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 Axial flux motors use less material and thus are inherently less expensive. 

They can also deliver a high-power density, which is four times that of a 

radial flux motor. That makes studying the control methods for this motor 

necessary. The purpose of this study is to introduce a new dynamic and 

steady-state response control technique for axial flux permanent magnet 

synchronous motors (AFPMSMs). Dynamic equations describe the control 

characteristics of axial flux permanent magnet motors. The AFPMSM model 

and the space vector pulse width modulation (SVPWM) inverter were 

created using MATLAB Simulink. For the AFPMSM motor with an 

SVPWM inverter, direct torque control (DTC) is provided. The results of the 

proposed control technique are simulated and analyzed, and it is found to 

provide good performance. According to the results, the proposed control 

method reveals advantages in reducing the ripples and pulsating of the 

torque while enhancing speed dynamic and steady-state response. 

Keywords: 

Axial flux permanent magnet 

Direct torque control 

Space vector pulse width 

modulation invert 

Synchronous motor 

Voltage source inverter 
This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Amir Yassin Hassan 

Department of Power Electronics and Energy Conversion, Electronics Research Institute 

Joseph Tito St., El Nozha, P.O. Box: 12622, Cairo, Egypt 

Email: amir@eri.sci.eg 

 

 

NOMENCLATURE 

 

𝑇𝑒  Electromagnetic torque 𝑇𝑙   Torque of load 

𝑃  Pole -pairs number ωr  Rotor angular velocity 

𝜓𝑠𝑎  Field flux of the stator windings Β  Damping coefficient 

 𝑖𝑠𝑎  Stator current vector 𝐽  Inertia moment for AFPMSM 

𝒰da , 𝒰qa  Stator voltage in d-q axis 𝜓𝑞𝑎  , 𝜓𝑑𝑎  Flux in d-q axis 

𝒾da , 𝒾qa  Stator current in d-q axis Rsa  Resistance of stator windings 

𝐿𝑑𝑎  D axis winding inductance n Number of phases 

𝐿𝑞𝑎  Q axis winding inductance ψf  Field flux of the rotor windings 

 

 

1. INTRODUCTION 

In the past two decades, permanent magnet machines have attracted the researcher’s attention due to 

their high power to weight and good dynamic performance and are considered highly efficient motors, and 

can be used in many applications. Permanent magnet synchronous motors (PMSMs) are divided into two 

categories: Axial flux permanent magnet synchronous motor (AFPMSM) and radial flux permanent magnet 

synchronous motor (RFPMSM) [1]−[4]. Because of their high-power density and small size, AFPMSM can 
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be used in a variety of applications, including electric vehicles (EVS) and bicycles. In terms of efficiency, 

dynamic response, and construction simplicity, AFPMSM performs better RFPMM [5]–[8]. 

The vector control including field-oriented control and direct torque control strategies are used in 

the AFPMSM control strategy. Vector control provides a better steady-state output for the motor, but it has a 

poor dynamic performance. Adjusting parameters is also needed, which will result in performance affection 

[1], [2], [9]−[12]. The conventional type of direct torque control (DTC) that uses a voltage source inverter 

(VSI) is non-complex, as it does not contain a current regulator and no PWM space voltage generator to 

provide good dynamic performance. However, conventional DTC has some drawbacks, such as a torque and 

flux ripple due to VSI, also using a hysteresis comparator that has a defined bandwidth and speed and load 

subject variation of the switching frequency [13], [14]. 

The first trial of space vector modulation DTC was performed on an induction motor; the SVPWM 

inverter is a suitable control solution for issues such as torque and flux ripple, as well as variable switching 

frequency on traditional DTC. Space vector pulse width modulation (SVPWM) inverter also controls solution 

for low voltage distortion and voltage frequency variation, as well as variable motor speed [15], [16]. DTC 

has several advantages that make it a good option for controlling AFPMSM, including better performance 

than field-oriented control, a simple structure, and good dynamics [17]−[23]. In this paper, the model 

dynamic equations of the AFPMSM are presented, as well as a control strategy for speed, torque, and flux 

based on SVPWM inverter DTC. Axial flux permanent magnet motor dynamic equations, direct torque 

control, space vector pulse width modulation, simulation, and experimental results, and conclusion are the 

sections of this paper. 

