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 As permanent magnet synchronous motors (PMSM) have high power 

density, efficiency, good dynamic performance, and small size they are 

becoming popular in electric vehicle (EV) applications. Control performance 

and the efficiency of the system get affected due to electrical, mechanical 

parameters. Parameters value gets affected by voltage source inverter (VSI) 

non-linearities, temperature and magnetic saturation effects. If exact 

parameters for particular torque speed requirement are found, the efficiency 

of system increases. There are various offline and online methods for finding 

parameters. Offline methods are easy to implement but requires extra setup 

and estimate parameters in steady state. Because the effects of transient 

conditions are taken into account during identification, online methods for 

obtaining real-time data under running conditions are becoming more 

popular. An overview about online numerical methods to estimate electrical 

parameters of PMSM is given. It discusses difference between various 

methods in terms of computational cost, convergence speed, noise and 

identification error. Choosing of method will be easy using this work. For 

inductance estimation, the extended Kalman filter (EKF) algorithm has an 

identification error of 0.24% under temperature effect and -0.3% under VSI 

non-linearities effect. The identification error for Rs and ψf using the 

recursive least square (RLS) method is 0.5% and 0.02%, respectively, when 

temperature is considered. EKF and RLS algorithms are proposed. 
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1. INTRODUCTION  

Permanent magnet synchronous motors (PMSM) are becoming popular in industry for electric 

vehicle (EV) applications [1]−[3] due to their characteristics such as high-power density, high efficiency [4], 

good dynamic performance, and small size [5]. There are two types of PMSMs depending upon the rotor 

construction-interior permanent magnet synchronous motor (IPMSM) and surface mounted permanent 

magnet synchronous motor (SPMSM). In SPMSM the permanent magnets are placed on the surface of rotor 

having equal value of d-axis inductance Ld and q-axis inductance Lq. Where as in IPMSM the placement of 

magnets is embedded inside the rotor [6]. Value of Lq is larger than Ld for IPMSM. Reluctance torque is 

present in IPMSM which gives advantage of high torque compare to SPMSM. For getting high control 

performance of the system, estimation of accurate motor parameters is necessary. Motor parameters can be 

classified into electrical parameters such as stator resistance Rs, d-q axis inductances , Ld, Lq, flux linkages ψf 

https://creativecommons.org/licenses/by-sa/4.0/
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[7], [8] and mechanical parameters like inertia J, viscous friction Bm. Generally, one gets motor parameters 

value by requesting manufacturer for data sheet of motor [9] and the nominal parameters like rated voltage, 

rated current, number of pole pairs, rated speed, rated torque, and class of insulation are available on motor’s 

nameplate. But under running condition the effect of temperature [10], saturation [11], [12] and voltage 

source inverter (VSI) non-linearities [13] affects the values such as Rs, Ld, Lq, ψf. This affects the control 

performance of the system and indirectly the efficiency [14]. By getting accurate parameters, accurate control 

of motor can be developed [15], and efficiency can be increased. Different offline and online methods [16], 

[17] are available for characterization of motor. Offline methods which are available for identification of 

parameters are finite element method (FEM) [18], AC standstill frequency response method [19], IEC60034-

4, and DC decay test [20]. In offline methods different tests are performed to get parameters [21]. Offline 

methods take a lot of time and require additional test settings [22]. In order to improve control performance, 

the EV industry is moving toward recognizing the motor parameters in real time utilizing online methods and 

updating the control gains of running systems. The goal is to improve system control performance. 

There are different methods for online parameter estimation such as recursive least square (RLS) 

[23]−[28], model reference adaptive system (MRAS) [29], extended Kalman filter (EKF) [30]−[32], particle 

swarm optimization (PSO) [33]−[38], genetic algorithm-based methods [39], modified Jaya algorithm [40], 

machine learning (ML) algorithm [41], moving horizon estimator (MHE) [42], Runge-Kutta model based 

predictive method [43], recursive error prediction method (RPEM) [44], impedance methods [45], [46], and 

Gauss Newton method [47]. This paper includes different numerical methods with their characteristics and 

basic working process. The detailed classification of different online methods is provided in section 2. 

