0 0 0 −𝑤0
2

1 0 0 𝑤0

0 1 −𝑤0 0 ]
 
 
 

𝐵𝑣𝑜𝑙1 = [

1 0
0 1
0 0
0 0

]𝐵𝑣𝑜𝑙2 = [

0 0 0 0
0 0 0 0

−1 0 0 0
0 −1 0 0

] (8) 

 

[∆𝑖𝑑𝑞
∗] = 𝐶𝑣𝑜𝑙 [

∆𝐴𝑑𝑞

∆𝐵𝑑𝑞
] + 𝐷𝑣𝑜𝑙1[∆𝑉𝑜𝑑

∗∗] + 𝐷𝑣𝑜𝑙2  [
∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] (9) 

 

And the parameters 𝐶𝑣𝑜𝑙, 𝐷𝑣𝑜𝑙1, and 𝐷𝑣𝑜𝑙2 are defined as (10). 
 

𝐶𝑣𝑜𝑙 = [
0 0 𝑘𝑖𝑣 0
0 0 0 𝐾𝑖𝑣

];   𝐷𝑣𝑜𝑙1 = [
𝑘𝑝𝑣 0

0 𝑘𝑝𝑣
] ;   𝐷𝑣𝑜𝑙2 = [

0 0 −𝑘𝑝𝑣 0

0 0 0 −𝑘𝑝𝑣
] (10) 

 

 

 
 

Figure 2. Voltage controller 
 

 

2.3.  Current loop controller 

The new loop algebraic equations of the controller are as (11) and (12). 
 

𝑉𝑝𝑤𝑚𝑑
∗ = 𝑘𝑝𝑖(𝑖𝑖𝑑

∗ − 𝑖𝑖𝑑) (11) 
 

𝑉𝑝𝑤𝑚𝑑
∗ = 𝑘𝑝𝑖(𝑖𝑖𝑞

∗ − 𝑖𝑖𝑞) (12) 
 

The model of the current loop controller can be defined as in (13). 
 

[∆𝑉𝑝𝑤𝑚𝑑𝑞
∗] = 𝐷𝑐𝑜𝑟1[∆𝑖𝑖𝑑𝑞

∗] + 𝐷𝑐𝑜𝑟2 [
∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] (13) 

 

Where: 
 

𝐷𝑐𝑜𝑟1 = [
𝑘𝑝𝑖 0

0 𝑘𝑝𝑖
] (14) 
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𝐷𝑐𝑜𝑟2 = [
−𝑘𝑝𝑖 0 0 0

0 −𝑘𝑝𝑖 0 0
] (15) 

 

According to (9) and (15), the expression ∆𝑉𝑝𝑤𝑚𝑑𝑞
∗ is obtained as (16). 

 

[∆𝑉𝑝𝑤𝑚𝑑𝑞
∗] = 𝐷𝑐𝑜𝑟1𝐶𝑣𝑜𝑙 [

∆𝐴𝑑𝑞

∆𝐵𝑑𝑞
] + 𝐷𝑐𝑜𝑟1𝐷𝑣𝑜𝑙1[∆𝑉𝑜𝑑𝑞

∗∗] + (𝐷𝑐𝑜𝑟1𝐷𝑣𝑜𝑙2 + 𝐷𝑐𝑜𝑟2) [
∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] (16) 

 

2.4.  Three-phase half-bridge circuit 

The state equations are expressed as (17)-(20). 
 

𝑑𝑖𝑖𝑑

𝑑𝑡
=

−𝑟

𝐿
𝑖𝑖𝑑 + 𝑤0𝑖𝑙𝑞 +

𝑘𝑝𝑤𝑚

𝐿
𝑉𝑝𝑤𝑚𝑑

∗ −
1

𝐿
𝑉𝑜𝑑 (17) 

 
𝑑𝑖𝑖𝑞

𝑑𝑡
=

−𝑟

𝐿
𝑖𝑖𝑞 + 𝑤0𝑖𝑙𝑑 +

𝑘𝑝𝑤𝑚

𝐿
𝑉𝑝𝑤𝑚𝑞

∗ −
1

𝐿
𝑉𝑜𝑞  (18) 

 
𝑑𝑉𝑜𝑑

𝑑𝑡
= 𝑤0𝑉𝑜𝑞 +

1

𝑐
𝑖𝐿𝑑 −

1

𝑐
𝑖𝑜𝑑 (19) 

 
𝑑𝑉𝑜𝑞

𝑑𝑡
= −𝑤0𝑉𝑜𝑑 +

1

𝑐
𝑖𝐿𝑞 −

1

𝑐
𝑖𝑜𝑞 (20) 

 

Thus, the linearized small-signal state-space models can be represented as (21) and (22). 
 

