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 The present paper is directed to achieve a low-cost high-performance self-

starting single phase induction motor (SPIM) drive system. A phase shifted 

pulse width modulation (PWM) trains feeding the motor will replace the 

starting and running capacitors. Adaptive sliding mode control, enhance with 

model reference adaptive control (MRAC), is implemented to achieve high 

performance sensorless SPIM drive. The obtained results confirm the 

feasibility of the proposed system in starting and fast tracking the reference 

speed with nearly zero percentage overshoot and zero steady-state error. 

Moreover, the proposed SPIM drive system is robust to external load torque 

disturbances and insensitive to system parameter variations. Extensive 

simulations have been conducted to confirm the validity of the proposed 

system. 
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1. INTRODUCTION 

Single-phase induction motors are widely used in residential industrial applications such as fans, 

washing machines, dishwashers, clothes dryers, compressors, heating pumps, refrigerators [1]−[4]. This is 

due to their merits over low rating DC motors including rigidness, low cost, high reliability, less maintenance 

requirement, no need for excitation. However, single phase induction motors (SPIMs) are not self-starting 

motors due to their stationary and pulsating air-gap magnetic field [5], [6] and therefore a mechanism for 

starting a SPIM is crucial. The SPIMs are classified according to their starting methods including two-

capacitor SPIM, which combines the features of high starting torque and good running performance. 

Improving SPIM performance during starting and running operation has attracted the attention of 

many researchers. The research [7], [8] have implemented an electronically controlled capacitor to improve 

the performance of SPIM. Liu [9] has used electronic switch to adjust the effective capacitance value of the 

capacitor for maximizing the starting torque of a SPIM. Liu et al. [10] have proposed a simple hardware 

circuit, including a digital signal processor DSP chip and one power electronic device, to improve a SPIM 

torque and its efficiency. The digital signal processor (DSP) controls the switching sequence of the power 

electronic device and this process leads to attain the required capacitance values for starting and running 

operation. The authors in [6] have proposed an arrangement to connect the main and auxiliary windings 

through a triode for alternating current (TRIAC) device and capacitor. With this arrangement, high starting 

torque is achieved by providing proper TRIAC switching sequences.  

https://creativecommons.org/licenses/by-sa/4.0/
https://ieeexplore.ieee.org/author/37086972515
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Sensorless speed estimation of electric drive has received a great concern of many researchers and 

several approaches have been found in the literature. The implementation of Kalman filter for speed 

estimation of three phase induction motor is presented in [11], [12]. The authors of the publications [13]−[15] 

have utilized fuzzy logic observer to estimate the speed of three phase induction motor drive. The use of 

sliding mode observer for speed estimation has been considered in [16], [17]. The implementation of model 

reference adaptive system (MRAS) for speed estimation of motor drives has attracted several researchers, 

because it is simple to design and utilize [18]. The implementation of MRAS for speed estimation of three 

phase induction motor is presented in [19], [20]. Khan and Verma [21] have implemented MRAS for speed 

estimation of direct controlled switched reluctance motor. Merrassi et al. [22] have combined MRAS and 

neural network to provide an observer for estimating the speed of three phase induction motor. 

Sliding mode control has been extensively applied for speed control of three phase induction, some 

of these references are given here. On the other hand, the publications deal with the use of SLMC for speed 

control of single-phase induction motor are very few and the literature in this research area needs to be 

enhanced. The work presented in [23], [24] deals with the application of sensorless SLMC for three phase 

induction motor. The utilization of adaptive SLMC for three phase induction motor drives have been 

conducted in [25]−[27]. The research [28], [29] have utilized SLMC for single phase induction motor drive. 

The current research work is devoted to develop a high-performance self-starting sensorless single 

phase induction motor drive with reduced cost. Instead of using two capacitors for starting and running, the 

two tasks are accomplished by a phase shifted pulse-width modulation pulse width modulation (PWM) train 

of pulses fed to the main and auxiliary windings through a single-phase bridge PWM VSI. The MRAS 

approach is utilized to estimate the motor speed with no need for a speed sensor, like shaft encoder or tach-

generator. Robust motor speed control with minimized chattering and high time specifications is achieved 

using adaptive SLMC.  

