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 The paper is all about the implementation of a novel bio-inspired meta-

heuristic salp swarm algorithm (SSA) for speed control of brushless DC 

(BLDC) motor drive that is run in sensorless control mode. The angular 

speed of the motor is evaluated using an extended kalman filter, in which the 

dynamics of the motor are nonlinear. The error in speeds between actual and 

estimated is fed to the PID controller. To achieve the good transient 

operation of the motor drive, the parameters of the PID are tuned with the 

SSA. The optimum PID gains are determined by the minimization of integral 

square error and then final optimum gains are validated on the laboratory 

testbed. The proposed method is also tested in various cases to check the 

performance of the drive. The experiments are also performed at low speeds 

to know the superiority of the proposed method. 
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1. INTRODUCTION 

Electric vehicles are popular means of transportation in the present day. Because of reasons like 

high efficiency, zero carbon emissions, maintenance-free, fast torque production, cost-effectiveness; the 

market growth of electric vehicles has surged in recent years. The major components in an electric vehicle 

are the electric motor, battery, power electronic converter, speed controller and transmission unit. More 

recently electric vehicle sales across the world are increasing. In India, government is also promoting electric 

vehicles by giving incentives for manufacturers as well as the customers’ who are buying the EVs. 

The brushless DC (BLDC) motor is emerging in different fields such as electric vehicles, industrial 

and commercial applications due to their excellent characteristics viz, good control flexibility, noise-free 

operation, wide speed range and good speed regulation [1]. There are two types in the category of BLDC 

motors. One is a permanent magnet synchronous motor (PMSM) (motor with distributed stator winding and 

the other motor is BLDC with concentrated stator winding [2]. The BLDC motor is more popular because of 

its low cost and better control flexibility as compared to its counterpart. The motor runs in self-control mode 

which means that the stator winding will be given a power supply from the rotor angular position 

information. Therefore, we could run the motor more than the synchronous speed. In closed-loop speed 

control of this drive, rotor position and speed sensors are essential [3]. Figure 1 shows an electric vehicle 

employing a BLDC motor. The speed of the vehicle is regulated by controlling the BLDC motor [4]. The 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 13, No. 2, June 2022: 755-763 

756 

position of the rotor is sensed using the hall sensor and is fed back to the controller which controls a three-

phase IGBT inverter. To improve the drive performance and avoid the cost of the hall sensors, sensorless 

speed control is proposed in the literature [5]-[8]. The speed can be estimated using observers like extended 

Kalman filter (EKF), cubature Kalman filter. More recently many researchers worked on sensorless speed 

regulation of BLDC motor [9]−[12], and some of them used BLDC motor drive control in real-time 

applications [13], [14]. 

The PID based speed controller is extensively used in industrial applications whereas in Ziegler-

Nichols method is used for tuning suitable PID gains. Many researchers proposed the metaheuristic 

optimization approaches for getting PID gains offline and obtaining better performance in real-time using 

these fixed gains at various operating conditions of the motor drives [15]−[17]. Further, the speed regulation 

of the BLDC motor drive using optimization methods is also proposed recently [18]−[21]. 
 

 

 
 

Figure 1. Schematic diagram of an electric vehicle using BLDC motor 
 
 

This paper proposed an optimal sensorless speed control of BLDC motor using salp swarm 

optimization which is a bio-inspired heuristic optimization algorithm. It is nothing but imitating the behavior 

of salp swarms in deep oceans in search of food. An objective function using an integral square error is 

formulated to improve the operating speed profile of the electric vehicle. The speed of the BLDC motor is 

estimated using an EKF. Initially, extensive simulations have been performed on BLDC motor for speed 

control using salp swarm optimization and later the optimal PID gains are used for hardware implementation 

in off-line. The rest of the paper is organized as follows. BLDC motor drive and sensorless speed control 

using EKF are discussed in section 2. The description of salp swarm optimization is presented in section 3. 

Simulation results are provided in section 4. Hardware implementation and description is given in section 5, 

following that the conclusions are given in section 6. 

 

 

2. PROPOSED BLDC MOTOR DRIVE AND ITS DYNAMICS 

The laboratory prototype for the proposed motor drive scheme for real-time implementation is 

shown in Figure 2. Implementation of the drive consists of different subsystems, such as inverter, speed 

controller (PID controller), and hysteresis current control. The control of the motor drive is based on the 

reference current value generated by the speed controller [22]−[24]. The angular speed of the BLDC motor is 

estimated using EKF and is given to the controller as shown in Figure 3. The dynamics of the BLDC motor 

are given in (1)-(6). The BLDC motor has been modelled by considering stator phase currents (ia, ib, ic), rotor 

speed (ꞷm), and rotor angular position (θr) as state variables of the drive system. 

 
dia

dt
=

1

L−M
[va − Rsia − kpωmea(θr)] (1) 

 
dib

dt
=

1

L−M
[vb − Rsib − kpωmeb(θr)] (2) 

 
dic

dt
=

1

L−M
[vc − Rsic − kpωmec(θr)] (3) 

 
dωm

dt
=

−B

J
(ωm) −

1

J
(Te − Tl) (4) 

 
dθr

dt
=

P

2
[ωm] (5) 

 

The electromagnetic torque value of the motor is, P = Teωm (6) 
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In the above equations, L and M are self and mutual inductances of stator winding respectively. 