[
∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞

̇
] = 𝐴𝐿𝐶 [

∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] + 𝐵𝐿𝐶1[∆𝑉𝑝𝑤𝑚𝑑𝑞

∗] + 𝐵𝐿𝐶2[∆𝑖𝑜𝑑𝑞] (21) 

 

𝐴𝐿𝐶 =

[
 
 
 
 
 

−𝑟

𝐿
𝑤0

−1

𝐿
0

−𝑤0
−𝑟

𝐿
0

−1

𝐿
1

𝑐
0 0 𝑤0

0
1

𝑐
−𝑤0 0 ]

 
 
 
 
 

; 𝐵𝐿𝐶1 =

[
 
 
 
 
𝑘𝑝𝑤𝑚

𝐿
0

0
𝑘𝑝𝑤𝑚

𝐿

0 0
0 0 ]

 
 
 
 

; 𝐵𝐿𝐶2 =

[
 
 
 
 
0 0
0 0
−1

𝑐
0

0
−1

𝑐 ]
 
 
 
 

 (22) 

 

According to (23), ∆𝑉𝑝𝑤𝑚𝑑𝑞
∗ can be substituted by (21). 

 

[
∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞

̇
] = 𝐴𝐿𝐶 [

∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] + 𝐵𝐿𝐶1𝐷𝑐𝑜𝑟1𝐶𝑣𝑜𝑙 [

∆𝐴𝑑𝑞

∆𝐵𝑑𝑞
]  

+𝐵𝐿𝐶1𝐷𝑐𝑜𝑟1𝐷𝑣𝑜𝑙1[∆𝑉𝑜𝑑𝑞
∗∗] + 𝐵𝐿𝐶1(𝐷𝑐𝑜𝑟1𝐷𝑣𝑜𝑙2 + 𝐷𝑐𝑜𝑟2) [

∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] + 𝐵𝐿𝐶2[∆𝑖𝑜𝑑𝑞] (23) 

 

2.5.  Line impedance 

The state equations are represented by (24) and (25). These equations represent the line impedance 

model of the microgrid. 
 

𝑑𝑖𝑜𝑑

𝑑𝑡
=

−𝑟𝐿

𝐿𝑖
𝑖𝑜𝑑 + 𝑤0𝑖𝑜𝑞 +

1

𝐿𝑖
𝑉𝑜𝑑 −

1

𝐿𝑖
𝑉𝑏𝑢𝑠 𝑑 (24) 

 
𝑑𝑖𝑜𝑞

𝑑𝑡
=

−𝑟𝐿

𝐿𝑖
𝑖𝑜𝑞 + 𝑤0𝑖𝑜𝑑 +

1

𝐿𝑖
𝑉𝑜𝑞 −

1

𝐿𝑖
𝑉𝑏𝑢𝑠 𝑞 (25) 

 

Finally, the (26) presents the linearized small-signal state-space models. 
 

[∆𝑖𝑜𝑑𝑞
̇ ] = 𝐴𝐿[∆𝑖𝑜𝑑𝑞] + 𝐵𝐿1 [

∆𝑖𝑖𝑑𝑞

∆𝑉𝑜𝑑𝑞
] + 𝐵𝐿2[∆𝑉𝑏𝑢𝑠 𝑑𝑞] (26) 

 

Where, 

 

𝐴𝐿 = [

−𝑟𝐿

𝐿𝑖
𝑤0

−𝑤0
−𝑟𝐿

𝐿𝑖

]; 𝐵𝐿1 = [

1

𝐿𝑖
0

0
1

𝐿𝑖

]; 𝐵𝐿2 = [
−

1

𝐿𝑖
0

0 −
1

𝐿𝑖

] (27) 
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2.6.  Complete model of the inverter 

A complete inverter model is obtained when integrating different state-space models and the modified 

current controller. This is the mathematical model of the inverter that is used in the microgrid: 

 

[∆𝑋̇] = 𝐴[∆𝑋] + 𝐵1[∆𝑉𝑜𝑑𝑞
∗] + 𝐵2[∆𝑉𝑏𝑢𝑠 𝑑𝑞]  (28) 

 

∆𝑋 = [∆𝐴𝑑𝑞 ∆𝐵𝑑𝑞  ∆𝑖𝑖𝑑𝑞  ∆𝑉𝑜𝑑𝑞  ∆𝑖𝑜𝑑𝑞  ∆𝑃𝑜𝑑𝑞]  (29) 

 

where 𝐴, 𝐵1, and 𝐵2 are defined as (30). 