In almost all literature field oriented control (FOC) for PMSM is considered to implement motor 

parameter identification. The basic principle used by FOC is that it converts stationary reference frame to 

rotating frame which helps to minimize the complexity of analysis. Clarke and Park transformations are used 

for converting the reference. Clarke transformation is used to convert three phase system (abc frame) into an 

orthogonal stationary frame (α-β frame). Park transformation is used to convert orthogonal stationary frame 

to orthogonal rotating frame (d-q frame). Most online methods from literature are using d-q reference frame 

for parameter identification. There is one problem in d-q frame that is ‘rank deficiency’. As per the voltage 

(1) and (2) of the d-q frame, the observability of matrix in steady state is 2. There are 4 parameters to be 

identified as mentioned above, using voltage equation in d-q frame one can only find 2 parameters. Different 

approaches are presented to overcome this problem [21]. These depend on 2 principles: i). To decrease the 

number of parameter identification, and ii) To increase the rank of observability matrix. Rank of the matrix 

can be increased by considering various running conditions. FOC [22], [48] implementation is done using 

Clark and Park transformation in section 2. 

This article is further organized as follows. Section 2 gives the basic mathematical model of PMSM 

considering the FOC and classification of parameter identification methods. Section 3 provide the different 

numerical methods for parameter estimation along with different features. Section 4 presents analysis in 

terms of identification error and comparison for various numerical methods. In identification error table 

percentage error considering method under some effect or no effect is provided. Finally, section 5 concludes 

the paper. 

 

 

2. METHOD  

2.1.  Mathematical model of PMSM 

In this section mathematical model of PMSM is introduced. By ignoring eddy current loss, 

hysteresis loss, magnetic saturation and assuming balanced 3 phase supply [22], PMSM voltage equations in 

d-q frame can be written as: 
 

𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑  
𝑑𝑖𝑑

𝑑𝑡
− 𝜔𝑒𝐿𝑞𝑖𝑞  (1) 

 

𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞  
𝑑𝑖𝑞

𝑑𝑡
− 𝜔𝑒𝐿𝑑𝑖𝑑 + 𝜔𝑒𝜓𝑓  (2) 

 

where, ud and uq are stator voltages of d and q axis respectively; id and iq are d and q axis currents 

respectively; Rs is the stator resistance; 𝜔𝑒 is angular speed in electrical reference; Ld and Lq are inductances 

of d and q axis respectively; ψf is the flux linkages. The (3) provides electromagnetic torque for PMSM. 
 

 𝑇𝑒 =
3

2
𝑃𝑝𝜓𝑓𝑖𝑞   (3) 

 

Where, Te is electromagnetic torque; PP is number of poles pairs; ψf is flux linkages; iq is q axis current. 
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Motion equation can be given as (4). 

 

𝑇𝑒 − 𝑇𝑙 = 𝐽 
𝑑𝜔𝑒

𝑑𝑡
+ 𝐵𝑚𝜔𝑒  (4) 

 

Where, 𝑇𝑙  is load torque; J is a moment of inertia; Bm is a coefficient of friction; 𝜔𝑒is angular velocity of 

rotor. 

 

2.2.  MATLAB model of PMSM with FOC 

Figure 1 gives MATLAB model of PMSM with FOC using mathematical model of PMSM. 

Conversion of 3 phase to d-q frame is done using a ParkClark function. Mathematical (1), (2), (3) and (4) of 

PMSM are implemented for building Simulink model. Figure 2 shows the output speed waveform of the 

developed PMSM along with FOC control. 

 

 

 
 

Figure 1. MATLAB Model of PMSM with FOC 

 

 

 
 

Figure 2. Speed waveform 

 

 

2.3.  Steps to reproduce the MATLAB model 

− The Clarke and Park transformation function is written using the standard equation of conversion. 

− The voltage subsystem shown in Figure 1 is developed using (1) and (2). 

− The torque equation subsystem is build using (3). 

− The speed is calculated using (4) and built it in speed equation subsystem. 

− Constant load torque is given for operation. 
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− The speed is converted to electrical speed by using formula: 
 

𝜔𝑒 = (𝑝/2)  *𝜔𝑚 

2.4.  Classification of parameter identification methods for PMSM 

There are different methods for parameter estimation. Figure 3 shows the classification of different 

offline and online methods. Offline methods require the extra test setup [22] and gives estimation in standstill 

condition. Generally, data is collected earlier and depending on that parameter are estimated. Whereas for 

online methods parameters are found in running conditions and hence different effects like temperature, 

saturation, VSI non-linearities can be considered during estimation for developing high control performance. 

Online methods can be classified as Numerical methods [11], [12], [14]−[32], [42]−[47], [49]−[51], Observer 

based methods [52], AI- ML based methods [33]−[41], [53], [54]. The focus of this article is on different 

online numerical methods for electrical parameter estimation. 