Where Rs is stator resistance per phase and ꞷm is rotor speed in rad/sec. The factor kpωmea(θr), is 

contributing induced EMF in phase–A and this is mostly speed dependent. Here, kp (=2NlrBmax) is called 

EMF or voltage constant, wherein Bmax is maximum flux density, N is the number of turns, l is length and r is 

internal radius of one phase of winding. Moreover, it is considered that E = kpωm is the peak value of the 

trapezoidal electromotive force and the actual value of EMF will vary depending on the rotor position. 

Where, J is the moment of Inertia, B is the viscous friction coefficient of the motor, Te is electromagnetic 

torque produced in the motor and Tl is the load torque required for a given load. Figure 4 shows the Back-

EMF values with respect to the rotor angular position. One can observe that it is in between 0 < θr < 𝜋 ⁄ 6 

for phase-A. This is similar for other two phases. 
 

 

 
 

Figure 2. Drive schematic for laboratory execution 

 

 

 
 

Figure 3. Sensorless speed control using EKF 

 

 

 
 

Figure 4. Back-EMF waveform and current excitation for phase-A with rotor-position 
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To minimize the cost of the electric vehicle, the hall sensors which are used for position 

measurement are eliminated. The motor’s angular speed is estimated using the current measurements. The 

procedure for state estimation using EKF algorithm is given below. It includes the initialization of states, 

state covariance matrix, and P0; and prediction of state vector and state covariance using (7), (8) respectively. 

 

𝑥̂𝑘
− = 𝔽𝑘(𝑥̂𝑘−1) (7) 

 

𝛲𝑘
− = 𝐹𝑘−1𝛲𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄𝑒 (8) 

 

Update the covariance matrix using (9). 

 

𝛲𝑘
+ = [𝐼 −𝐾𝑘 𝐻𝑘 𝛲𝑘

−] (9) 

 

Calculate the Kalman gain and update the states using (10) and (11). 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇[𝐻𝑘𝑃𝑘
− + 𝑅]−1 (10) 

 

𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘[𝑦𝑘 − 𝕊𝑘(𝑥̂𝑘
−)] (11) 

 

Where, 𝐹𝑘−1 =
𝜕𝔽𝑘−1

𝜕𝑥
 and 𝐻𝑘 =

𝜕𝕊𝑘

𝜕𝑥
. However, the real challenge of closed-loop speed control is tuning of 

PID gains. Hence the PID gains are selected optimally at the best fitness function. 

 

 

3. OPTIMAL SPEED CONTROL USING SALP SWARM ALGORITHM 

SSA optimization is a bio-inspired heuristic algorithm inspired by the salp swarms. Salps live in 

deep oceans and the salp swarm behavior is modelled for solving the optimization problems [25]. The salps 

are grouped to form chains where a group of followers follows the leader. The leader position is updated 

based on the food location. The drive scheme with SSA is shown in Figure 5 to obtain the optimum PID gains. 

 

 

 
 

Figure 5. Drive scheme with SSA 

 

 

Salp Swarm Algorithm [25] 
Initialization: 

The following parameters are initialized for the proposed method. 

Maximum iteration max= 100; Population of salps N = 30; 

Upper bound ub= [200 20 0.2]; Lower bound lb= [20 0.2 0.002]; 

dimension of the problem d = 3 and current iteration i = 0; 

If i<max 

Calculate the fitness of the swarm: 

Integral square error of the speed is considered an objective function for tuning the PID 

controller gains. 

 

Objective function 𝔽 = 𝑚𝑖𝑛 (∫ (𝜔𝑟 − 𝜔)2𝑑𝑡
𝑡𝑠
0

) (12) 

 

Where,   is the actual speed and r  is the reference speed  

Calculate the fitness of each salp using (12). 

Select the leader: 

Select the salp with best fitness as the leader L. 

Update the parameter 1 as given by (13). 

BLDC Motor 
r

Salp Swarm 

Algorithm

Extended 

Kalman Filter

̂

PID

Controller

BLDC Motor



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Salp swarm algorithm based optimal speed control for electric vehicles (Devendra Potnuru) 

759 

𝛼1 = 2𝑒−
(

𝑖

𝑚𝑎𝑥
())

 (13) 

 
(Update the position of Leader: 

for each salp j=1:30 

if (j==1) 

The position of the Leader
1

k  is updated using (14): 

 

𝜁𝑘
1 = {

𝑃𝑘 + 𝛼1((𝑢𝑏𝑘 − 𝑙𝑏𝑘)𝛼2 + 𝑙𝑏𝑘) 𝛼3 > 0.5

𝑃𝑘 − 𝛼1((𝑢𝑏𝑘 − 𝑙𝑏𝑘)𝛼2 + 𝑙𝑏𝑘) 𝛼3 < 0.5
 (14) 