 

 

2. MATHEMATICAL MODELLING 

2.1.  Single phase induction motor 

The voltages and flux linkages of a SPIM in stationary reference frame can be expressed in a matrix 

form as given in (1) and (2) [28]−[30]. The developed electromechanical torque is expressed in (3). The 

equation of motion of SPIM rotor is obtained by equating the inertia torque to accelerating torque as 

presented in (4), where Tmech is the externally applied mechanical torque, Drm is the damping torque and D 

is the damping coefficient. The motor speed can be derived from (4), and it is given in (5). 
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2.2.  Model reference adaptive system 

Model reference adaptive schemes have been utilized for various applications due to their attractive 

features of perfect response, robustness and stability [31]−[35]. Speed estimation process using MRAS 

observer can be accomplished through three inherent subsystems: reference model (RM), adaptive model 

(AM) and adaptation mechanism. The reference model can provide the reference rotor flux components 
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based on the measured stator electrical signals. The RM is represented in stationary reference frame based on 

(1) and (2) as [36], [37]: 
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The rotor flux components of AM are expressed in terms of stator current and mechanical rotor 

speed based on (1) and (2) [37] as given in (8) and (9). The third subsystem is the adaption mechanism 

producing the estimated speed value, which is treated to minimize the error between the reference and 

estimated fluxes. This task is accomplished using PI controller, which minimizes the tuning signal and feed it 

back to the adaptive model. The tuned and estimated speed signals are expressed in (10) and (11). A filter is 

added to minimize the oscillations which may occurs in the estimated speed. 
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2.3.  Adaptive sliding mode control 

To acquire SPIM drive having the features of fast speed response, fast recovery for load torque 

changes and insensitivity to parameter variations adaptive sliding mode control is utilized. The chosen 

state variables to implement SLMC are speed error and its derivative, as expressed in (12). The 

developed torque of SPIM in field-oriented control can be given in (13) [38]. 
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𝑟|. Therefore, the developed torque equation can be simplified to that given in (14) [39], and the 

equation of the torque constant KT can be expressed in (15). Based on (3) and (14) the state space SPIM drive 

system can be expressed in (16). 
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To limit the motor acceleration and deceleration, fixed acceleration segments as part of sliding 

trajectory are used. The two segments are expressed in (17) and (18). The equation of the control structure in 

achieving the reaching and existing conditions is expressed in (19), where  and  are the controller gains, 

which are derived from the existing condition given in (20) [39]. To minimize the oscillations (chattering) 

and maintain the robustness feature of SLMC, the control function is modified to the one given in (21). The 

proportional factor Kd enables the controller to reject external disturbances and the damping factor e1 enables 

the controller to minimize chattering in the system trajectory. The factor e0 is added to prevent obtaining 

infinite when Si + e1. |X1| becomes less than 1.  
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𝑆2 = 𝑋2 − 𝑋2𝑚𝑎𝑥 (17) 

 

𝑆3 = 𝑋2 + 𝑋2𝑚𝑎𝑥 (18) 
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3. THE PROPOSED SYSTEM 

The schematic diagram of the proposed SPIM drive system is shown in Figure 1. The measured 

stator currents and voltages Ia and Ib, Va and Vb are supplied to MRAS block to estimate the rotor speed. The 

estimated feedback speed f
* and the reference speed ref is compared to provide the error signal. The error 

signal, which represent the state variable X1 and its derivative X2 are fed to the adaptive SLMC which 

provides the control signal u. This output signal is integrated and then multiplied by the torque constant KT to 

obtain the electromagnetic torque Te
*. This torque is used to evaluate the stator current command in 

synchronously reference frame Iq
*. The stator direct axis current in synchronously reference frame Id

*is 

computed using the rated rotor flux linkage r
*. 

 

 

Id
*

ej 

 

Id
* 

cal

cu

lat

io

n 

 

 

Iq
* 

cal

cul

ati

on 

 
* 

e 

SPIM 

Σ 
D 

N 

Σ 

+ 
+ 

+ 

ref 

- 
u 

Te
* 

cal

cul

ati

on 

 

IA 

Co

ntr

ol 

 

  

r
*  

e sl 

VM VA 

IM 

IA 

IM 

IA 

IMA
 

f
* 

X1 

X2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Id
* calculation 

calculatioIMA
* 

 

n Iq
* calculation 

 

ej  
 

  

Pulse 

Shifter 
Single phase VSI  

Hystersis  

Current Control 

Speed Estimator       

Xrd/Xr 

calcul

ation 

÷ 

Adaptive 

SLMC 

KT  

d/dt 

  

 
 

Figure 1. The schematic diagram of the proposed system 

 

 

The slip speed 𝜔𝑠𝑙  is found using the rotor flux linkage command r
* and the computed current Iq

*. 