 

 

 
 

Figure 3. Classification of parameter identification methods 

 

 

3. LITERATURE SURVEY  

3.1.   Online numerical methods for parameter estimation 

In this section brief about different online numerical methods is given along with the advantages and 

disadvantages of it. Recursive least square method is a classical approach for parameter identification. It is 

used to estimate weight coefficients to minimize least square cost function [21]. Forgetting factor f directly 

affects the promptness of coefficient. Higher the value of f, the slower the estimation. Closer the value of f to 

one, older estimations are equally weighted. Smaller values of f consider only the latest measurements but 

increasing the value of the covariance Q as inferable [23]. Figure 4 shows the basic working of RLS method. 

Depending upon the current state and estimated state error weighted coefficients are being updated. RLS 

algorithm is best in steady state conditions having less execution time compared to EKF [29] and has simple 

theoretical derivation and implementation [23]. Apart from this it is sensitive to noise and disturbances [29]. 

It may not converge to accurate values in d-q frame of reference [21]. It has drawback of data saturation and 

has fixed gain due to which estimation accuracy gets reduced [29]. It may not perform well with low speed 

and light load. 

Moving horizon estimation is the performance of MHE is better than Unscented Kalman Filter and 

EKF under transient condition. It has more accuracy compared to RLS, MRAS, EKF and Unscent Kalman 
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Filter (UKF) [6], [28]. Extended Kalman filter is the optimal recursive estimation algorithm based on least 

square method used to estimate states of dynamic nonlinear system [29]. Taylor series is used to linearize the 

dynamic model. For estimation, it takes measurement noise R and processing noise Q into account.  

Execution time for EKF is longer than RLS and MRAS [12], [17]. It is based on discrete system model of 

electrical system and has better optimization capability, good convergence in simultaneously estimating 

PMSM electrical parameters [4], [14]. Figure 5 shows the working of EKF considering the noise effects. 

Kerid [32] has considered temperature variation while implementing EKF algorithm for parameter 

estimation. Main advantage of EKF is that it rejects the process and measurement noise having similar 

accuracy as UKF [45], MHE. EKF with Gradient correction has small calculation, high accuracy, and fast 

convergence speed. It has been observed in literature that EKF has a complex structure with high 

computational burden and comparative longer execution time than MRAS and RLS. It is difficult to design 

the algorithm for multi parameter measurement. 

 

 

 
 

Figure 4. RLS algorithm 

 

 

 
 

Figure 5. EKF Algorithm 

 

 

The main drawback of EKF is that it has large sampling time. This is overcome by DKF method. 

The results of Jacobian matrix for DKF is identity matrix. This algorithm is least noisy and has accurate 

mean value under load step condition. Computational load can be reduced using this method. The idea behind 

model reference adaptive system is that it makes error calculation from reference model and a adjustable 

model as shown in Figure 6 using adaptive mechanism error is minimized. Adaptive mechanism includes 

Popov stability criteria and Lyapunov stability theorem. MRAS has good results and less implementation 

complexity [29]. MRAS possesses advantage of less execution time than EKF. This method is sensitive to 

noise, and it is difficult to be used in multi parameter identification of missing rank. It increases the difficulty 

of identification algorithm [29]. The gain matrix of recursive prediction error method can be identified using 

different algorithm like Gauss Newton method (GNA) and the stochastic gradient algorithm (SGA). 

According to Perera [44], in low-speed region GNA has rapid adaptation of flux linkages than SGA. 

Simultaneous adaptation without zonal scheduling scheme is possible with GNA [47]. This method is more 

effective when steady state solution used for flux linkage and dynamic part for Rs. To define system 

characteristics fractional mathematical models are more accurate than integer order models because essence 

of capacitance, inductance are fractional order. Li [51] used Levenberg-Marquardt algorithm (LM) with 

variable damping factor to identify fractional order model parameters with steps. Akpunar [39] proposed 

extended state observer predictive speed control algorithm for PMSM drives and implemented using Runge-

Kutta method. Runge-Kutta method has simplicity of modelling and better constraint handling capability. It 

is robust but it has computational burden. Rengifo [46] represented instantaneous input impedance model 

along with disturbance discrete model considering features such as harmonics, saturation. Values of 

parameters according to interior points and genetic algorithm are given. Interior points algorithm requires 
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less computing time. For multiparameter coupling problems, an improved PSO algorithm based on Gaussian 

decline and Gaussian disturbance can be used [34]. In, a metaheuristic algorithm for a continuous time 

system using a photovoltaic model is implemented [35] and compared to PSO in [38]. To estimate Li-ion 

battery parameters with high convergence speed and low complexity, artificial ecosystem-based optimization 

is used [36]. In the future, a metaheuristic algorithm for PMSM parameter estimation could be investigated. 