 

where kP is the position of the food in the kth dimension and 2 , 3 are constants which are 

randomly generated in [0 1]. 

else 

Update the follower’s position: 

The position of the follower
i

k  is updated using (15): 

 

𝜁𝑘
𝑖 =

𝜁𝑘
𝑖+𝜁𝑘

𝑖−1

2
 (15) 

 
end 

end 

Return the Leader L 

 

Final PID gains obtained for speed controller are Kp = 163.4896; Ki = 9.2613; and Kd = 0.0500 and 

the convergence of the objective function is as shown in Figure 6. It is observed that the speed of the 

convergence of the proposed algorithm is superior to the PSO algorithm as shown in Figure 6. The algorithm 

implementation flow is shown in Figure 7.  
 
 

 
 

Figure 6. Convergence curve of SSA in speed control of BLDC motor 
 
 

 
 

Figure 7. SSA implementation flowchart 

 

 

4. SIMULATION RESULTS 

The proposed control idea of the BLDC motor with EKF is first simulated in MATLAB/Simulink. 

The PID gains obtained after tuning with SSA are loaded in to the controller. Now the performance of the 
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motor is evaluated for various test cases with various reference speeds and loading conditions. One can see 

that the motor reached to given reference speed smoothly. Figure 8, Figure 9, and Figure 10 shows that the 

actual speed of the motor tracks the given staircase, ramp, and triangular commands respectively. Also, a 

good transient and steady-state behavior is observed with the proposed algorithm. 

 

 

  
  

Figure 8. Speed control with SSA for staircase input Figure 9. Speed control with the SSA for ramp input 

 

 

 
 

Figure 10. Speed control with the SSA for triangular input 

 

 

5. HARDWARE IMPLEMENTATION AND RESULTS 

The effectiveness of the proposed work has been tested using hardware implementation after the 

extensive simulations on MATLAB/Simulink environment. Hardware execution of the proposed work 

consists of a BLDC motor with mechanical load arrangement, a dSPACE DS1103 R&D controller board, 

voltage source inverter, Hall Effect sensors for voltage and current measurements. The prototype of the block 

diagram given in Figure 3 is developed as shown in Figure 11 for experimentation. One can read [3], [11] for 

more details of the modelling and hardware implementation. The BLDC model parameters are given in Table 1.  

 

 

 
 

Figure 11. Hardware implementation testbed 
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Table 1. BLDC motor parameters 
Parameter Value 

Resistance (RL) 1.5Ω (line – line) 
No. of Poles (P) 6 

Power 1.5 hp 

Moment of Inertia (J) 8.2614 e-5 kg.m2 
Inductance (L-M) 6.1 mH (line-line) 

 

 

The transient and steady-state behavior of the drive with the proposed slap swarm algorithm is 

validated with various reference speeds, as described follows. 
− Case1-Low-speed of 30 rpm: Experiments are conducted on closed-loop speed control for 30 rpm step 

reference and its performance depicted in Figure 12. The motor tracks the reference speed within 1 sec. 

The noise and speed oscillations are due to higher cogging torque at low speed and as well as non-

sinusoidal EMF of the motor. Figure 13 shows the rotor angular position at 30 rpm and it shows 0 to 2π (0 

to 6.28 rad). 

− Case2-High-speed of 2000 rpm and 3000 rpm: Experiments are conducted on 2000 rpm. Figure 14 (a) 

gives the behaviour of the closed-loop speed control for 2000 rpm and its zoomed view is shown in 

Figure 14 (b). From this, one can notice that the motor tracks the given set speed so closely. The steady-

state speed error is negligibly low. Similarly, one more experiment is conducted at a higher speed of 3000 

rpm. Figure 15 (a) shows the speed control of the BLDC motor drive at 3000 rpm and its zoomed view is 

shown in Figure 15 (b). From these experiments, the superiority of the closed-loop speed control by 

means of the PIDs obtained from the SSA can be recognized. 
 

 

  
  

Figure 12. Speed control with 30 rpm step reference Figure 13. Rotor positions at 30 rpm 
 

 

  
(a) (b) 

  

Figure 14. Closed-loop speed control with the ramp reference speed 2000 rpm (a) actual response and  

(b) zoomed view 
 
 

  
(a) (b) 

  

Figure 15. Closed-loop speed control with the ramp reference speed 3000 rpm (a) actual response and  

(b) zoomed view 
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6. CONCLUSION 

Thus, this paper successfully implemented the bio-inspired metaheuristic salp swarm algorithm 

(SSA) for closed-loop speed control of the Brushless DC (BLDC) motor drive. The effectiveness of the drive 

operation is shown for both lower and higher step reference speeds. The extensive simulation results show 

that the proposed SSA can be used offline for practical implementation of BLDC motor drive’s speed 

control. This is further supported and justified by the experimental validation results achieved presented.  
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