 

𝐴 =

[
 
 
 

0 0 0  𝐴𝑝

𝐴𝑣𝑜𝑙 𝐵𝑣𝑜𝑙2 0 −𝐵𝑣𝑜𝑙1𝐷

𝐵𝐿𝐶1𝐷𝑐𝑜𝑟1𝐶𝑣𝑜𝑙 𝐴𝐿𝐶  + 𝐵𝐿𝐶1(𝐷𝑐𝑜𝑟1𝐷𝑣𝑜𝑙2 + 𝐷𝑐𝑜𝑟2) 𝐵𝐿𝐶2  −𝐵𝐿𝐶1(𝐷𝑐𝑜𝑟1𝐷𝑣𝑜𝑙3 𝐶)
0 𝐵𝑙1 𝐴𝑙 0 ]

 
 
 
  

𝐵 = [

𝐵𝑝

𝐵𝑣𝑜𝑙1 𝐶
𝐵𝐿𝐶1𝐷𝑐𝑜𝑟1𝐷𝑣𝑜𝑙1𝐶

0

] 𝐵2 = [

0
0
0

𝐵𝐿2

] (30) 

 

 

3. RESULTS AND ANALYSIS 

This research uses a network with two DGs and one load, as shown in Figure 3. This load considers 

different consumptions that change over time. DGs must supply power to the load considering the impedance 

of the network, and control must consider all load variations. Furthermore, voltage is improved by applying a 

strategy based on virtual voltage that is calculated according to the network impedance and the variable loads. 
 

 

 
 

Figure 3. Diagram of the network for the test 
 
 

3.1.  Active power 

Figure 4 presents the active power delivered by the generators, where Figure 4(a) displays the response 

of DG1 and Figure 4(b) the response of DG2. The response of the generators depends on the droop control and 

virtual voltage control. The results show that the control strategies respond to various changes in the power of 

the load. This result shows how the power is increased according to the consumption of the load. 

Figure 5 presents the behavior of the active power of DG1 and DG2. Figure 5(a) displays the response 

of the virtual voltage control, and Figure 5(b) shows the response of the droop control. The inverters share 

active power with two independent controllers. During various load shifts, these techniques correctly distribute 

active power. Figure 6 presents the reactive power generation with both controllers. The suggested virtual 

voltage regulation strategy is seen in Figure 6(a). Moreover, Figure 6(b) shows the droop control strategy. 

The virtual voltage control technique efficiently shares the reactive power for different load changes. 

This is not accomplished with the droop control within the first seconds. After adding more load, the control 

strategy reacts well to the changes. Generators supply the same power with the proposed approach, while with 

the droop control the power for both generators are different. 

Figure 7 presents the reactive power behavior in both generators applying virtual voltage and the 

droop controllers. Figure 7(a) displays the results of DG1, and Figure 7(b) DG2. In the simulation, the virtual 

voltage controller works better and more quickly than the droop controller. 

Figure 8 shows the frequency for both control approaches (virtual voltage and droop) when 

incorporating various electrical loads. The virtual voltage controller adapts to load changes more quickly and 

effectively than the droop control approach. These graphs were created considering various load variations. 

For the events created, the frequency stabilizes a few seconds after the load changes. The frequency value 

adjusts quickly as the load varies, and the controller preserves the nominal frequency. 
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Figure 9 displays the root mean square (RMS) load voltage in the MG. The virtual voltage approach 

outcomes are given in blue, while droop control is represented in red. Voltage in the node drops suddenly when 

another load is connected. However, the control procedure quickly restores the voltage to a close-to-original 

level. As a result, using a simulated voltage, the suggested control strategy preserves a steady voltage value 

during load changes. The voltage presents lower values with the droop control than those obtained with the 

virtual voltage. As a result, the virtual voltage approach responds more quickly and accurately than the droop 

control approach. 

Figures 10(a)–10(d) illustrate the power behavior when several loads vary in the network. Active and 

reactive power capacities of the system are also shown. The power supply increases as the load in the node 

escalates. A control mechanism monitors and maintains a constant voltage at the node where the loads are 

connected and disconnected. As a result, the loads consume the same amount of active and reactive power. 

 

 

  

(a) (b) 

 

Figure 4. Active power regulation with the virtual voltage and droop controllers for (a) DG1 and (b) DG2 

 

 

  

(a) (b) 

 

Figure 5. Active power delivered by generators with (a) virtual voltage and (b) droop control 

 

 

  
(a) (b) 

 

Figure 6. Reactive power in DG1 and DG2 with the (a) virtual voltage control and (b) droop control 
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(a) (b) 

 

Figure 7. Reactive power in both generators with both control strategies (a) DG1 and (b) DG2 

 

 

  
 

Figure 8. Frequency (virtual voltage vs droop) 

 

Figure 9. Load voltage (droop vs virtual voltage) 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 10. Power behavior during disturbances (a) active power with the droop control, (b) active power with 

the virtual voltage control, (c) reactive power with the droop control, and (d) reactive power with the virtual 

voltage control 

 

 

4. CONCLUSION 

This article introduced a control approach with virtual voltage to efficiently redistribute reactive 

power among two generators located in different nodes in an MG. This technique allowed the ability to 

redistribute the reactive power accurately in the generators despite load variations. The reactive power changes 

according to the disturbances in the network, and then the voltage is controlled with the proposed control 
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approach. Thus, the proposed control approach applied to the output power of the inverter works well. The 

frequency remains close to the reference, as the control maintains power balance. The technique assists the 

new MG in effectively adapting and sharing active and reactive power. 
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