 

 

 
 

Figure 6. MRAS algorithm 

 

 

4. DISCUSSION  

Table 1 gives comparative analysis between different methods in terms of convergence speed, 

computational complexity, initial value requirement and sensitivity to noise. RLS and RPEM have fast 

convergence speed compared to others. EKF has property to reject measurement and process noise, but EKF 

have more computational complexity compared to RPEM. Depending upon method used the criteria for 

initial value requirement changes. Some methods require initial parameter value so that convergence time get 

reduced. Noise sensitivity is an important factor which affects the accuracy of algorithm. Kalman filter have 

advantage of considering noise while estimating the parameters. 

 

 

Table 1. Comparative study of methods 

Features 
Methods 

RLS EKF MRAS HF Injection RPEM Fractional order-based LM 

Convergence speed Faster Slower Slower - Fastest Fast 
Computational Complexity Less More Less - Substantial - 

Initial value requirement - Required - - Required Required 

Sensitive to noise More Immune Less More - - 

 

 

Table 2 gives brief about percentage of identification error for parameters considering the method 

and different effects. Operating conditions of motor such as temperature, magnetic saturation affects stator 

resistance and inductances. Rs, Ld, Lq vary with rotor position and frequency. In EV application the inverter 

non-linearities also need to be considered while controlling the performance for efficiency. Table 2 provides 

the identification error percentage for parameter estimation using different methods under various 

consideration such as VSI non-linearities, temperature, saturation, or no consideration. The identification 

error can be calculated as: 

 

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
|𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛−𝑡𝑟𝑢𝑒|

𝑡𝑟𝑢𝑒
∗ 100%  

 

Here, identification and true means the estimated or identified and the true value of the parameter 

respectively. Identification error is the error in estimating the parameter value and the actual value. 

One can use Table 1 results to decide the method for parameter identification depending upon the 

features one wants for estimation. Along with it Table 2 gives scope for method finalization in terms of 

identification error of method either without any consideration or with considering effects such as 

temperature and VSI non- linearities. 
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Table 2. Identification error considering various effects 
Method or 

Effect 

Without any consideration Temperature effect VSI Non-Linearities 
Add-ons or reference 

Rs Ld Lq Ψf Rs Ld Lq Ψf Rs Ld Lq Ψf 

RLS 4.61 1.87 2.45 -2.5 - - - - - - - - [21] 

- - - - -2.3 -0.06 0.19 0.02 - - - - [49] 

- - - - 0.5 0.36 0.86 - - - - - MTPA Control [4] 
MRAS 

- - - - 0.003 0.0004 0.0004 0.0004 - - - - 
(10-6), Improved adaptive law 

[29] 

- - - - - - - - 4 - - - [29] 
EKF - - - - 1.8 0.24 0.24 - - - - - Gradient correction [31] 

- - - - - - - - -2.3 -0.3 -0.3 -1.5 [32] 

HF Injection - - - - - - - - 5 5 6 9.5 [41] 
RPEM - - - - - - - -  - - 10 SGA [40] 

 

 

5. CONCLUSION 

This paper represents an overview on different numerical methods that are available for online 

parameter estimation considering that the position sensor is present in the system. The basic idea of methods 

with their advantages and disadvantages are provided. It also gives identification error percentage values for 

numerical methods with consideration of various effects. The comparison between methods in terms of 

convergence speed, computational complexity, sensitivity to noise and initial value requirement is also 

provided. Selection of the numerical method for parameter identification of PMSM is possible using this 

literature depending upon the user’s constraint for method selection such as convergence speed, identification 

error range, and computational time. Further scope is to implement any of the method to get accurate 

parameters of motor.  

Having fast convergence speed, RLS is the most used method for motor parameter estimation but it 

does not consider the noise effect. Having noise consideration by default and if temperature and saturation 

effects are to be considered, EKF is the useful method for parameter estimation but the computational 

complexity is more. As a future scope one can use EKF for Ld, Lq estimation and RLS for Rs and flux linkage 

estimation of PMSM, as EKF has more computational burden. 
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