 

 

2. AXIAL FLUX PERMANENT MAGNET MOTOR DYNAMIC EQUATIONS 

Unless the stator of the AFPMSM differs from that of the non-salient PMSM, an axial flux 

permanent magnet motor can be modeled as a redial flux permanent magnet synchronous motor but with less 

air gab as shown in Figure 1. As a result, stator parameters such as inductance should be taken into account 

when measuring [18], [24]. The following are some assumptions in derivation: 

− Neglected Saturation effect. 

− Sinusoidal back-EMF. 

− Losses caused by hysteresis, eddy currents, and stray are not taken into account. 

− 𝐿𝑑 is equal to 𝐿𝑞 so, the AFPMSM does not have a non-salient pole effect. 

The AFPMSM model in a-b-c is a differential equation of variable coefficients under the above assumptions 

and its equations are as follows [1], [9], [13], [19]−[24]. 

 

 

 
 

Figure 1. Axial flux motor vs radial flux 

 

 

Motor torque equation: 

 

𝑇𝑒 = 𝑃 𝑖𝑠𝑎𝜓𝑠𝑎 (1) 

 

Equation of motion for AFPMSM: 

 

𝑇𝑒 − 𝑇𝑙 − Βωr = J
𝑑𝜔𝑟

𝑑𝑡
 (2) 
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For simple treatment with the (1) and (2), coordination transformation into a Direct-quadrature axis 

is used. The motor mathematical model will be as follow. 

Direct-quadrature voltage equations: 

 

𝒰da = Rsa 𝒾da +
dψda

dt
− 𝑃𝜔𝑟𝜓𝑞𝑎 (3) 

 

𝒰qa = Rsa 𝒾qa +
dψqa

dt
+ 𝑃𝜔𝑟𝜓𝑑𝑎 (4) 

 

Equations for the direct quadrature stator flux: 

 

ψda = Lda ida + ψf (5) 

 

𝜓𝑞𝑎 = 𝐿𝑞𝑎 𝒾𝑞𝑎 (6) 

 

Torque equation: 

 

𝑇𝑒 = 𝑛

2
 𝑃 𝑖𝑞𝑎[𝜓𝑓 + (𝐿𝑑𝑎 − 𝐿𝑞𝑎)𝑖𝑑𝑎] (7) 

 

The torque equation will be in the form of: 

 

Te = n

2
 P iqaψf (8) 

 

By changing  iqa, the torque may be controlled for 𝐿𝑑𝑎 = 𝐿𝑞𝑎 

 

 

3. DIRECT TORQUE CONTROL (DTC) 

In the case of constant load torque, the concept of DTC can be understood using the equation of 

motion (2), which states that the rotor speed is solely determined by electromagnetic torque [9]. It is possible 

to express the electromagnetic torque as (9). 

 

𝑇𝑒 = 𝑛

2
 𝑃

𝐿𝑑𝑎
 𝑖𝑞𝑎  𝜓𝑠𝑎  𝜓𝑓 sin 𝛿 +  

𝑛

4

𝐿𝑑𝑎−𝐿𝑞𝑎

𝐿𝑞𝑎𝐿𝑑𝑎
 𝜓𝑠𝑎

2sin 2 𝛿                 (9) 

 

Where 𝛿 is the torque angle. 

According to the assumptions, the AFPMSM does not have a non-salient pole effect. So 𝐿𝑑 = 𝐿𝑞 

and the torque formula is: 

 

𝑇𝑒 = 𝑛

2
 𝑃

𝐿𝑑𝑎
 𝑖𝑞𝑎  𝜓𝑠𝑎  𝜓𝑓 sin 𝛿     (10) 

 

This equation shows that a changing electromagnetic torque relies on a changing angle δ, DTC block diagram 

is shown in Figure 2. 