The estimated rotor speed is added to the slip speed to produce the synchronous speed e, which is integrated 

to find the synchronous angular positron e. Now the currents Iq
*and Iq

*can be transformed to stationary 

reference frame. These two currents are compared with the corresponding measured stator currents through 

two hysteresis controllers. The two outputs from the controllers are treated by applying appropriate shifting 

and the processed gating pulses are fed to the inverter to start and run the motor.  

 

 

4. RESULTS AND DISCUSSION 

Figures 2 to 4 are generated to examine the performance operation of both speed estimator and 

phase shifter of pulses fed to the VSI. It can be observed that the estimated speed is in close agreement with 

the simulated speed, even with step change in reference speed. Moreover, it can be seen that the utilized 

phase shifter has the capability to start and run the SPIM under speed changes. After having this confidence, 

a number of computer simulation have been conducted to examine the performance of the proposed SPIM 
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drive system. Figures 5 to 7 are presented to test the robustness feature of the drive system in rejecting load 

torque disturbances. In this test, the motor is subjected to a step change in the load torque from no load 

condition at starting to full load torque at 3 second after starting, as shown in Figure 7. As can be noticed in 

Figure 5 the proposed controller can completely reject the applied disturbance torque. The response of the 

main and auxiliary currents to the applied step change in the motor’s load is shown in Figure 6. 

 

 

  
  

Figure 2. Comparison between simulated speed 

currents and speed under step change in speed 

Figure 3. Main and auxiliary winding estimate under 

changes in reference speed 

 

 

  
  

Figure 4. Torque response to step change in 

reference speed 

Figure 5. Speed response for step change in the load 

torque 

 

 

  
  

Figure 6. The responses of stator currents for load 

torque disturbance 

Figure 7. The load torque step response 

 

 

Figure 8 shows the speed response for one step change in the load toruque of 1 N.m at two seconds 

after starting, as shown in Figure 9, and two step changes in the motor speed occurred after 3 and 6 seconds 

of starting. As can be noticed the motor can repond smoothely to the changes in the load torque and rotaional 

speed. The speed response to step changes has the features of fast response, zero percentage overshoot and 

zero steady state errors. Moreover, the recovery time of speed reponse to step in load torque is close to zero. 

To examine the insensitivity of the proposed controller to system parameter variations, Figures 10 

and 11 are created. Figure 10 shows the speed response for an increase of 10% in the main winding resistance 

and Figure 11 presents the speed response under 10% increase in the auxiliary winding inductance. In these 

figures one step change in the load torque at 2 s and two step changes in the speed command at 3 and 6 s are 
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applied. As can be observed the controller follow the prescribed reference speeds smoothly and accurately 

with no effect due to system parameter variations.  

The previous obtained results confirm that the proposed control system possess the features of fast 

dynamic response with no overshoot and zero steady-state error. Moreover, it is robust to external load 

disturbances and insensitive to system parameter changes. It can be stated that all aimed targets in the 

proposed SPIM drive system are achieved. 

 

 

 
 

Figure 8. Speed response for two speed step changes and one torque step change 

 

 

 
 

Figure 9. The torque response for two step change in speed and one torque step change 

 

 

  
  

Figure 10. Speed response for an increase of 10% in 

the main winding resistance 

Figure 11. Speed response for an increase of 10% in 

the auxiliary winding inductance 

 

 

5. CONCLUSION 

The performance of the proposed low cost sensorless self-starting SPIM drive system, under 

different operating conditions, has been assessed by conducting extensive MATLAB/Simulink simulations. 

Self-starting and smooth running are achieved via the phase shifter to the pulses supplied to VSI inverter. The 

motor speed is estimated using MRAS observer and adaptive SLMC is utilized to acquire the robust speed 
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controller. The obtained results show that the motor can start and run smoothly, and the speed is accurately 

estimated, even under step changes in speed and torque commands. Moreover, the speed controller provides 

results confirming that a high-performance control system, in terms of time specifications and robustness, is 

reached. The features of fast dynamic response, very fast recovery time for step changes, zero parentage 

overshoot, zero steady-state error, rejection for load disturbances and insensitivity to parameter variations are 

all achieved. 
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