 

 

 
 

Figure 2. DTC-SVPWM inverter control block diagram 
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3.1.  Flux and torque estimation equations 

The torque estimation equation is (10), which shows that in the case of stator flux constant, the 

torque depends on load angle δ and is considered to be a step depending on the voltage vector. The maximum 

torque is achieved when δ is equal to π/2. The load angle is controlled within the range of -π/2- π/2. In 

another way, the flux of stator must be controlled to have the amplitude constant and the motor speed is 

controlled to obtain the maximum change in actual torque. Flux estimation (5) and (6), the AFPMSM stator 

flux given by: 

 

𝜓𝑠𝑎 = √(𝜓𝑞𝑎)2 + (𝜓𝑑𝑎)2 (11) 

 

3.2.  PI controller 

A PI controller with two variable gains, the first of which is integral gain and the second of which is 

the proportional gain, can be used to control speed, stator flux, and torque. The PI controllers receive the 

speed, flux, torque error as input. The reference generator torque and Stator voltages in the d-q axis are then 

outputs of the PI controller [25]. 

 

T
∗
𝑒

= 𝑘𝑝𝑒 + 𝑘𝑖 ∫ 𝑒 𝑑𝑡        (12) 

 

𝑒ω = 𝜔𝑟𝑒𝑓 − ω                                                                               (13) 

 

𝑈𝑑 = 𝑘𝑝𝑒 + 𝑘𝑖 ∫ 𝑒 𝑑𝑡        (14) 

 

𝑒ψ = ψ
∗
𝑠

− ψ𝑠                                                                                 (15) 

 

𝑈𝑞 = 𝑘𝑝𝑒 + 𝑘𝑖 ∫ 𝑒 𝑑𝑡        (16) 

 

𝑒T = T
∗
𝑒

− T𝑒                                                                                    (17) 

 

In this study the constant values of PI controllers as follows: for speed 𝐾𝑃 = 20,  𝐾𝑖 = 45, for flux 𝐾𝑃 =
1,  𝐾𝑖 = 75, while for torque 𝐾𝑃 = 150,  𝐾𝑖 = 100. 

 

 

4. SPACE VECTOR PULSE WIDTH MODULATION (SVPWM) INVERTER 

Since it has a higher DC voltage utilization rate and lower output waveform distortion, the SVPWM 

inverter is considered the best technique for controlling inverters [24], [26]–[28]. Based on the space vector 

principle, the SVPWM inverter model in MATLAB will include a switching time calculation model, PWM 

waveform generation, and sector selection [24], [26], [29]. 

 

4.1.  The reference voltage and angle 

The reference voltage and angle equations: 

 

|
𝑉𝑑

𝑉𝑞
| =

2

3
|
1 −0.5 −0.5

0
√3

2
−

√3

2

| |

𝑉𝑎𝑛

𝑉𝑏𝑛

𝑉𝑐𝑛

| (18) 

 

𝑉𝑟𝑒𝑓 = √𝑉
2
𝑑

+ 𝑉
2
𝑞

 (19) 

 

𝛼 = 𝑡𝑎𝑛−1 (
𝑉𝑞

𝑉𝑑
) (20) 

 

4.2.  Conversion time in any sector 

𝑇𝑠 =
1

𝑓
, 𝑓 is the fixed clock frequency  

 

𝑇1 =
√3𝑇𝑠𝑉𝑟𝑒𝑓

𝑉𝑑𝑐
sin (

𝛾

3
𝜋 − 𝛼) (21) 
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𝑇2 =
√3𝑇𝑠𝑉𝑟𝑒𝑓

𝑉𝑑𝑐
sin (𝛼 −

𝛾−1

3
𝜋) (22) 

 

𝑇0 = 𝑇𝑓 − 𝑇1 − 𝑇2 (23) 

 

where 𝛾 is the sector from 1 – 6, 0 ≤ 𝛼 ≤ 60𝑜. 

 

 

5. SIMULATION AND EXPERIMENTAL RESULTS 

In the case of switching frequency of pulse width 20000 Hz and 250-volt DC voltage and 300-rpm 

reference speed are used, the simulation time is 0.7 sec. To improve system efficiency, reference flux values 

based on permanent magnet flux and load torque must be calculated, while keeping changes in reference flux 

due to torque conditions to a minimum. The following formula can be used to calculate the reference flux 

value: [2], [30]. The motor reference flux is calculated using (24) (0.196 Wb). 

 

|ψ
∗
𝑠

| = √ψ
2
𝑓

+ (
2

3

𝑇
∗
𝑒

𝐿𝑠

𝑝𝜓𝑓
)

2

 (24) 

 

5.1.  At no-load 

The motor starts with no load at 300 rpm reference speed. By monitoring the dynamic and steady-

state response from the simulation results in Figures 3, 4, 5 and 6, the speed of the motor during starting is 

accelerated fast and it reaches the reference speed within 0.045 sec. The system achieves reference speed 

without any overshoot, the rise time is about 0.045 sec, and the steady-state error is equal to 0.03%. 

 

 

 
 

Figure 3. Motor speed (rpm) dynamic and steady-state response at no load 

 

 

 
 

Figure 4. Flux dynamic and steady-state response of the motor at no load 
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Figure 5. Motor torque dynamic and steady-state response at no load 

 

 

 
 

Figure 6. Motor reconfigurable manufacturing system (RMS) current under no load 

 

 

5.2.  In case of full load condition 

In the case of full load condition and at t=0.15 sec, the load torque is applied (11 N.M) to the motor. 

The speed response fluctuates but with a low change in value that equals 1.5 rpm and the steady-state error is 

equal to 0.23% and the 3-phase current 𝐼𝑎𝑏𝑐  is sinusoidal as illustrated in Figures 7, 8, 9 and 10. It is obvious 

from the Figures that the control response in case of full load condition is very good for speed, torque and 

flux.  

 

 

 
 

Figure 7. Motor speed dynamic and steady-state response under full load 
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Figure 8. Motor Torque dynamic and steady-state response under motor full load 
 

 

 
 

Figure 9. Flux dynamic and steady-state response under motor full load 
 

 

 
 

Figure 10. Motor RMS current under full load 

 

 

5.3.  Variable reference speed under full load torque 

If the reference speed is varied during full load, at times 0 sec, 0.5 sec, 1 sec, 1.5 sec, the reference 

speed is set to 25, 50, 75, & 100% of the nominal speed, the drive system obtains the required reference 

speed values with a steady-state error equal to 0.266 %. The speed responses under-speed variation is shown 

in Figure 11. The control response for speed with respect to reference is very good in case of variable 

reference speed under full load torque. 
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Figure 11. Motor speed dynamic and steady-state response under variable speeds under full load 
 

 

5.4.  Variable load torque under reference speed  

Considering a changeable reference load torque at maximum speed, at times 0 sec, 0.5 sec, 1 sec, 

and 1.5 sec, the reference load torque is set to 25, 50, 75, & 100% of the nominal torque, the drive system 

achieves the predetermined reference speed values with a steady-state error equal to 0.264 %. Then, torque 

responses under load torque variation are shown in Figure 12. The parameters of the motor used in the 

simulation are listed in Table 1. 
 
 

 
 

Figure 12. Motor torque dynamic and steady-state response under variable load torque under reference speed 
 

 

Table 1. Lists the specs for axial flux motors 
Parameter Value Parameter Value 

Number of pole pairs 2 Damping coefficient Β 0.005 

Stator resistance Rsa (Ohm) 0.2 Inertia moment  J 0.089 

Stator inductance LSa (mH) 8.5 Rated speed (Rpm) 300 

Rotor magnetic flux ψf (Wb) 0.175 Rated torque N.M 11 

VDC dc-voltage (volt) 250  

 
 

6. CONCLUSION 

In this study, PI-DTC is used to control the axial flux motor's speed, torque, and flux. The 

simulation results show that DTC is a more accurate and excellent dynamic response. The novelty of this 

paper is the application of DTC with SVPWM inverter for AFPMSM, and the model results appear low 

torque rippled with high dynamic and steady-state response. According to the results, the control parameters 

are extremely manageable with this approach, and the dynamic response to the suggested method has a 

minimal overshoot (0.1%), a modest steady-state error (0.23%), and a short rising time (0.049 sec). 
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